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Process Data: A Didactic
Xin Qiao* and Hong Jiao
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Due to increasing use of technology-enhanced educational assessment, data mining

methods have been explored to analyse process data in log files from such assessment.

However, most studies were limited to one data mining technique under one specific

scenario. The current study demonstrates the usage of four frequently used supervised

techniques, including Classification and Regression Trees (CART), gradient boosting,

random forest, support vector machine (SVM), and two unsupervised methods,

Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA

sample (N = 426) from the 2012 Program for International Student Assessment (PISA)

responding to problem-solving items is extracted to demonstrate the methods. After

concrete feature generation and feature selection, classifier development procedures

are implemented using the illustrated techniques. Results show satisfactory classification

accuracy for all the techniques. Suggestions for the selection of classifiers are presented

based on the research questions, the interpretability and the simplicity of the classifiers.

Interpretations for the results from both supervised and unsupervised learning methods

are provided.

Keywords: data mining, log file, process data, educational assessment, psychometric

INTRODUCTION

With the advance of technology incorporated in educational assessment, researchers have been
intrigued by a new type of data, process data, generated from computer-based assessment, or new
sources of data, such as keystroke or eye tracking data. Most often, such data, often referred to as
“data ocean,” is of very large volume and with few ready-to-use features. How to explore, discover
and extract useful information from such an ocean has been challenging.

What analyses should be performed on such process data? Even though specific analytic
methods are to be used for different data sources with specific features, some common analysis
methods can be performed based on the generic characteristics of log files. Hao et al. (2016) have
summarized several common analytic actions when introducing the package in Python, glassPy.
These include summary information about the log file, such as the number of sessions, the time
duration of each session, and the frequency of each event, can be obtained through a summary
function. In addition, event n-grams, or event sequences of different lengths, can be formed for
further utilization of similarity measures to classify and compare persons’ performances. To take
the temporal information into account, hierarchical vectorization of the rank ordered time intervals
and the time interval distribution of event pairs were also introduced. In addition to these common
analytic techniques, other existing data analytic methods for process data are Social Network
Analysis (SNA; Zhu et al., 2016), Bayesian Networks/Bayes nets (BNs; Levy, 2014), HiddenMarkov
Model (Jeong et al., 2010), Markov Item Response Theory (Shu et al., 2017), diagraphs (DiCerbo
et al., 2011) and process mining (Howard et al., 2010). Further, modern data mining techniques,
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including cluster analysis, decision trees, and artificial neural
networks, have been used to reveal useful information about
students’ problem-solving strategies in various technology-
enhanced assessments (e.g., Soller and Stevens, 2007; Kerr et al.,
2011; Gobert et al., 2012).

The focus of the current study is about data mining techniques
and this paragraph provides a brief review of related techniques
that have been frequently utilized and lessons that have been
learned related to analyzing process data in technology-enhanced
educational assessment. Two major classes of data mining
techniques are supervised and unsupervised learning methods
(Fu et al., 2014; Sinharay, 2016). Supervised methods are used
when subjects’ memberships are known and the purpose is
to train a classifier that can precisely classify the subjects
into their own category (e.g., score) and then be efficiently
generalized to new datasets. Unsupervised methods are utilized
when subjects’ memberships are unknown and the goal is to
categorize the subjects into clearly separate groups based on
features that can distinguish them apart. Decision trees, as a
supervised data classification method, has been used very often
in analysing process data in educational assessment. DiCerbo
and Kidwai (2013) used Classification and Regression Tree
(CART) methodology to create the classifier to detect a player’s
goal in a gaming environment. The authors demonstrated the
building of the classifier, including feature generation, pruning
process, and evaluated the results using precision, recall, Cohen’s
Kappa and A’ (Hanley and McNeil, 1982). This study proved
that the CART could be a reliable automated detector and
illustrated the process of how to build such a detector with
a relative small sample size (n = 527). On the other hand,
cluster analysis and Self-Organizing Maps (SOMs; Kohonen,
1997) are two well-established unsupervised techniques that
categorize students’ problem-solving strategies. Kerr et al. (2011)
showed that cluster analysis can consistently identify key features
in 155 students’ performances in log files extracted from an
educational gaming and simulation environment called Save
Patch (Chung et al., 2010), which measures mathematical
competence. The authors described how they manipulated the
data for the application of clustering algorithms and showed
evidence that fuzzy cluster analysis is more appropriate than
hard cluster analysis in analyzing log file process data from
game/simulation environment. Most importantly, the authors
demonstrated how cluster analysis can identify both effective
strategies and misconceptions students have with respect to the
related construct. Soller and Stevens (2007) showed the power
of SOM in terms of pattern recognition. They used SOM to
categorize 5284 individual problem-solving performances into
36 different problem-solving strategies, each exhibiting different
solution frequencies. The authors noted that the 36 strategy
classifications can be used as input to a test-level scoring
process or externally validated by associating them with other
measures. Such detailed classifications can also serve as valuable
feedback to students and instructors. Chapters in Williamson
et al. (2006) also discussed extensively the promising future
of using data mining techniques, like SOM, as an automated
scoring method. Fossey (2017) has evaluated three unsupervised
methods, including k-means, SOM and Robust Clustering Using

Links (ROCK) on analyzing process data in log files from a
game-based assessment scenario.

To date, however, no study has demonstrated the utilization
of both supervised and unsupervised data mining techniques
for the analysis of the same process data. This study aims at
filling this gap and provides a didactic of analyzing process
data from the 2012 PISA log files retrieved from one of the
problem-solving items using both types of data mining methods.
This log file is well-structured and representative of what
researchers may encounter in complex assessments, thus, suitable
for demonstration purposes. The goal of the current study is
3-fold: (1) to demonstrate the use of data mining methods on
process data in a systematic way; (2) to evaluate the consistency
of the classification results from different datamining techniques,
either supervised or unsupervised, with one data file; (3) to
illustrate how the results from supervised and unsupervised data
mining techniques can be used to deal with psychometric issues
and challenges.

The subsequent sections are organized as follows. First,
the PISA 2012 public dataset, including participants and the
problem-solving item analyzed, is introduced. Second, the data
analytic methods used in the current study are elaborated and
the concrete classifier development processes are illustrated.
Third, the results from data analyses are reported. Lastly, the
interpretations of the results, limitations of the current study and
future research directions are discussed.

METHODS

Participants
The USA sample (N = 429) was extracted from the 2012
PISA public dataset. Students were from 15 years 3 months old
to 16 years 2 months old, representing 15-year-olds in USA
(Organisation for Economic Co-operation Development, 2014).
Three students with missing student IDs and school IDs were
deleted, yielding a sample of 426 students. There were no missing
responses. The dataset was randomly partitioned into a training
dataset (n = 320, 75.12%) and a test dataset (n = 106, 24.88%).
The size of the training dataset is usually about 2 to 3 times of the
size of the test dataset to increase the precision in prediction (e.g.,
Sinharay, 2016; Fossey, 2017).

Instrumentation
There are 42 problem-solving questions in 16 units in 2012
PISA. These items assess cognitive process in solving real-life
problems in computer-based simulated scenarios (Organisation
for Economic Co-operation Development, 2014). The problem-
solving item, TICKETS task2 (CP038Q01), was analyzed in the
current study. It is a level-5 question (there were six levels in total)
that requires a higher level of exploring and understanding ability
in solving this complex problem (Organisation for Economic Co-
operation Development, 2014). This interactive question requires
students explore and collect necessary information to make a
decision. The main cognitive processes involved in this task are
planning and executing. Given the problem-solving scenario,
students need to come up with a plan and test it and modify it

if needed. The item asks students to use their concession fare to
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find and buy the cheapest ticket that allows them to take 4 trips

around the city on the subway within 1 day. One possible solution
is to choose 4 individual concession tickets for city subway, which

costs 8 zeds while the other is to choose one daily concession

ticket for city subway, which costs 9 zeds. Figure 1 includes these
two options. Students can always use “CANCEL” button before

“BUY” to make changes. Correctly completing this task requires

students to consider these two alternative solutions, then make
comparisons in terms of the costs and end up choosing the
cheaper one.

This item is scored polytomously with three score points, 0, 1,

or 2. Students who derive only one solution and fail to compare
with the other get partial credits. Students who do not come

up with either of the two solutions, but rather buy the wrong
ticket, get no credit on this item. For example, the last picture
in Figure 1 illustrates the tickets for four individual full fare for
country trains, which cost 72 zeds. “COUNTRY TRAINS” and
“FULL FARE” are considered as unrelated actions because they
are not the necessary actions to accomplish the task this item
requires. In terms of scoring, unrelated actions are allowed as
long as the students buy the correct ticket in the end and make
comparisons during the action process.

Data Description
The PISA 2012 log file dataset for the problem-solving
item was downloaded at http://www.oecd.org/pisa/pisaproducts/

FIGURE 1 | PISA 2012 problem-solving question TICKETS task2 (CP038Q01) screenshots. (For more clear view, please see http://www.oecd.org/pisa/test-2012/

testquestions/question5/ ).
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database-cbapisa2012.htm. The dataset consists of 4722 actions
from 426 students as rows and 11 variables as columns. Eleven
variables (see Figure 2) include: cnt indicates country, which
is USA in the present study; schoolid and StIDStd indicate
the unique school and student IDs, respectively; event_number
(ranging from 1 to 47) indicates the cumulative number of
actions the student took; event_value (see raw event_values
presented in Table 1) tells the specific action the student took
at one time stamp and time indicates the exact time stamp
(in seconds) corresponding to the event_value. Event notifies
the nature of the action (start item, end item, or actions in
process). Lastly, network, fare_type, ticket_type, and number_trips
all describe the current choice the student had made. The
variables used were schoolid, StIDStd, event_value and time.
ID variables helped to identify students, while event_value and
time variables were used to generate features. The scores for all
students were not provided in the log file, thus, hand coded and
carefully double checked based on the scoring rule. Among the
426 students, 121 (28.4%) got full credit, 224 (52.6%) got partial
credit and 81 (19.0%) did not get any credit. Full, partial, and no
credit were coded as 2, 1, and 0, respectively.

Feature Generation And Selection
Feature Generation

Features generated can be categorized into time features and
action features, as summarized in Table 1. Four Time features
were created: T_time, A_time, S_time, and E_time, indicating
total response time, action time spent in process, starting
time spent on first action, and ending time spent on last
action, respectively. It was assumed that students with different
ability levels may differ in the time they read the question
(starting time spent on first action), the time they spent
during the response (action time spent in process), and the
time they used to make final decision (ending time spent
on last action). Different researchers have proposed various
joint modeling approaches for both response accuracy and

response times, which explain the relationship between the
two (e.g., van der Linden, 2007; Bolsinova et al., 2017).
Thus, the total response times are expected to differ as
well.

However, in this study, action features were created by
coding different lengths of adjacent action sequences together.
Thus, this study generated 12 action features consisting of
only one action (unigrams), 18 action features containing
two ordered adjacent actions (bigrams), and 2 action features
created from four sequential actions (four-grams). Further,
all action sequences generated were assumed to have equal
importance and no weights were assigned to each action
sequence. In Table 1, “concession” is a unigram, consisting of
only one action, that is, the student bought the concession
fare; on the other hand, “S_city” is a bigram, consisting of
two actions, which are “Start” and “city subway,” representing
the student selected the city subway ticket after starting the
item.

Sao Pedro et al. (2012) showed that features generated

should be theoretically important to the construct to achieve
better interpretability and efficiency. Following their suggestion,

features were generated as the indicators of the problem-solving
ability measured by this item, which is supported by the scoring

rubric. For example, one action sequence consisted of four

actions, which was coded as “city_con_daily_cancel,” is crucial to
scoring. If the student first chose “city_subway” to tour the city,
then used the student’s concession fare (“concession”), looked at
the price of daily pass (“daily”) next and lastly, he/she clicked
“Cancel” to see the other option, this action sequence is necessary
but not sufficient for a full credit.

The final recoded dataset for analysis is made up of 426
students as rows and 36 features (including 32 action sequence
features and 4 time features) as columns. Scores for each student
served as known labels when applying supervised learning
methods. The frequency of each generated action feature was
calculated for each student.

FIGURE 2 | The screenshot of the log file for one student.
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TABLE 1 | 15 raw event values and 36 generated features.

Event_value (15) Start, End, city_subway, concession, full_fare, daily,

Cancel, country_trains, individual, Buy, trip_1, trip_2,

trip_3, trip_4, trip_5

Time features (4) T_time, A_time, S_time, E_time

Single actions (12) All in raw event_values except for Start, End and Buy

Two actions coded

together (18)

S_city (Start −→ city_subway)

S_country (Start −→ country_trains)

city_full (city_subway −→ full_fare)

city_concession (city_subway −→ concession)

country_full (country_trains −→ full_fare)

country_concession (country_trains −→ concession)

concession_daily (concession −→ daily)

concession_individual (concession −→ individual)

full_daily (full_fare −→ daily)

full_individual (full_fare −→ individual)

individual_trip4 (individual −→ trip_4)

other_cancel (other −→ Cancel)

daily_cancel (daily −→ Cancel)

trip4_cancel (trip_4 −→ Cancel)

daily_buy (daily −→ Buy)

trip4_buy (trip_4 −→ Buy)

individual_other (individual −→ other)

other_buy (other −→ Buy)

Four actions

coded together (2)

city_con_ind_4 (city_subway −→ concession −→

individual −→ trip_4) city_con_daily_cancel

(city_subway−→ concession −→ daily −→ Cancel)

Feature Selection

The selection of features should base on both theoretical
framework and the algorithms used. As features were generated
from a purely theoretical perspective in this study, no such
consideration is needed in feature selection.

Two other issues that need consideration are redundant
variables and variables with little variance. Tree-based methods
handle these two issues well and have built-in mechanisms
for feature selection. The feature importance indicated by
tree-based methods are shown in Figure 3. In both random
forest and gradient boosting, the most important one is
“city_con_daily_cancel.” The next important one is “other_buy,”
which means the student did not choose trip_4 before the action
“Buy.” The feature importance indicated by tree-based methods
is especially helpful when selection has to be made among
hundreds of features. It can help to narrow down the number
of features to track, analyze, and interpret. The classification
accuracy of the support vector machine (SVM) is reduced due to
redundant variables. However, given the number of features (36)
is relatively small in the current study, deleting highly correlated
variables (ρ ≥ 0.8) did not improve classification accuracy
for SVM.

Clustering algorithms are affected by variables with near zero
variance. Fossey (2017) and Kerr et al. (2011) discarded variables
with 5 or fewer attempts in their studies. However, their data were
binary and no clear-cut criterion exists for feature elimination
when using cluster algorithms in the analysis of process data.
In the current study, 5 features with variance no >0.09 in
both training and test dataset were removed to achieve optimal
classification results. Descriptive statistics for all 36 features can
be found in Table A1 in Appendix A.

In summary, a full set of features (36) were retained in the tree-
based methods and SVMwhile 31 features were selected for SOM
and k-means after the deletion of features with little variance.

Data Mining Techniques
This study demonstrates how to utilize data mining techniques to
map the selected features (both action and time) to students’ item
performance on this problem-solving item in 2012 PISA. Given
students’ item scores are available in the data file, supervised
learning algorithms can be trained to help classify students
based on their known item performance (i.e., score category)
in the training dataset while unsupervised learning algorithms
categorize students into groups based on input variables without
knowing their item performance. No assumptions about the data
distribution are made on these data mining techniques.

Four supervised learning methods: Classification and
Regression Tree (CART), gradient boosting, random forest, and
SVM are explored to develop classifiers while, two unsupervised
learning methods, Self-organizing Map (SOM) and k-means, are
utilized to further examine different strategies used by students in
both the same and different score categories. CART was chosen
because it worked effectively in a previous study (DiCerbo and
Kidwai, 2013) and is known for its quick computation and
simple interpretation. However, it might not have the optimal
performance compared with other methods. Furthermore, small
changes in the data can change the tree structure dramatically
(Kuhn, 2013). Thus, gradient boosting and random forest, which
can improve the performance of trees via ensemble methods,
were also used for comparison. Though SVM has not been used
much in the analysis of process data yet, it has been applied
as one of the most popular and flexible supervised learning
techniques for other psychometric analysis such as automatic
scoring (Vapnik, 1995). The two clustering algorithms, SOM and
k-means, have been applied in the analysis of process data in log
files (Stevens and Casillas, 2006; Fossey, 2017). Researchers have
suggested to use more than one clustering methods to validate
the clustering solutions (Xu et al., 2013). All the analyses were
conducted in the software program Rstudio (RStudio Team,
2017).

Classifier Development
The general classifier building process for the supervised learning
methods consists of three steps: (1) train the classifier through
estimating model parameters; (2) determine the values of tuning
parameters to avoid issues such as “overfitting” (i.e., the statistical
model fits too closely to one dataset but fails to generalize to other
datasets) and finalize the classifier; (3) calculate the accuracy of
the classifier based on the test dataset. In general, training and
tuning are often conducted based on the same training dataset.
However, some studies may further split the training dataset into
two parts, one for training while the other for tuning. Though
tree-based methods are not affected by the scaling issue, training
and test datasets are scaled for SVM, SOM, and k-means.

Given the relatively small sample size of the current dataset,
training, and tuning processes were both conducted on the
training dataset. Classification accuracy was evaluated with
the test dataset. For the CART technique, the cost-complexity
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FIGURE 3 | Feature importance indicated by tree-based methods.

parameter (cp) was tuned to find the optimal tree depth using
R package rpart. Gradient boosting was carried out using R
package gbm. The tuning parameters for gradient boosting were
the number of trees, the complexity of trees, the learning rate
and the minimum number of observations in the tree’s terminal
nodes. Random forest was tuned over its number of predictors
sampled for splitting at each node (mtry) using R package
randomForest. A radial basis function kernel SVM, carried out
in R package kernlab, was tuned through two parameters: scale
function σ and the cost value C, which determine the complexity
of the decision boundary. After the parameters were tuned, the
classifiers were trained fitting to the training dataset. 10-fold-
validation was conducted for supervised learning methods in the
training processes. Cross-validation is not necessary for random
forest when estimating test error due to its statistical properties
(Sinharay, 2016).

For the unsupervised learning methods, SOM was carried out
in the R package kohonen. Learning rate declined from 0.05 to
0.01 over the updates from 2000 iterations. k-means was carried
out using the kmeans function in the stats R package with 2000

iterations. Euclidian distance was used as a distance measure for
both methods. The number of clusters ranged from 3 to 10. The
lower bound was set to be 3 due to the three score categories
in this dataset. The upper bound was set to be 10 given the
relative small number of features and small sample size in the
current study. The R code for the usage of both supervised and
unsupervised methods can be found in Appendix B.

Evaluation Criterion
For the supervised methods, students in the test dataset are
classified based on the classifier developed based on the training
dataset. The performance of supervised learning techniques
was evaluated in terms of classification accuracy. Outcome
measures include overall accuracy, balanced accuracy, sensitivity,
specificity, and Kappa. Since item scores are three categories,
0, 1, and 2, sensitivity, specificity and balanced accuracy were
calculated as follows.

Sensitivity =
True Positives

True Positives + False Negatives,
(1)
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Specificity =
TrueNegatives

TrueNegatives + False Positives,
(2)

Balanced Accuracy =
Sensitivity + Specificity

2
(3)

where sensitivity measures the ability to predict positive cases,
specificity measures the ability to predict negative cases and
balanced accuracy is the average of the two. Overall accuracy and
Kappa were calculated for each method based on the following
formula:

Overall Accuracy =
True Positives + TrueNegatives

Total Cases
(4)

Kappa =
po − pe

1− pe
(5)

where overall accuracy measures the proportion of all correct
predictions. Kappa statistic is a measure of concordance for
categorical data. In its formula, po is the observed proportion
of agreement, pe is the proportion of agreement expected by
chance. The larger these five statistics are, the better classification
decisions.

For the two unsupervised learning methods, the better fitting
method and the number of clusters were determined for the
training dataset by the following criteria:

1. Davies-Bouldin Index (DBI; Davies and Bouldin, 1979)
calculated as in Equation 6, can be applied to compare the
performance of multiple clustering algorithms (Fossey, 2017).
The algorithm with the lower DBI is considered the better
fitting one which has the higher between-cluster variance and
smaller within-cluster variance.

DBI =
1

k

∑k

i=1
maxi6=j

Si + Sj

Mij
(6)

where k is the number of clusters, Si and Sj are the average
distances from the cluster center to each case in cluster i and
cluster j.Mij is the distance between the centers of cluster i and
cluster j. Cluster j has the smallest between-cluster distance
with cluster i or has the highest within-cluster variance, or
both (Davies and Bouldin, 1979).

2. Kappa value (see Equation 5) is a measure of classification
consistency between these two unsupervised algorithms. It is
usually expected not smaller than 0.8 (Landis and Koch, 1977).

To check the classification stability and consistency in the
training dataset, the methods were repeated in the test dataset,
DBI and Kappa values were computed.

RESULTS

The tuning and training results for the four supervised learning
techniques are first reported and then the evaluation of their
performance on the test datasets. Lastly, the results for the
unsupervised learning methods are presented.

Supervised Learning Methods
The tuning processes for all the classifiers reached satisfactory
results. For the CART, cp was set to 0.02 to achieve minimum

error and the simplest tree structure (error < 0.2, number of
trees < 6), as shown in Figure 4. The final tuning parameters
for gradient boosting: the number of trees = 250, the depth
of trees = 10, the learning rate = 0.01 and the minimum
number of observations in the trees terminal nodes = 10.
Figure 5 shows that when the maximum tree depth equaled
10, the RMSE was minimum as iteration reached 250 with
the simplest tree structure. The number of predictors sampled
for splitting at each node (mtry) in the random forest
was set to 4 to achieve the largest accuracy, as shown in
Figure 6. In the SVM, the scale function σ was set to 1
and the cost value C set to 4 to reach the smallest training
error 0.038.

The performance of the four supervised techniques
was summarized in Table 2. All four methods performed
satisfactorily, with almost all values larger than 0.90. The
gradient boosting showed the best classification accuracy overall,
exhibiting the highest Kappa and overall accuracy (Kappa= 0.94,
overall accuracy = 0.96). Most of their subclass specificity and
balanced accuracy values also ranked top, with only sensitivity

FIGURE 4 | The CART tuning results for cost-complexity parameter (cp).

FIGURE 5 | The Gradient Boosting tuning results.
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FIGURE 6 | The random forest tuning results (peak point corresponds to mtry = 4).

TABLE 2 | Average of accuracy measures of the scores.

Method R package Kappa Overall accuracy Sensitivity Specificity Balanced accuracy

0 1 2 0 1 2 0 1 2

CART rpart 0.92 0.95 0.89 0.97 0.97 0.98 0.96 0.99 0.93 0.96 0.98

Random Forest randomForest 0.92 0.95 0.89 0.95 10.0 0.99 0.96 0.97 0.94 0.95 0.99

Gradient Boosting gbm 0.94 0.96 0.89 0.97 10.0 0.99 0.96 0.99 0.94 0.96 0.99

Support Vector Machine kernlab 0.92 0.95 0.94 0.93 10.0 0.98 0.98 0.97 0.96 0.96 0.99

for score = 0, specificity for score = 1 and balanced accuracy
for score = 0 smaller than those from SVM. SVM, random
forest, and CART performed similarly well, all with a slightly
smaller Kappa and overall accuracy values (Kappa= 0.92, overall
accuracy= 0.95).

Among the four supervised methods, the single tree structure
from CART built from the training dataset is the easiest to
interpret and plotted in Figure 7. Three colors represent three
score categories: red (no credit), gray (partial credit), and green
(full credit). The darker the color is, the more confident the
predicted score is in that node, the more precise the classification
is. In each node, we can see three lines of numbers. The
first line indicates the main score category in that node. The
second line represents the proportions of each score category,
in the order of scores of 0, 1, and 2. The third line is the
percentage of students falling into that node. CART has a built-in
characteristic to automatically choose useful features. As shown
in Figure 7, only five nodes (features), “city_con_daily_cancel,”
“other_buy,” “trip4_buy,” “concession,” and “daily_buy,” were
used in branching before the final stage. In each branch, if the
student performs the action (>0.5), he/she is classified to the
right, otherwise, to the left. As a result, students with a full credit
were branched into one class, in which 96% truly belonged to this
class and accounted for 29% of the total data points. Students

who earned a partial credit were partitioned into two classes,
one purely consisted of students in this group and the other
consisted of 98% students who truly got partial credit. For the
no credit group, students were classified into three classes, one
purely consisted of students in this group and the other two
classes included 10 and 18% students from other categories. One
major benefit from this plot is that we can clearly tell the specific
action sequences that led students into each class.

Unsupervised Learning Methods
As shown in Table 3, the candidates for the best clustering

solution from the training dataset were k-means with 5 clusters
(DBI= 0.19, kappa= 0.84) and SOMwith 9 clusters (DBI= 0.25,

kappa= 0.96), which satisfied the criterion of a smaller DBI value

and kappa value ≥ 0.8. When validated with the test dataset, the
DBI values for k-means and SOM all increased. It could be caused

by the smaller sample size of the test dataset. Due to the low kappa
value for the 5-cluster solution in the validation sample, the final
decision on the clustering solution was SOM with 9 clusters.
The percentage of students in each score category in each cluster
is presented in Figure 8. The cluster analysis results obtained
based on both SOM and k-means can be found in Table A2 in
Appendix A.
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FIGURE 7 | The CART classification.

TABLE 3 | Clustering Algorithms’ Fit (DBI) and Agreement (Cohen’s Kappa).

Training dataset (n = 320) Test dataset (n = 106)

Number of

clusters

DBI Kappa DBI Kappa

k-means SOM k-means SOM

3 1.427 1.54 0.037 1.741 1.696 0.900

4 1.792 1.447 0.061 1.444 1.178 0.078

5 0.188** 1.296 0.843 1.098 1.133 0.320**

6 1.448 1.087 0.934 1.057 1.171 0.390

7 1.413 1.023 0.835 1.177 0.920 0.891

8 0.198 1.057 0.753 1.063 1.034 0.894

9 1.099 0.249* 0.959 1.288 0.979 0.831

10 1.442 0.251 0.884 1.288 0.816 0.627

**Best fitting solution with the training dataset but lower Kappa value with the test dataset,

indicating the disagreement between k-means and SOM.
*Final chosen solution. Bold values indicate potential final clustering solution and are

discussed in the text.

To interpret, label and group the resulting clusters, it is

necessary to examine and generalize the students’ features and
the strategy pattern in each of the cluster. In alignment with

the scoring rubrics and ease of interpretation, the nine clusters
identified in the training dataset are grouped into five classes and
interpreted as follows.

1. Incorrect (cluster1): students bought neither individual tickets
for 4 trips nor a daily ticket.

2. Partially correct (cluster 4–5): students bought either
individual tickets for 4 trips or a daily ticket but did not
compare the prices.

3. Correct (cluster 7 and 8): students did compare the
prices between individual tickets and a daily ticket and
chose to buy the cheaper one (individual tickets for
4 trips).

FIGURE 8 | Percentage in each score category in the final SOM clustering

solution with 9 clusters from the training dataset.

4. Unnecessary actions (cluster 2, 3, and 6): students tried
options not required by the question, e.g., country train ticket,
other number of individual ticket.

5. Outlier (cluster 9): the student made too many attempts and is
identified as an outlier.

Such grouping and labeling can help researchers better
understand the common strategies used by students in each
score category. It also helps to identify errors students made
and can be a good source of feedback to students. For those
students mislabeled above, they share the major characteristics
in the cluster. For example, 4% students who got no credit in
cluster 4 in the training dataset bought daily ticket for the city
subway without comparing the prices, but they bought the full
fare instead of using student’s concession fare. These students are
different from those in cluster 1 who bought neither daily tickets
nor individual tickets for 4 trips. Thus, students in the same
score category were classified into different clusters, indicating
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that they made different errors or took different actions during
the problem-solving process. In summary, though students in the
same score category generally share the actions they took, they
can also follow distinct problem-solving processes. Students in
different score categories can also share similar problem-solving
process.

SUMMARY AND DISCUSSIONS

This study analyzed the process data in the log file from one
of the 2012 PISA problem-solving items using data mining
techniques. The data mining methods used, including CART,
gradient boosting, random forest, SVM, SOM, and k-means,
yielded satisfactory results with this dataset. The three major
purposes of the current study were summarized as follows.

First, to demonstrate the analysis of process data using
both supervised and unsupervised techniques, concrete steps in
feature generation, feature selection, classifier development and
outcome evaluation were presented in the current study. Among
all steps, feature generation was the most crucial one because
the quality of features determines the classification results to
a large extent. Good features should be created based on a
thorough understanding of the item scoring procedure and the
construct. Key action sequences that can distinguish correct and
incorrect answers served as features with good performance.
Unexpectedly, time features, including total response time and its
pieces, did not turn out to be important features for classification.
This means that considerable variance of response time existed
in each score group and the differences in response time
distributions among the groups was not large enough to clearly
distinguish the groups (see Figure A1 in Appendix A). This
study generated features based on theoretical beliefs about the
construct measured and used students as the unit of analysis.
The data could be structured in other ways according to different
research questions. For example, instead of using students as
the unit of analysis, the attempts students made can be used as
rows and actions as columns, then the attempts can be classified
instead of people. Fossey (2017) included a detailed tutorial on
clustering algorithms with such data structure in a game-based
assessment.

Second, to evaluate classification consistency of these
frequently used data mining techniques, the current study
compared four supervised techniques with different properties,
namely, CART, gradient boosting, random forest, and SVM.
All four methods achieved satisfactory classification accuracy
based on various outcome measures, with gradient boosting
showing slightly better overall accuracy and Kappa value. In
general, easy interpretability and graphical visualization are
the major advantages of trees. Trees also deal with noisy and
incomplete data well (James et al., 2013). However, the trees
are easily influenced by even small changes in the data due to
its hierarchical splitting structure (Hastie et al., 2009). SVM, on
the contrary, generalizes well because once the hyperplane is
found, small changes to data cannot greatly affect the hyperplane
(James et al., 2013). Given the specific dataset in the current
study, even the CART method worked very well. In addition, the
CART method can be easily understood and provided enough

information about the detailed classifications between and within
each score category. Thus, based on the results in the current
study, the CART method is sufficient for future studies on
similar datasets. Unsupervised learning algorithms, SOM and
k-means, also showed convergent clustering results based on
DBI and Kappa values. In the final clustering solution, students
were grouped into 9 clusters, revealing specific problem-solving
processes they went through.

Third, supervised and unsupervised learningmethods serve to
answer different research questions. Supervised learningmethods
can be used to train the algorithm to predict memberships in
the future data, like automatic scoring. Unsupervised methods
can reveal the problem-solving strategy patterns and further
differentiate students in the same score category. This is
especially helpful for formative purposes. Students can be
provided with more detailed and individualized diagnostic
reports. Teachers can better understand students’ strengths and
weaknesses, and adjust instructions in the classroom accordingly
or provide more targeted tutoring to specific students. In
addition, it is necessary to check any indication for cheating
behavior in the misclassified or outlier cases from both types of
data mining methods. For example, students answered the item
correctly within an extremely short amount of time can imply
item compromise.

This study has its own limitations. Other data mining
methods, such as other decision trees algorithms and clustering
algorithms, are worth of investigation. However, the procedure
demonstrated in this study can be easily generalized to other
algorithms. In addition, the six methods were compared based
on the same set of data rather than data under various conditions.
Therefore, the generalization of the current study is limited due
to factors such as sample size and number of features. Future
studies can use a larger sample size and extract more features
from more complicated assessment scenarios. Lastly, the current
study focuses on only one item for the didactic purpose. In
the future study, process data for more items can be analyzed
simultaneously to get a comprehensive picture of the students.

To sum up, the selection of data mining techniques for the
analysis of process data in assessment depends on the purpose of
the analysis and the data structure. Supervised and unsupervised
techniques essentially serve different purposes for data mining
with the former as a confirmatory approach while the latter as
an exploratory approach.
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