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Crohn’s disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases

(IBD) characterized by intestinal epithelial injury including extensive epithelial cell death,

mucosal erosion, ulceration, and crypt abscess formation. Several factors including

activated signaling pathways, microbial dysbiosis, and immune deregulation contribute

to disease progression. Although most research efforts to date have focused on immune

cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important

players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense

IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the

injured mucosa are critical to the integrity of the intestinal barrier. The role of several

genes and pathways in which single nucleotide polymorphisms (SNP) showed strong

association with IBD has recently been studied in the context of IEC. In patients with

IBD, it has been shown that the expression of specific dysregulated genes in IECs

plays an important role in TNF-induced cell death and microbial sensing. Among them,

the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor

interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other

hand, RIPK2 functions as a key signaling protein in host defense responses induced

by activation of the cytosolic microbial sensors nucleotide-binding oligomerization

domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling

pathway leads to the activation of NF-κB and MAP kinases that induce autophagy

following infection. This article will review these dysregulated RIPK pathways in IEC and

their role in promoting chronic inflammation. It will also highlight future research directions

and therapeutic approaches involving RIPKs in IBD.
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Inflammatory bowel disease (IBD) is an inflammatory process with a chronic relapsing course
that is characterized pathologically by intestinal inflammation and epithelial injury that affects
the different gastrointestinal (GI) linings (1). IBD includes different inflammatory pathologies
of the gastrointestinal track. The more prevalent IBD pathologies are Crohn’s Disease (CD) and
Ulcerative Colitis (UC) (1). Pathogenesis of IBD is multifactorial, involving genetic predisposition,
disturbance of the commensal microbiota, epithelial barrier defects, dysregulated immune
responses, and environmental factors (2). The gastrointestinal tract (in particular, the terminal
ileum and colon) also contains a massive bacterial load that has the potential to initiate an acute
inflammatory intestinal response if the mucosal barrier is breached and bacteria gain access to the
lamina propria, as occurs in IBD (2).
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The receptor interacting protein kinase (RIPK) proteins are
key molecules for the maintainance of a healthy intestinal barrier
(3). The RIPK family contains seven members that share a
homologous serine-threonine kinase domain but has different
functional domains (4). RIPK1 contains a death-domain in the C-
terminal portion that allows its recruitment to different signaling
complexes. RIPK2 is characterized by its caspase activation
and recruitment domain (CARD). RIPK3, like RIPK1, has a
RIP homotypic interaction motif (RHIM), which is necessary
for RIPK1 and RIPK3 dimerization. RIPK4 (or DIK or PKK)
and RIPK5 (or SgK288) contain ankyrin repeats in the C-
terminal tail. Finally, RIPK6 (or LRRK1) and RIPK7 (LRRK2)
have leucine-rich repeats (LRR) that could play a role in the
recognition of inflammatory-associated molecular patterns. In
this review, we will focus on the epithelial barrier and how
an aberrant response to TNF stimulation, exarcebated, IBD-
associated microbial sensing, and abnormal regeneration and
healing of the injured mucosa by dysregulated RIPK pathways
in IEC can critically affect the health of the intestinal barrier.

INTESTINAL EPITHELIAL BARRIER

The intestinal epithelium forms the physical, protective, and host
defense barrier against the harmful luminal microenvironment,
while providing selective permeability for absorption of nutrients
(5). The epithelium is covered by a single-cell layer composed
of different subtypes of specialized intestinal epithelial cells
(IECs) including enterocytes, goblet cells, enteroendocrine
cells, Paneth cells, M cells, cup cells, and Tuft cells, all of
which differentiate from common epithelial stem cells (5).
These IECs types are functionally different and essential for
maintaining intestinal homeostasis by separating the intestinal
lumen from the underlying lamina propria and by controlling
the crosstalk between luminal microbiota and subjacent immune
cells (Figure 1). IECs not only function as a physical barrier
through enteroctyes (the largest cell population in IECs), but
also through other specific functions. Paneth cells, for instance,
are specialized secretory epithelial cells located in the crypt of
the small intestine and contribute to the host defense secreting
anti-microbial peptides that are diluted in the mucus enhancing
the antimicrobial barrier and shape the commensal bacterial
population (6–9). Paneth cells are characterized by an extensive
endoplasmatic reticulum and Golgi apparatus with big secretory
granules containing a wide variety of peptides, especially those
with antimicrobial activity including defensins.

Goblet cells are the second most abundant cells in IECs and
are specialized in mucus secretion (10). Mucins are highly O-
glycosylated molecules that have gel-like properties and cover the
inner walls of the gut lumen. Mucins form a bistratified mucus
barrier, which becomes denser as it nears IECs, thus preventing
bacteria from penetrating the barrier (11). At the same time, the
mucus provides digestible glycans as a stable source of energy
for the commensal microbiome (12–14). Intestinal goblet cells
also sense luminal material that can be taken up delivered to
lamina propria CD103+CD11c+ dendritic cells (DC) (15, 16)
through goblet cell-associated antigen passages (GAPs). The DCs

that interact with regulatory T cells have been suggested to induce
tolerance to food antigens. Other cells, such as enteroendocrine
cells, release a variety of humoral and paracrine mediators that
can induce different immunoregulatory effects including cellular
recruitment, activation, phagocytosis, antigen presentation and
cytokine secretion (17, 18). Additionally, tuft cells, critical in the
initiation of type-2 immune responses, are typically activated
during intestinal protozoa or helminth parasite infections.
Microfold (M) cells are epithelial cells specialized in phagocytosis
and transcytosis of gut lumen antigens and pathogenic or
commensal microorganisms across the intestinal epithelium
toward the underlying gut-associated lymphoid tissues (GALT).
M cells are also critical in maintaining a healthy intestinal
barrier and control the crosstalk between luminal microbiota and
subjacent immune cells.

IECs ability to act as a protective physical barrier is mediated
by the formation of protein complex connections between
adjacent cells, including tight junctions (TJ) and adherent
junctions (AJ), which form the apical junction complex (AJC),
as well as desmosomes, which are located in the basolateral
membrane (19). These dynamic complexes are susceptible
to endogenous and exogenous factors, such as cytokines,
nutrients, and bacteria (19). TJs are the apical complexes of
the AJC, connecting and sealing adjacent cells. TJ complexes
are composed of junctional adhesion molecules (JAM), claudins,
occludins, and zonula occludens (ZO), which seal neighboring
cells together (20). AJs, composed of cadherins, form the second
AJC loop, maintaining cell-to-cell connections; however, AJ
are not critical for creating paracellular tightness (20). Finally,
desmosomes connect intermediate filaments of neighboring
cells, conferring mechanical strength to cell-to-cell junctions.
They are formed by desmoplakin, plakoglobin, plakophilin,
desmocollin, and desmoglein (21, 22). Tight junctions are critical
for maintaining barrier function during IEC shedding, which
occurs continuously from villus tips or colonic surfaces as a result
of migration of the epithelial cell up the crypt–villus axis from
stem cells at the base of the crypt (23). Normal cell shedding
never causes a breach in the epithelial barrier because of the
redistribution of tight junction proteins that facilitates the closure
of the gap (24). However, in pathological conditions, when
multiple neighboring cells are shed at the same time or cell death
is activated, or turnover is increased a proper rearrangement
of cell-to-cell contact cannot take place. Consequently, breaches
appear in the intestinal epithelial barrier, which causes intestinal
inflammation (23).

RIPK PROTEINS ARE CRITICAL TO
MAINTAINANCE OF BARRIER FUNCTION

The Role of Autophagy Mediated by
Nod2/RIPK2 in Maintaining
Intestinal Homeostasis
Autophagy is a cell stress response that causes the encapsulation
of cellular contents for subsequent degradation and recycling
(25). Although the first barrier against bacterial and parasitic
invasion of the intestine is the mucus layer, some pathogens
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FIGURE 1 | Components of the intestinal epithelial cell barrier. In the intestinal epithelial cell barrier we can find different specialized cell types including; enterocytes,

goblet cells, enteroendocrine cells, paneth cells, stem cells, microfold (M) cells, and cup and tuft cells. Briefly, enterocytes are the most common cells with nutrient

absorption functions; goblet cells secrete mucus to form an extra intestinal protective layer; enteroendocrine cells secrete humoral mediators with immunoregulatory

effects; paneth cells secrete antimicrobial peptides and maintain the stem cell niche; microfold cells play an important role in transporting lumen antigens into the

associated intestinal lymphoid structures; and Tuft cells play an important innate role against helminth and protozoan infections.

can penetrate this layer to reach the IECs. In this situation,
autophagy plays an important role by recognizing and degrading
intracellular pathogens, thus functioning as an innate barrier
to infection. It has already been shown that knockdown of
autophagy genes in Caenorhabditis elegans and Dictyostelium
discoideum increases Salmonella typhimurium intracellular
replication, decreases animal lifespan, and results in apoptotic-
independent death (26).

NOD2 (nucleotide-binding oligomerization domain-
containing protein 2) is a critical element in regulating
autophagy in IECs (27). NOD2, a cytosolic pattern recognition
receptor, is activated by the peptidoglycan fragment muramyl
dipeptide (MDP) to generate a proinflammatory immune
response (28, 29). Over 30 cellular proteins interact with NOD2
directly and influence or regulate its functional activity (30).
Among them, NOD2 recruits ATG16L1 (autophagy-related
protein 16 like 1) to the plasma membrane at the bacterial entry
site to induce phagophore formation. ATG16L1 then forms
a complex with ATG5 and ATG12 to induce the lipidation
of LC3 (microtubule-associated protein 1A/1B-light chain 3),
forming an autophagosome and inducing autophagy (27).
Additionally, upon activation, NOD1 and NOD2 recruit
RIPK2 through CARD domains (31, 32), inducing RIPK2
k63-polyubiquitination in lysine 209 by cIAPs and the LUBAC
complex (33–35). This leads to RIPK2 activation, which
depends on autophosphorylation in residues Ser176 and
Tyr474, an essential and enhancing site respectively (36, 37),
and downstream activation of transforming growth factor

beta-activated kinase 1 (TAK1) (38–40). TAK1 consecutively
phosphorylates the IKK complex triggering NF-κB and MAPK
pathway activation.

Travassos et al. showed that NOD1 and NOD2 can recruit
ATG16L1 to the plasma membrane at the bacterial entry site
in different cell types including the mouse intestinal epithelial
cell line Mode-K through a RIPK2-independent mechanism
(41). The role of RIPK2 as a kinase in autophagy induction
downstream of NOD2 has also been investigated. In different
cells, including the cell-like HCT116, RIPK2 kinase function is
required for the phosphorylation of the protein kinase ULK1 at
Ser555, and for the deactivation of the protein phosphatase 2A
(PP2A) complex that negatively regulates autophagy induction
downstream of p38 activation (42, 43). In dendritic cells,
NOD2 is also able to trigger autophagy through RIPK2-
mediated recruitment of ATG5, ATG7, and ATG16L1 (44).
Anand et al. showed how activated RIPK2 promotes increased
autophagosome formation by activating MAPK/ERK kinase 4
(MEKK4)–p38 signaling and/or extracellular signal-regulated
kinase 1 (ERK1) and ERK2 signaling, which upregulates basal
levels of autophagy (43).

Autophagy also plays an important role in protecting IECs
from cell death. NOD2 is highly expressed in intestinal stem
cells, and its activation by MDP triggers stem cell survival
and strong cytoprotection against oxidative stress-mediated cell
death (45). This could be due to NOD2s ability to activate the
NF-κB pathway, which has protective effects in the intestinal
epithelium (46). Animals lacking ATG16L1 in the epithelium
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were more susceptible to DSS-induced colitis, and the pathology
was exacerbated when these animals were infected with murine
norovirus (MNV). Further histological analysis and organoid
experiments show that ATG16L1 protects cells from necroptosis
by removing aberrant mitochondria and impairing downstream
reactive oxygen species (ROS) accumulation (47). In another
model of colitis induced by Helicobacter hepaticus, mice with a
deletion of ATG16L1 in IECs hadworse histopathology than their
littermates. IECs in affected mice were more susceptible to TNF-
induced apoptotsis, increasing inflammation and pathology of
the models (48). Overall, it has been shown that autophagy adds
another layer of protection from foreign organisms by preventing
pathogen proliferation and dissemination to extraintestinal sites
(49). It also has a protective role in IECs, and defects in the
autophagy pathway increase the susceptibility of the intestine
to inflammation, inducing cell death and intestinal epithelial
barrier breakdown.

RIPK1 AND RIPK3 ARE CRITICAL IN
MAINTAINING AN EQUILIBRIUM
BETWEEN CELL SURVIVAL AND CELL
DEATH DOWNSTREAM OF TNF

RIPK1 and RIPK3
Two RIPK proteins have key kinase-dependent functions in
deciding beneficial or deleterious effects downstream of TNF:
RIPK1 and RIPK3 are two key molecules in the assembly of
TNFR complexes that may trigger cell death (Figure 2).

- RIPK1 was the first protein of the RIPK family identified,
interacting with apoptosis antigen 1 (APO-1 or FAS) through its
death domain (DD), giving it its “receptor-interacting protein”
name (50). Through its DD, RIPK1 can also bind other receptors
such as the TNF-receptor 1 (TNFR1), TNF-related apoptosis-
inducing ligand (TRAIL) receptors 1 and 2 (DR4 and DR5) and
death receptor 3 (DR3 or TRAMP). RIPK1 interacts with other
adaptor proteins such as TRADD, Fas-associated protein with
death domain (FADD), Toll/IL-1 receptor domain-containing
adaptor inducing interferon-β (TRIF), RIP-associated ICH-1
(ICE (interleukin-1β-converting enzyme)/CED-3 homolog 1)
protein with a death domain (RAIDD), TNF receptor associated
factor (TRAF)1, TRAF2, TRAF3, and A20 (50–60). Furthermore,
it can also interact with RIPK3, through its RIP homotypic
interaction motif (RHIM) domain, as well as with focal adhesion
kinase, MEKK1 and MEKK3 (61–64).

- RIPK3: similar to RIPK1; it contains an N-terminal kinase
domain and a RHIM domain in the C-terminal part, that
allows RIPK1/RIPK3 interactions (4). However, its C-terminal
domain is completely different from other RIPK proteins. This
could explain its ability to interact with the liver glycogen
phosphorylase (PYGL), glutamate ammonia ligase (GLUL) and
glutamate dehydrogenase 1 (GLUD1), enhancing its enzymatic
activity (4). These are metabolic enzymes required for ATP
production, with PYGL releasing glucose-1-phosphate from
liver glycogen, and GLUL and GLUD1 playing crucial roles
in the use of glutamate and glutamine as substrates for
ATP through oxidative phosphorylation; this suggests a link

between RIPK3 and metabolism (65). In fact, RIPK3 orchestrates
necroptosis, “an active cell death pathway” that requires both
adenosine triphosphate (ATP) and ROS (66). Through RIPK3-
enhanced aerobic respiration, mitochondria could both produce
energy to execute necroptosis while increasing the amounts of
ROS required for the RIPK1/RIPK3 and later MLKL (mixed
lineage kinase domain-like) complex formation and activation
downstream of TNF (66).

Genetic studies has helped to understand the role of these
kinases in cell death. Mice lacking RIPK1 show defects in
multiple tissues, triggering systemic inflammation leading to
perinatal death 1-3 days after birth (67). Simultaneous deletion
of TNFR1 prolonged up to 12 days post-delivery the survival
in Ripk1−/− Tnfr1−/− (68). Deletion of RIPK3, mixed lineage
kinase domain like pseudokinase (MLKL) or caspase-8 in
Ripk1−/− did not improve the phenotype, with those mice dying
soon after delivery (69, 70), suggesting that when just apoptosis or
necroptosis are blocked downstream of TNF, the other pathway
gets activated. In a similar manner, triple deletion of RIPK1,
RIPK3, and TNFR1 allows mice survive until adulthood. Yet,
shortly after birth they present intestinal apoptosis, which could
contribute to the mortality associated with blood bacteremia
(69). Accordingly, simultaneous deletion of RIPK1, RIPK3,
and caspase-8 or FADD protect the mice and prevented any
macroscopic and microscopic signs of intestinal pathology, but
mice developed autoimmune lymphoproliferative syndrome (69,
70). Since double deletion of FADD and RIPK1 induces perinatal
death (71) but additional deletion of RIPK3 protect the animals,
these results suggest that some other mechanism, independent
of RIPK1, activates RIPK3. In fact, DNA-dependent activator
of interferon regulatory factors (DAI) can interact and activate
RIPK3 independently of RIPK1 (72). Ripk1−/− Ripk−/− and
Trif−/− or Ifnar−/− animals were generated, and although it
conferred certain protection compared with Ripk1−/− Ripk−/−,
those mice did not survive past weaning (70). Finally, mice
lacking RIPK1 in IECs specifically (RIPK11IEC), develop severe
intestinal inflammation associated with IEC apoptosis leading to
early post-birth death. Similarly, tamoxifen-induced deletion of
Ripk1 leads to rapid weight loss and mice death. Crypt cells from
RIPK11IEC failed to grow into organoids (69), so in vitro deletion
is required to grow RIPK1 deficient intestinal organoids (73).
Unexpectedly, in those intestinal organoids the NF-κB pathway
remained intact downstream of TNF, although they undergo
massive cell death (73).

Two mice models with point mutations in the kinase domain
were generated to study the kinase role of RIPK1 without
compromising its scaffold function. RIPK1K45A and RIPK1D138N

(74, 75) mice were born at expectedMendelian ratios and showed
no abnormalities, pointing out the importance of RIPK1 function
as a scaffold protein. Fibroblasts and macrophages derived from
these mice were stimulated with TNF and were shown to be
protected from cell death demonstrating the role of the kinase
domain from RIPK1 in triggering cell death (74).

Unlike RIPK1−/−, RIPK3−/− mice are indistinguible from
their littermates and exhibit normal downstream pathway
activation from TNFR1 and TLRs (76). However, knock-in mice
harboring a kinase death form of RIPK3 (RIPK3D161N) die at
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FIGURE 2 | Different TNFR complex formed downstream of TNF. TNF (tumor necrosis factor) can induce the formation of different complexes with diverse outcomes

depending on the conditions. In a homeostatic situation, TNF triggers the formation of complex I, where RIPK1 (receptor interacting protein kinase 1) acts as a scaffold

protein allowing the activation of the pro-inflammatory and protective pathway NF- κB (nuclear factor kappa-light-chain-enhancer of activated B cells). In pathologic

conditions, complex IIa can be formed leading to the activation of caspase-8. Active caspase-8 cleaves RIPK1 and RIPK3 (receptor interacting protein kinase 3) and

downstream caspases to induce apoptosis. Unlike complex IIa, complex IIb depends on the kinase role of RIPK1 to activate caspase-8 and execute apoptosis.

Inhibition of RIPK1 kinase and ROS (reactive oxygen species) prevents this type of cell death. Finally, if caspases are inhibited and the NF- κB pathway is not activated,

TNF can trigger the formation of the necrosome. This complex depends on the kinase activity of RIPK1 and RIPK3 to activate MLKL (mixed lineage kinase domain

like). MLKL in turn will create the necroptotic pore in the plasma membrane inducing necroptosis, a regulated type of necrosis.

embryonic day 11.5 due to high amounts of cell death in the
yolk sac vasculature. The authors of this study show how this cell
death was dependent on caspase-8. Kinase death RIPK3, but not
wild-type RIPK3, interacted with FADD, RIPK1, and caspase-8.
Similarly, expression of RIPK3D161N in the adult intestine also
led to diarrhea and massive weight loss due to caspase activation,
and downstream apoptosis of IECs (77). Similar results were
obtained when a RIPK3 inhibitor was given to mice (78). On the
contrary, another RIPK3 kinase death animal line (RIPK3K51A)
did not present any embryonic abnormalities, and the mice were
shown to be viable, fertile, and immunocompetent, as well as able
to rescue the embryonic lethality seen in caspase-8 knock-out
mice (78). However, RIPK3 inhibitors still induced apoptosis on
cells expressing the RIPK3K15A. Altogether, this data suggests that
RIPK3 inhibition through small molecules or the presence of the
D161N mutation induces conformational changes in RIPK3 that
promote apoptosis. Although those results could be secondary to
a change in the RIPK3 structure due to the D161Nmutation, they
suggest that RIPK3 kinase inhibition leads to apoptosis.

RIPK1 Functions in TNFRI Complex I
Downstream of TNF
TNF is one of numerous genes implicated in IBD pathogenesis
stimulated by the nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB). It codes for the prototypical

inflammatory cytokine tumor necrosis factor (TNF), which has
various functions in the intestine (79). TNF is synthesized as
a transmembrane protein that forms homotrimeric structures,
and is cleaved by a disintegrin and metalloprotease domain
17 (ADAM17) or by TNF-converting enzyme (or TACE),
which releases its soluble form (80). TNF is able to bind two
receptors: TNFR1 and TNFR2, which differ in their structure
and expression pattern, as well as in the signaling pathways that
they induce once they are engaged (80). TNFR1 is expressed in
all cell types, whereas TNFR2 is mostly restricted to immune
and endothelial cells. Both receptors are able to activate the

NF-κB pathway through different signaling cascades as a result
of strikingly different intracellular domains. TNFR1 contains a
cytoplasmic death domain (DD), which is a conserved sequence

of 80 amino acids that forms a distinctive fold (81, 82) and allows
the recruitment of TNFR1-associated death domain protein

(TRADD). TNFR2 lacks the death domain and recruits TNFR-

associated factor 1 (TRAF1) and TRAF2, rather than TRADD

(82–84). Both TNFR1 and TNFR2 can lead to NF-κB activation.
TNF has important protective functions in intestinal epithelial

cells (Figure 3): (a) TNF modifies the first physical barrier
of the intestine: the mucus layer. Through TNFR2, TNF

sensitizes goblet cells to prostaglandin E2, a known mucus

secretagoge, and protects the epithelium by increasing mucus
secretion (85, 86), (b) TNF is able to induce the expression
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of the polymeric immunoglobulin receptor (pIgR), which is
necessary for the transcytosis of secretory IgA into the mucus,
and prevents bacterial translocation into the lamina propria
(87), (c) TNF is critical in wound healing, which is an
important step in resolving injury and preventing chronification
of underlying inflammation. Two different steps occur during
this process: spreading and migration of cells through the
basement membrane, and redifferentiation and proliferation of
cells. Through TNFR2 dependent activation of focal adhesion
kinase, TNF is able to induce epithelial migration (88) and
cell proliferation (89). TNF can also support wound healing
and cell survival through TNF-induced TACE activation, which
subsequently liberates ErbB ligands that promote cell survival
(90), (d) through TNFR1, TNF is able to activate the NF-κB
pathway and assemble the TNFR1 complex I, which promotes
IEC survival.

The assembly of the TNFR1 complex I is key in intestinal
barrier maintenance. In most cell types, including IEC, transient
TNF signaling inhibits apoptosis due to the assembly of the TNFR
complex I, and activation of IκB kinase (IKK) β-dependent NF-
κB (91). Upon the binding of TNF to homotrimers of TNFR1,
the adaptor molecule TRADD is recruited to the cytoplasmatic
TNFR1 domain. In a step-wise process, RIPK1, TRAF2, cellular
inhibitor of apoptosis protein 1 (cIAP1) or cIAP2, and linear
ubiquitin chain assembly complex (LUBAC) are recruited to form
signaling complex I. TRAF2 and cIAP1/2 mediate K63-linked
ubiquitination of the complex. In this situation, the kinase RIPK1
acts as a scaffold protein that allows for docking of the adaptor
proteins TAK1-binding protein 2 (TAB2) and (TAB3) and the
kinase TAK1 through RIPK1 K63-ubiquitins (92). Meanwhile,
the LUBAC complex mediates M1-ubiquitination of some
components in the complex I, such as RIPK1 and NF-kappa-B
essential modulator (NEMO) (93, 94). The IKK complex is also
recruited to the complex, and after phosphorylation of IKKβ by
TAK1, mediates the activation of the canonical NF-κB pathway
and the resulting upregulation of anti-apoptotic genes such as
BCL2 (B-cell lymphoma 2) and FLIP (FLICE-like inhibitory
protein), to promote cell survival and cell proliferation (80).

Several previous works have highlighted the critical role of
this pathway on IEC survival. Early work by Egan et al. shows
that deletion of IKKβ in IECs promotes the gut damage from
ionizing radiation (IR) (95). Furthermore, when LPS, a known
activator of the NF-κB pathway, is administered prior to IR,
IECs are also protected from massive apoptosis, suggesting the
IKK complex, the main protein complex downstream of TNF,
provides protective effects to IECs (95). Similarly, IKKß was
shown to be protective in a model of colitis induced by C. difficile
and dextran sodium sulfate (DSS) (96, 97). Although deletion of
IKKß or IKKß alone does not induce spontaneous colitis, IECs
lacking NEMO or TAK1 develop colon pathology, in a complete
or partial TNF dependent manner, respectively, including IEC
apoptosis, demonstrating that the NF-κB pathway plays key
homeostatic roles (98, 99). Interestingly, unlike NEMOIEC−KO,
TAK1IEC−KO develops intestinal inflammation, perhaps due to
the ability of TAK1 to activate other protective pathways such
as the Mitogen-activated protein kinases pathway (MAPK).
Nevertheless, activated/nuclear NF-κB is present in both IECs
and the lamina propria macrophages of active IBD areas (100).

To determine the pathogenic function of persistent NF-κB
activation, which occurs in IBD (100), we generated Ikkβ(EE)IEC

mice in which a constitutively active IKKβ(EE) variant is
expressed in IEC from the villin promoter (101). Surprisingly,
instead of being resistant to TNF-induced mucosal erosion,
Ikkβ(EE)IEC mice displayed severe TNF-dependent epithelial
layer destruction when challenged with various stimuli that
induce TNF production, or when given exogenous TNF (101).
The mechanism by which constitutive IKKβ/NF-κB activation
renders mouse IECs susceptible to TNF-induced killing rather
than preventing it is unknown, but is likely to be relevant to
understand the effect of NF-κB chronic activation in IECs of
active IBD lesions.

RIPK1/RIPK3 and the Assembly of TNFR
Dependent Ripoptosome/Necroptosome
As reviewed above, transient TNF signaling inhibits apoptosis
due to the assembly of TNFR1 complex I and IKKβ-dependent
NF-κB activation (91). However, TNFR1–TRADD signaling can
result in cell death in special circumstances, when complex I
shifts toward complex IIa, IIb, or the necrosome to induce
different types of TNF-induced cell death (Figure 2).

Complex IIa

Ubiquitin removal from RIPK1, through deubiquitination
by cylindromatosis (CYLD), or ubiquitination-impairment by
cIAP1/2 depletion (102–104), alters the formation of complex
I, allowing its disassembly and TNFR1 internalization (105).
TRADD, FADD, pro-caspase-8 (caspase-8), and FLICE-like
inhibitory protein (FLIPs) are then recruited to the TNFR1.
In this complex, the long isoform of FLIP (FLIPL) and the
pro-caspase-8 form a heterodimeric caspase that cleaves and
inactivates RIPK1 and RIPK3, as well as CYLD, to prevent
necroptosis (106–108). This TRADD-dependent complex IIa also
allows caspase-8 homodimerization and activation, resulting in
activation of the executioners caspase-3 and caspase-7, which
trigger apoptosis. This pathway, in normal conditions, would be
inhibited due to previous NF-κB activation and expression of
anti-apoptotic genes (108–110) but as mentioned above, ablation
of IKKβ (95, 111), or its regulatory subunit NEMO (98), renders
IEC susceptible to TNF-induced death.

Complex IIb or Ripoptosome

TNFR complex IIb or the Ripoptosome has been described to
occur downstream of TNF when cIAP1/2 is depleted through
SMAC mimetics (SM) (112–114). SMAC (second mitochondria-
derived activator of caspase) is a pro-apoptotic mitochondrial
protein that inhibits IAPs. The exact mechanism that triggers the
formation of complex IIb instead of IIa is unknown, although
in this case the activation of NF-κB does not prevent apoptosis
(115). TNF treatment together with TAK1 pharmacological
inhibition also triggers RIPK1-dependent apoptosis, in a similar
manner as TNF plus SM treatment, suggesting that TAK1
recruitment to cIAP1/2-ubiquitinated RIPK1 inhibits RIPK1-
dependent apoptosis (115). In fact, IKKα and IKKβ, the
downstream kinases of TAK1, inhibit RIPK1 in association
with the Ripoptosome through direct phosphorylation of RIPK1
(116). Complex IIb, the Ripoptosome, is composed of RIPK1,
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FIGURE 3 | NF- κB pathway activation through RIPK1 protects IECs. In homeostatic conditions, TNF (tumor necrosis factor) plays an important role in maintaining an

intact intestinal epithelial barrier. Upon binding to the TNFR1 (tumor necrosis factor receptor 1), the TNFR complex I is formed, where RIPK1 (receptor interacting

protein kinase 1) serves as an scaffold protein upon which the key IKK (IκB kinase) complex will bind and activate. The IKK complex will in turn induce the

translocation of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) transcription factors into the nucleus and allow gene expression, including

cell survival factors. TNF can also help in the wound healing process by inducing cell proliferation and migration as well as enhance the intestinal barrier by favoring

mucus production and impairing bacterial translocation through pIgR (polymeric immunoglobulin receptor) induction.

FADD and caspase-8, and A20 (117). It is independent of
TRAILR1/DR4, TRAILR2/DR5, and Fas/CD95 activation (112).
TLR3 can also potentially induce complex IIb. TLR3 activation
induces apoptotic cell death downstream of TRIF that depends
on a complex formed also by RIPK1, caspase-8, and FADD,
although it is unknown whether this requires RIPK1 kinase
activity (118, 119). Of note, TNFR1 activation is dispensable if
cell death is triggered by etoposide, a genotoxic stress inducer that
also depletes cIAPs, although in this case complex IIb formation
occurs 6 h after the treatment, 4 h later than when triggered
downstream of TNF. Complex IIb requires the kinase activity of
RIPK1 to induce cell death although the exact mechanism of its
activation or its role as a kinase is unknown; in fact no targets
for the kinase activity of RIPK1 have been described apart from
itself (113).

TNF-Induced Necroptosis

Necroptosis can be triggered through different stimuli. Most
studies on necroptosis have been performed after TNF, FAS, or
TLRs stimulation, but it can also be triggered by intracellular
events, such as viral infection through Z-DNA or Z-RNA sensing
via Z-DNA binding protein 1 (ZBP1/DAI) (72). For instance,
downstream of TNF, when caspases are not fully activated or
their activity is blocked (ex: by viral inhibitors), the protein
kinase RIPK3 is recruited and forms the necrosome, which
will lead to necroptotic cell death (120, 121). Once engaged,
RIPK1 and RIPK3 undergo auto and transphosphorylation
leading to their activation. Interestingly, although RIPK3 can

also phosphorylate RIPK1, RIPK1 does not phosphorylate
RIPK3 (120). The requirement for RIPK1 and RIPK3 trans
and autophosphorylation can explain the formation of RIPK1/3
amyloid structures through RIPK1 and RIPK3 RHIM domains,
a required step for RIPK3 autophosphorylation (122, 123). All
these signals will converge into MLKL phosphorylation and
activation, and subsequent cell death (124). Phosphorylated
MLKL binds to the inner leaflet of the plasma membrane
and forms the necroptotic pore, executing necroptosis (125–
127). Although RIPK1 can be autophosphorylated at S14/15,
S20, S161, and S166, (128), only S161 has been shown to be
required to induce necroptosis (129). RIPK1 phosphorylation
on S89 or MK2 mediated phosphorylation of S321 impair
RIPK1 mediated cell death (130, 131). Phosphorylation of
S227 in RIPK3 allows the binding of RIPK3 to MLKL (124).
In addition, MLKL is phosphorylated by RIPK3 at T357
and S358 residues in human, and S345, S347, and T349
residues in mouse. These phosphorylation sites are necessary for
necroptosis since mutation of both sites inhibits necroptotic cell
death (124, 132).

DYSREGULATION OF INTESTINAL
EPITHELIAL CELL RIPK PATHWAYS
PROMOTES CELL DEATH IN IBD

The increased areas of epithelial cell death associated with
IBD are especially prevalent in UC compared to CD and
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controls (133). This epithelial cell death increases the chances of
antigen translocation and subsequent triggering of inflammatory
responses (134–137). These epithelial cell deaths present features
of apoptosis and necrosis. Necrosis has long been recognized
as a major trigger of inflammation; as cells die, their cellular
contents activate the host immune response. Apoptotic cells will
also increase the intestinal permeability by overwhelming the
capacity of phagocytes to clear apoptotic cells, and by preventing
proper tight junction function and intestinal barrier remodeling
of patches of shedding cells. Interestingly, patients with active
UC, who ultimately require surgery, had higher apoptotic indices
than UC patients that were receiving medication. Also, electron
microscopy on rectal biopsies of patients with CD and UC
compared with normal controls showed patches of necrotic
cells in four out of seven CD patients (135). Notably RIPK3 is
expressed at high levels in the terminal ileums of patients with
CD (138).

Several IBD pathogenic factors can promote IEC cell
death in these patients. Among them, genetic predisposition,
disturbance of the commensal microbiota, and dysregulated
immune responses can contribute to epithelial barrier defects and
promote chronic inflammation in the IBD gut.

Genetic Predispositions to IBD
Although family history is a risk factor for developing IBD,
the concordance rate in monozygotic twins is only 10–15% in
UC, and 30–35% in CD, suggesting that non-genetic factors
might play a bigger role (139). Nonetheless, the first genome-
wide association study (GWAS) for Crohn’s disease, undertaken
in 2005 in Japan, identified the susceptibility locus of the
tumor necrosis factor super family 15 gene (TNFSF15) (140).
Subsequently, several other studies have identified, in different
ethnic cohorts, 235 genetic markers in 200 susceptibility loci
(141–143). Of the 163 identified loci in the Caucasian population,
110 appear to be relevant to both CD and ulcerative colitis
(TNFAIP3, IRGM, TNFSF15), 23 appear to be specifically related
to CD (ATG16L1, NOD2), and 30 appear to be specifically
related to UC (IRF5, NFKB1). IL-23R has also been shown to
be related to CD in several studies (144–146), with rs1343151
and rs7517847 variants decreasing the risk of developing the
disease. Although, most identified SNPs lack functional data, the
identification of these genes elucidates the critical pathways in
IBD pathogenesis.

a. The first genetic risk variant identified for CD was the
NOD2 gene (147, 148). Hugo et al. found three different
polymorphisms in NOD2; one is a frameshift mutation
(L1007C) which causes a truncated protein transcript,
and two are non-synonymous polymorphisms (R702W
and G908R). Carriage of one copy of any risk allele
confers a modestly increased risk of developing CD (2
to 4-fold). However, having two copies or a combination
thereof is associated with a 20- to 40-fold increased risk.
Another SNP in the autophagy gene ATG16L1, which
is associated with CD, is responsible for a threonine
to alanine substitution at amino acid 300 (T300A) that
increases the odds ratio (OR) for CD to 1.62 in the

Spanish population (149). Finally, another important gene
related to autophagy is IRGM (immunity-related guanosine
triphosphatase family M protein). It encodes a GTP-binding
protein that induces autophagy and plays an important role
in innate immunity against intracellular pathogens. Two
flanking SNPs (rs13361189 and rs4958847) have been better
associated with increased susceptibility to CD with an OR
of 1.34 and 1.33; the first SNP alone also confers a small
association with UC (OR: 1.16) (149).

Impaired autophagy disturbs the function of IECs
and influences the inflammatory and immune responses,
ROS production, and endoplasmatic reticulum (ER) stress,
promoting the occurrence and development of IBD
(150–153). Furthermore, it is noted that autophagy can
play a role in the release and degradation of the
damage-associated molecular pattern molecules (DAMPs),
contributing to the alleviation of IBD (154–156). ATG16L1
deletion also increases the chance of IECs necroptosis
(47), and deletion of another autophagy protein, ATG5,
results in impaired intestinal permeability and protection
against Toxoplasma gondii infection (157). Finally, mice
deficient in Nod2 and Atg16l1 showed Paneth cell defects
and susceptibility to intestinal inflammation (158, 159).
These results highlight the importance of the Paneth
cell, that releases antimicrobial peptides, supports stem
cells, and regulates AMP production (Nod2) and granule
exocytosis (Atg16l1), in the pathogenesis of the disease.
Importantly, similar phenotypes have been observed
in human disease, and patients with Crohn’s disease
carrying the ATG16L1T300A mutation showed granular
abnormalities in Paneth cells (159).

Other authors looked into the role of the NOD2
L1007insC polymorphism, which results in a frameshift
mutation that generates a truncated Nod2 protein. This
mutation prevents peptidoglycan and MDP-dependent
activation of the NF-κB pathway, and localization of NOD2
into the plasma membrane (28, 46, 160). NOD2 L1007insC
did not prevent NOD2-ATG16L1 interaction, but did
prevent its localization in the plasma membrane, impairing
wapping of invading bacteria by autophagosomes.
Furthermore, in different human epithelial cell lines,
deletion of ATG16L1 or reconstitution with the common
coding variant ATG16L1T300A abrogated capture and
degradation of intracellular Salmonella (161, 162). Recently,
Murthy et al. showed a relation between autophagy, cell
death and inflammation. The authors demonstrated that
caspase-3 enhances the cleavage of ATG16L1T300A, an SNP
strongly associated with incidence of CD. They propose
that the presence of T300A apoptotic stimuli enhances
ATG16L1 cleavage, triggering cytokine production and
inflammation (163). Another work has also shown how
ATG16L1 prevented necroptosis in IECs (47).

b. RIP1 and RIP3: Although no SNPs in these proteins
have been associated with IBD, the effect of RIPK1
deficiency in humans was studied by Cuchet-Lourenço et al.
(3). In this study, they found four patients from three
unrelated consanguineous families carrying homozygous
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loss-of-function mutations in RIPK1. The four patients had
lymphopenia, suffered from recurrent viral, bacterial and
fungal infections, early-onset inflammatory bowel disease,
involving the upper and lower gastrointestinal tract, and
developed arthritis (3). Stimulation of skin fibroblasts with
TNF and poly(I:C) in vitro showed similar results to those
seen in mice, with impaired activation of downstream
signaling pathways from TNFR1 and TLR3 and increased
cell death through necroptosis.

c. NF-κB pathway: SNPs in ubiquitously expressed genes
encoding NF-κB-regulated molecules show strong
association with IBD (164, 165). NF-κB stimulates
transcription of numerous genes implicated in IBD
pathogenesis, including TNF. TNF inhibition is one of
the main therapeutic options in IBD (100), leading to
reduced IEC apoptosis and enhanced mucosal repair (91).
In IECs, transient TNF signaling inhibits apoptosis due
to IKKβ-dependent NF-κB activation (91). On the other
hand, corresponding ablation of IKKβ (95, 111), or its
regulatory subunit NEMO (98), renders IEC susceptible to
TNF-induced death. However, IKK or NF-κB deficiencies
have never been reported in IBD.

d. A20 is a NF-κB-responsive gene that is thought to
be involved in negative feedback regulation of NF-
κB activation in response to many proinflammatory
stimuli (166, 167). A20 contains an ovarian tumor (out)
domain with deubiquitinating activity (DUB) in the
amino-terminal region and seven carboxy-terminal zinc
finger (ZnF) domains. A20-deficient mice have a severe
inflammatory phenotype, with hypersensitivity to TNF, and
die prematurely due to severe multiorgan inflammation and
cachexia (168). Although several reports describe that A20
terminates the NF-κB pathway through its DUB activity by
breaking down the docking sites in the TNFR1 complex
I, A20 knock-in mice bearing an inactivating mutation in
DUB (C103A) or ZnF4 domains do not exhibit the severe
inflammatory phenotype of full A20-knockout mice (169,
170), suggesting that the function of A20 to modulate the
NF-κB is not dependent on its deubiquitinase activity.

Several studies have linked SNPs of TNFAIP3,which codes for the
immunoregulatory protein A20, with susceptibility to multiple
autoimmune human diseases. These diseases include systemic
lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriasis,
type 1 diabetes, coeliac disease, Crohn’s disease, coronary artery
disease in type 2 diabetes, and systemic sclerosis (171). Most
of the SNPs related with IBD are located in non-exon areas,
implying that they most likely play a role in RNA synthesis or
maturation. Theminor rs5029941 (alanine to valine substitution)
allele is associated with increased risk for IBD with an OR of
3.75, while the rs7753394, located upstream to the coding region,
has an OR of 1.21 in heterozygotes and 1.48 in homozygotes
for CD. Finally the rs2327832 allele increases the OR for UC to
1.26 (172). Interestingly, the rs6927172 variant was associated
with increased A20 expression, decreased TNF levels, and non-
response to anti-TNF therapy in both CD and UC (173). On the
other hand, the rs6927210, rs7753394, and rs7773904 variants
were linked to improved response to anti-TNF drugs (174).

Given that A20 SNPs in other diseases, such as SLE, have

been related to lower expression or function (175, 176), and that
A20 deletion in the whole mouse or in different compartments,

including the intestine, induces spontaneous inflammation (168,

174, 177, 178), it is thought (but not proven) that SNPs

in the TNFAIP3 gene are associated with IBD decrease A20
expression. In IEC, deletion of A20 on those cells renders

the mice more susceptible to the DSS colitis model with
higher amounts of apoptotic cells in the epithelial colon (179).
While the previous study did not show spontaneous intestinal
inflammation, combined deletion of A20 in IEC and the myeloid
compartment induces spontaneous colitis and ileitis with the
presence of apoptotic cells in the crypt compartment (174).
Additionally, overexpression of A20 in the IEC protects the
intestinal epithelial barrier after LPS challenge and prevents
colitis induced by DSS but not TNBS (180, 181).

However, A20s role in cell death seems to be more dependent
on cell type than its NF-κB regulatory function. An A20 specific
deletion in B and T cells actually protects them from FAS and
TCR (T-cell receptor) induced cell death (178, 182). Also. two
independent works have looked into the RNA expression of
A20 in IBD. Although Arsenescu et al. found a decrease in the
RNA levels of A20, as well as other typical proinflammatory
markers of IBD in non-inflamed IBD tissue compared with
control samples (183), Vereecke et al. found that A20 levels of
non-responder patients to anti-TNF therapy was higher both
before and after treatments compared to controls and responders.
Accordingly, levels of A20 in patients that responded to anti-
TNF drugs diminished to basal levels after therapy. These results
could suggest that the upregulation of A20 is triggering intestinal
inflammation. We have recently showed that A20 protein levels
in UC and CD are increased in IECs. Using transgenic mice
that overexpress A20 in the IEC, we showed that increased
and prolonged recruitment of A20 to the TNFR complex I
favors a shift from complex I toward complex IIb, probably
through maintenance of RIPK1 linear-poly-ubiquitinated status
and inducing RIPK1-dependent apoptosis in IEC (117). Of
interest, we also detected A20 in the ripoptsome complex
(117). Concomitant with that, pharmacological and genetic
RIPK1 kinase blockade prevented apoptosis, suggesting a new
therapeutical treatment for IBD.

Microbiome
The gut microbiome, including bacteria, fungi, virus, and
other organisms, shapes host functions in both normal and
disease conditions. The clinical observation that antibiotics
have a modest effect in IBD (184–187) suggests that the
microbiome could play a role in shaping the disease. In fact,
bacterial dysbiosis has been shown to occur in IBD (188–
191) with consistent reports of decreased biodiversity, both α

diversity and species richness, a measure of the total number
of species in a community. However, a specific role of bacterial
dysbiosis in IBD is yet to be discovered. In fact, a recent
paper by Halfvarson showed that inflammation was not directly
correlated with increased dysbiosis (188). A similar concept
was suggested by another study, which shows that there is
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reduced diversity in inflamed vs. non-inflamed tissues within
the same patient, and a lower bacterial load in inflamed
regions in CD patients (192). Also, serum reactivity against
selected components of the gut microbiota is common, even
in healthy individuals, and some CD associated serological
markers against microbial antigens are present years before
clinical manifestations in patients with CD, as well as in healthy
individuals (193).

Various microorganisms that supposedly exert aggressive
or protective functions relevant to Crohn’s disease, such
as adherent-invasive Escherichia coli and Faecalibacterium
prausnitzii, respectively have been identified (194, 195).
Furthermore, it is known that Helicobacter pilori has developed
different mechanisms to disrupt the intracellular adhesions
of the intestinal barrier (196), suggesting that other bacteria
could act similarly. Yet, E. coli Nissle 1917 or ECOR63
enhance the epithelial barrier by up-regulating ZO-1 and
claudin-14 and by downregulating claudin-2 (197). Also,
Chelakkot et al. have demonstrated recently, that Akkermancia
muciniphila, a known beneficial bacteria that reduces gut barrier
disruption, upregulates occludin-2, decreasing the permeability
of lipopolysaccharide-treated Caco-2 cells (198); a similar effect
is seen when treating T84 monolayers with metabolites from
the probiotic Bifidobacterium infantis Y1, which leads to an
increase of ZO-1 while reducing claudin-2 (199). Treating
Caco-2 cells with another probiotic, Lactobacillus plantarum
MB452, also increased the transcription of occludins (200) and,
in vivo, it increased occludin and ZO-1 (201). Some probiotics
and commensals have also been shown to prevent, and even
reverse, the adverse effects of pathogens on intestinal barrier
function. For instance, when L. plantarum is co-cultured with
enteroinvasive or enteropathogenic E. coli, it prevents the loss
of permeability induced by those strains (202, 203). This data
suggest that bacteria can directly regulate gut permeability
by modulating cell-to-cell junctions. Thus, although it is

believed that an inappropriate response against commensal gut
microbiota occurs in IBD, it has been difficult to determine
whether or not this process is secondary to an altered microbiota,
a defective immune response, or a change in gut permeability
(204), and whether these microbiome changes are primary or
secondary to the disease. Of interest, some of the genes related
to IBD were shown to control the bacterial microbiome and gut
permeability, modulating cell-to-cell junctions. For instance,
Nod2 prevents inflammation of the small intestine by restricting
the expansion of the commensal bacteroides vulgatus (205).

Fungi is also a constituent of gut microbiota, however it
just accounts for <0.1% of the total microbes (206). Antibiotic
treatment increases fungi while decreasing bacteria populations,
showing a competition between both kingdoms (207, 208).
Alterations of GI bacterial populations and increased yeast
can drive the development of a CD4 T-cell-mediated allergic
airway response to subsequent mold spore exposure, suggesting
a role for fungal microbiota in promoting immune-mediated
diseases (208). In IBD patients, Basidiomycota, Ascomycota, and
C. albicans are significantly elevated, whereas Saccharomyces,
Candida, and Cladosporium are predominant in healthy
individuals (209–211). Different components of the fungal cell
wall such as chitin, β-glucans, andmannans can trigger the innate
immune response, so it is not surprising that intestinal fungal
invasion exacerbates colitis in mice (212).

Although virology focuses on pathogenic strains, most viruses
are bacteriophages or endogenous retroviral elements. In fact,
99% of the annotated DNA viruses are bacteriophages (213).
There are approximately 108-109 virus-like particles (VLP) per
gram of human stool, suggesting that viruses could play an
important role in the bacterial community. The human gut
bacteriophage varies intensively between subjects. However,
they are temporally stable within individuals with dsDNA
Caudovirales and ssDNA Microviridae, the two predominant
viruses in healthy humans (214, 215). In IBD, virome richness

FIGURE 4 | Dysregulation of intestinal epithelial cell RIPK pathways promotes cell death in IBD. Dysregulation of RIPK (receptor interacting protein kinase) pathways

play a key role in the inflammatory processes occurring in IBD (inflammatory bowel disease). TNF (tumor necrosis factor) has pleyotropic roles in intestinal epithelial

cells. In homeostasis, TNF through the activation of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway, where RIPK1 has a scaffold

function, it promotes cell proliferation, migration and survival, helping to a proper intestinal barrier regeneration. In IBD, TNF can induce apoptosis or necroptosis in a

kinase dependent function of RIPK1 and RIPK1/3 respectively. Cell-to-cell adhesions are also loosened in IBD, allowing the translocation of food antigens and bacteria

from the gut lumen. Another feature of IBD is microbial dysbiosis. Genetic mutations in RIPK2, NOD2 (nucleotide-binding oligomerization domain-containing protein 2)

or ATG16L1 (autophagy-related protein 16 like 1) can impair a proper autophagy response allowing the proliferation and invasion of the host by pathogenic bacteria.
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is increased with expansion from the order Caudovirales (216–
218). This could be explained as a result of commensal microbes
entering lytic cycles, or from new viruses introduction from
new bacteria. In either case, bacteriophages can shape the gut
microbiome, affecting bacterial fitness, diversity, and perhaps
aiding in horizontal gene transfer (219, 220). Furthermore,
viruses can translocate into the host, inducing immune responses
(221–223). It is not surprising that mice with a genetic
predisposition for CD (a mutation in the ATG16L1 gene)
manifest the disease when infected with a gut norovirus while
wild type mice controls did not (224). Another study showed
that mice that were administered a cocktail of antiviral drugs had
more severe colitis in the dextran sulfate sodium (DSS) model
than ones treated with DSS alone. Overall, these results suggest
a role for the virome in IBD, and new research will be needed to
further understand its impact.

CONCLUSIONS

In this review we discussed the role of RIPK and autophagy
in relation to IBD (Figure 4). RIPK proteins seem to be
plausible candidates for new drugs to treat inflammatory flares

of IBD, preventing breakdown of the intestinal epithelial barrier.
Additionally, autophagy seems to be a protective pathway, mainly
by regulating intestinal homeostasis and pathogen protection,
especially through paneth cells. Although further research is
required to completely understand the pathophysiology of IBD,
great advances in the field have improved the wellbeing of
patients with the disease.
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