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Abstract: In the light of the lack of authorized COVID-19 vaccines adapted to the Omicron variant
lineage, the administration of the first and second booster dose is recommended. It remains important
to monitor the efficacy of such an approach in order to inform future preventive strategies. The
present paper summarizes the research progress on the effectiveness of the first and second booster
doses of COVID-19. It also discusses the potential approach in vaccination strategies that could
be undertaken to maintain high levels of protection during the waves of SARS-CoV-2 infections.
Although this approach can be based, with some shortcomings, on the first-generation vaccines, other
vaccination strategies should be explored, including developing multiple antigen-based (multivariant-
adapted) booster doses with enhanced durability of immune protection, e.g., through optimization of
the half-life of generated antibodies.

Keywords: COVID-19; Omicron; booster; vaccine effectiveness

1. Introduction

The Omicron lineage of SARS-CoV-2 (B.1.1.529) was first detected in November 2021
in Botswana and South Africa [1]. It accumulated over 50 sense mutations in the genome,
among which approximately thirty induced amino-acid changes in the spike protein, with
ten concerning the receptor-binding domain [2]. Such a high number of mutations led
to substantial evasion of naturally-acquired and vaccine-induced immunity, ultimately
resulting in increased transmissibility [3,4]. Consequently, within several weeks Omicron
variant became a predominant SARS-CoV-2 variant circulating globally [5]. As shown, a
key feature of Omicron behind this rapid spread was not an increased viral load than for
the preceding Delta variant ([6] or higher affinity to the ACE2 receptor [7], but substantial
evasion of naturally-acquired and vaccine-induced neutralizing antibodies [8,9]. This
had raised concerns over the efficacy of the authorized vaccines designed in 2020, long
before the emergence of Omicron, which were using spike protein without the critical
changes found in Omicron [10]. The main vaccines used worldwide included mRNA-
based vaccines BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, NY, USA) and
mRNA-1273 (Moderna Therapeutics, Cambridge, MA, USA), adenoviral vector vaccines
AZD1222 (Oxford/AstraZeneca, UK/Sweden) and Ad26.COV2.S (Janssen/Johnson &
Johnson, Beerse, Belgium/New Brunswick, NJ, USA) and inactivated vaccine CoronaVac
(Sinovac, Beijing, China) [10].

On the other hand, the first-generation vaccines remained effective against other variants,
such as Delta, which were also characterized by the mutated spike protein [11–13]. However,
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to maintain high levels of protection, a booster strategy has been implemented [14,15]. This de-
cision was also motivated by the observations of the gradual decrease of the antibody levels
within several weeks from the last dose [16,17], which increased the odds of breakthrough
infections [18].

Since the Omicron-adapted vaccines remain under clinical development [19–21], the
administration of a booster dose, and recently also a second booster dose, based on the
original version of vaccines (the majority of which are mRNA vaccines) have been thus
recommended to curb the globally increasing transmission of Omicron variant. Therefore,
it remains important to monitor the effect of booster strategies during the dominance of
the Omicron lineage and, if necessary, offer some potential future vaccination strategies. It
is imperative given that antibody levels following administration of a booster dose also
tend to decrease, usually within 3–4 months, while the Omicron variant is, contrary to
Delta lineage, better adapted to reduce the recognition of spike protein by T-cells [22]. The
evaluation of booster strategies can be performed by assessment of the vaccine’s efficacy
which is measured in a controlled clinical trial (by comparing the outcome in vaccinated
individuals to those receiving a placebo and calculation of the relative risk), or by evaluation
of the vaccine’s effectiveness, which is measured in the real-world studies and allows us to
understand how well the vaccines work to protect communities as a whole.

In the present paper, we update the research progress on the effects of the first and
second booster doses of COVID-19 and discuss the potential modifications to vaccination
strategies to maintain high levels of protection during the future waves of SARS-CoV-2
infections caused by Omicron variant or novel viral lineage that may emerge.

2. The Increased Omicron-Neutralizing Activity of the Booster (Three
Doses) Vaccination

The objective of this section was to review the effect that booster COVID-19 vaccination
can have on immune responses in the context of the Omicron variant. Due to the substantial
genetic mutation in its spike protein [1], Omicron variants exhibit an increased escape from
vaccine-induced neutralizing antibodies. This is because the COVID-19 vaccines authorized
in 2020/2021 were based on the spike protein of the SARS-CoV-2 version that emerged in
Wuhan, China, in late 2019. Subsequently, they poorly match the Omicron lineage. Neutral-
ization of Omicron could even be undetectable in the selected individuals who completed
only the primary vaccination course [23]. However, the mRNA vaccine booster elicited
neutralizing protection against the Omicron variant [23–28]. The mRNA vaccine BNT162b2
(Pfizer) booster substantially increased the neutralizing antibody titers against two major
Omicron sub-lineages (BA.1 and BA.2), whereas the corresponding neutralizing antibody
titers were lower six months after the initial vaccination [29]. Similarly, Pedersen et al.
documented that the serums of participants receiving the homologous BNT162b2 booster
can neutralize both Omicron BA.1 and BA.2 isolates [30]. Nemet et al. also reported a
substantially increased geometric Omicron-neutralizing titer in the healthy participants
receiving the BNT162b2 booster, compared to the low geometric Omicron-neutralizing titer
value (in the participants receiving two-dose BNT162b2 vaccine [31]. In a prospective obser-
vational study in older nursing home residents (68–98 years old) in France, the BNT162b2
booster dose increased the mean of Omicron-specific neutralizing titers by nearly 2 fold
in the SARS-CoV-2-naïve and COVID-19 recovered residents three-months after admin-
istration, respectively. The percentage of residents with detectable Omicron-neutralizing
antibodies also substantially increased to >80% [32]. Canaday et al. examined the effect
of boosting with BNT162b2 mRNA vaccine on humoral immunity and Omicron-specific
neutralizing activity among nursing home residents and healthcare workers in the USA,
and it was found that the booster administration increased the proportion of participants
with detectable Omicron-neutralizations range to 86%, whereas only 28% of participants
after full-dose vaccination had the detectable Omicron-specific neutralization activity [33].
Pajon et al. reported that the geometric mean titer level against Omicron variants after one
month of mRNA-1273 booster was 20-fold higher than after a month of the primary vacci-
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nation course with two-dose mRNA-1273 but rapidly declined by 85% after six months [34].
The inactivated virus vaccine booster substantially increased the neutralizing antibody
responses to Omicron lineage variants in a cohort study on the adaptive responses of
CoronaVac booster in the healthcare professional receiving the CoronaVac booster nine
months after two-dose CoronaVac vaccination. Over 55% of subjects demonstrated the
Omicron-neutralizing activities after the boosting dose-the geometric mean titer increased
by 2 fold [35]. Moreover, a third dose of the protein subunit vaccine MVC-COV1901 (Medi-
gen Vaccine Biologics Zhubei, Hsinchu County, Taiwan), containing an adjuvanted stable
prefusion spike protein of SARS-CoV-2 (similarly to spike protein encoded by the mRNA
vaccines), was reported to improve the neutralizing capacity against Omicron [36]. All
these studies highlighted the increased neutralizing activity of booster vaccination against
Omicron variant despite being lower than that against wildtype variants, as well as the
rapid decline over the following months. Moreover, data from studies in non-human
primates indicate that boost administration induces comparable immunity and protection
against the Omicron variant shortly after administration, regardless of whether an ancestral
spike-matched vaccine or Omicron-matched vaccine was used [37].

Additionally, the Omicron-neutralizing activity of the heterologous booster vacci-
nation was also studied. In a subject-blinded, randomized-controlled trial to assess the
immunogenicity and safety of heterologous booster COVID-19 vaccination compared with
a homologous booster regimen in Singapore, heterologous mRNA-1273 booster vaccination
(following a primary course of vaccination with BNT162b2) induced a more robust neutral-
izing response against the Omicron variant in older individuals compared with homologous
BNT62b2 [38]. Wang et al. showed that both the homologous inactivated whole-virion
vaccine BBIBP-CorV (Sinopharm, Beijing, China) booster and the heterologous booster
with protein subunit vaccine ZF2001 (Anhui Zhifei Longcom Biopharmaceuticals, Hefei,
China) considerably increased neutralization titers for Omicron variant [39]. In a phase
4, a non-inferiority, single-blind, randomized study in Brazil, the Omicron-neutralizing
capacity was found to substantially increase in the serum samples of the participants who
received the primary vaccination regimen of the inactivated virus vaccine CoronaVac and
further received a third homologous dose of CoronaVac. However, those who received a
third heterologous dose of Ad26.COV2.S, BNT162b2, or AZD1222 had a higher neutralizing
response than those who received the homologous booster [40]. Therefore, heterologous
immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity
against the SARS-CoV-2 Omicron variant [41]. For the population receiving CoronaVac as
the primary vaccine, the heterologous booster with other types of vaccines (e.g., mRNA vac-
cine) can be considered [42]. The summary of reviewed studies in this section is provided
in Table 1.

Table 1. Summary of studies evaluating the Omicron-neutralizing activity of the first COVID-19
vaccine booster.

Reference Design Findings

[33]

• A longitudinal study (USA), 85 nursing home residents,
48 healthcare workers.

• The effect of BNT162b2 booster on humoral immunity and
Omicron-specific neutralizing activity were studied.

• Samples taken after the initial vaccination series, before and
2 weeks after booster vaccination.

• Neutralization titers against the ancestral and Omicron variants
were analyzed.

• ≥86% of subjects receiving the booster showed detectable
Omicron neutralizing activity, compared to 28% after the
primary vaccination course.

• The geometric mean titer values of Omicron-specific
neutralization increased by 5.5 fold in nursing home residents.

• BNT162b2 booster vaccination significantly increased the
neutralization levels against the Omicron variant.

[34]
• A small US immunogenicity study (20 healthy adults) evaluating

the Omicron neutralization after primary course of mRNA-1273
vaccine and booster.

• mRNA-1273 booster vaccination increased neutralization titers
against the Omicron variant by 20 folds compared to the second
vaccine dose.
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Table 1. Cont.

Reference Design Findings

[35]

• A cohort Chinese study with healthcare professionals (n = 77)
between 8–14 November 2021.

• The spike-specific IgG and IgA responses and neutralization
activities against ancestral, Delta and Omicron variants were
evaluated in subject’s booster with CoronaVac after 9 months
from the primary course of vaccination.

• >55% of subjects had the Omicron-neutralizing activities after
the booster dose.

• The geometric mean titer increased by 2 fold.
• The booster of CoronaVac elicited broad and potent adaptive

immune responses against Omicron variant.

[38]

• A subject-blinded, randomized-controlled trial study in
Singapore evaluating reactogenicity and immunogenicity of
different COVID-19 vaccine booster combinations.

• 100 BNT162b2-vaccinated individuals were enrolled and
received either homologous (BNT162b2 + BNT162b2 +
BNT162b2; ‘BBB’) or heterologous mRNA booster vaccine
(BNT162b2 + BNT162b2 + mRNA-1273; ‘BBM’)

• At day 28 post-booster, the inhibition percent against the
Omicron variant in the BBM group (84.3%) remained
significantly higher than in the BBB group (72.8%, p = 0.007).

• Compared to the homologous BNT123b2, the heterologous
mRNA-1273 booster vaccination induced a more robust
neutralizing response against the Omicron variant in older
individuals.

[39]

• Samples from healthy adults in China who received a third
boosting vaccination with either an inactivated whole-virion
vaccine (BBIBP-CorV, homologous booster group) or a protein
subunit vaccine (ZF2001, heterologous booster group) after
previous priming vaccination by two doses of BBIBP-CorV
vaccine.

• The titers of neutralizing antibodies against the ancestral and
Omicron viruses were analyzed.

• The booster improved the neutralization titer against Omicron
by 4 fold.

• No difference in neutralization titers against Omicron between
the homologous and heterologous groups.

[40]

• A phase 4, a non-inferiority, single-blind, randomized study in
Brazil.

• 1240 participants randomly assigned to receive one of four
different booster vaccines of either heterologous dosing with
ChAdOx1 nCoV-19, BNT162b2, or Ad26.COV2-S, or homologous
dosing with CoronaVac.

• Anti-spike, receptor binding domain, and nucleocapsid
responses, and antibody neutralization titers at the 28 days after
the booster dose were evaluated.

• On day 28, after the booster, all groups had a substantial rise in
antibody concentrations. The geometric fold-rise from baseline
to day 28 was 77, 152, 90, and 12 for Ad26.COV2-S, BNT162b2,
ChAdOx1 nCoV-19, and CoronaVac, respectively.

• Participants receiving a third heterologous dose had a higher
neutralizing response than those receiving the homologous
booster.

3. The Increased Effectiveness of the Booster Vaccination (Three Doses) against the
Omicron Variant

This section aimed to review the effectiveness of booster COVID-19 vaccination, based
on non-Omicron adapted vaccines, in protection against the Omicron variant of SARS-
CoV-2. The increased vaccine effectiveness of the booster against Omicron-associated
infection has been widely reported. In a prospective observational study including data
of 11,690 adults across 21 hospitals in the USA, the effectiveness of mRNA vaccination
(BNT162b2 and mRNA-1273) to prevent Delta variant-associated hospitalization was 85%
and 94% for two doses and three doses (booster), respectively, whereas the effectiveness
of the mRNA vaccination against Omicron variant was 65% and 86% for two doses and
booster, respectively [43]. Tartof et al. showed that the nine-month effectiveness of two
doses of the BNT162b2 vaccine against hospital admission due to Omicron infection was
41% while against emergency department admission was 31%. However, after three doses,
the effectiveness of BNT162b2 against hospital admission due to the Omicron variant was
85% at <3 months but declined to 55% after ≥3 months [44]. In a test-negative case-control
design research in England, the increased vaccine effectiveness (67.2%, at 2–4 weeks) of the
BNT162b2 (Pfizer) booster dose against the Omicron variant was observed among patients
who received full-dose BNT162b2 vaccination, and the vaccine effectiveness declined to
45.7% at ≥10 weeks [45]. Likewise, in a large, test-negative case-control study in California,
USA, the increased vaccine effectiveness (71.6%) of the mRNA-1273 vaccine booster against
Omicron infection was observed in participants at 14–60 days after the booster. However,
the booster vaccine effectiveness decreased to 47.4% at >60 days [46]. Šmíd et al. showed
that the vaccine effectiveness of a recent booster in the Czech Republic increased to 56%
against Omicron infection and increased to 87% against Omicron hospitalization, whereas
the vaccine effectiveness of the primary course of vaccination against Omicron hospitaliza-
tion was 45% [47]. Ferdinands et al. showed that during the Omicron period, the booster
vaccine effectiveness against COVID-19-associated emergency department/urgent care
visits and hospitalizations increased to 87% and 91%, respectively, during the first two
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months after the booster, but declined to 66% and 78%, respectively, by the fourth month
after the booster [48]. Butt et al. showed that vaccine effectiveness of booster vaccination
relative to primary vaccination series (relative vaccine effectiveness) was 19%, 52%, and
83% for confirmed infection, hospitalization, admission to intensive care unit, or death,
respectively. Despite the relatively low vaccine effectiveness of mRNA booster vaccine dose
against the Omicron infection, the booster administration provides substantial protection
from hospitalization and performs well in preventing the most severe/critical forms of
the disease [49]. Modes et al. showed that the likelihoods of both intensive care unit
admission and death during the Omicron-predominant period were lowest among adults
who had received a booster dose, highlighting the importance of booster vaccination [50].
Additionally, Plumb et al. also reported that during the Omicron-predominant period, the
estimated vaccine effectiveness against reinfection-associated hospitalization increased to
68% after a booster dose from 35% after two-dose primary vaccination [51].

Although the primary course of vaccination was based on various vaccines, the
booster strategies were mostly based on mRNA vaccinations [10]. As a result, some
individuals were receiving heterologous booster vaccines making it necessary to under-
stand the safety, immunogenicity, and efficacy of such an approach [52–55]. In relation
to the Omicron variant, Accorsi et al. showed that all three studied booster regimens
(Ad26.COV2.S/Ad26.COV2.S, Ad26.COV2.S/mRNA, and mRNA/mRNA/mRNA) pro-
tected against symptomatic infection, while the highest vaccine effectiveness occurred in
the regimens (Ad26.COV2.S/mRNA and mRNA/mRNA/mRNA) that included a booster
dose of an mRNA vaccine [56]. The lowest vaccine effectiveness was observed with the
homologous Ad26.COV2.S/Ad26.COV2.S booster [56]. In the retrospective cohort stud-
ies in Qatar, Abu–Raddad et al. reported decreased cumulative incidences (2.4% and
1.0%) of symptomatic Omicron infection in the homologous BNT162b2 and mRNA-1273
booster cohort, respectively, compared to those (4.5% and 1.9%) of corresponding non-
booster cohorts [57]. The effectiveness of the BNT162b2 and mRNA-1273 booster against
symptomatic Omicron infection was estimated to be 49.4% and 47.3%, respectively [57].
In a test-negative design using consolidated national administrative data in Malaysia,
Suah et al. compared the effectiveness of homologous and heterologous BNT162b2, Coron-
aVac, and AZD1222 booster vaccination against Delta and Omicron infection (heterologous
booster vaccinations: (i) 2 × CoronaVac + 1 × BNT162b, (ii) 2 × CoronaVac + 1 × AZD122,
and (iii) 2 × AZD122 + 1 × BNT162b), boosting was associated with the higher adjusted
marginal effectiveness values, and a BNT162b2 booster was recommended for the subjects
receiving the primary regimen with inactivated and vectored vaccines [58]. Analyzing
80,287 emergency department/urgent care visits and 25,244 hospitalizations among adults
across 10 US states during the Omicron predominance period (16 December 2021–7 March
2022), Natarajan et al. reported that the effectiveness of heterologous booster practice (1 ×
Ad26.COV2.S/1 × mRNA dose) against emergency department/urgent care visits and hos-
pitalization (79% and 78%, respectively) were higher than those (54% and 67%, respectively)
of the homologous Ad26.COV2.S booster vaccination (2 × Ad26.COV2.S). However, they
were lower than those of 3 × mRNA doses (83% and 90%, respectively). Therefore, the vac-
cinees receiving Janssen primary vaccine should preferentially receive the mRNA vaccine
booster to improve the protection against Omicron [59]. All these studies demonstrated the
increased vaccine effectiveness of the existing vaccine booster against the Omicron variant,
especially the heterologous booster vaccination, compared to primary vaccination with
the non-mRNA vaccine. Therefore, the mRNA vaccine booster was recommended for the
individuals who previously received the non-mRNA primary vaccination.

All in all, the administration of a booster dose of the first-generation COVID-19 vac-
cines increases the protection level against Omicron infection and hospitalization. However,
this protection declined compared to that against other SARS-CoV-2 variants. As shown
through clinical trials and real-world observations, the efficacy of the primary course of
vaccination against variants circulating in 2020 and the first half of 2021 was higher than
the efficacy against Omicron lineage after a booster administration [11,18,60–65]. More-
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over, the level of protection from infection and hospitalization tends to decrease three-four
months after administration [44,48,65,66]. As recently summarized by Higdon et al., the
effectiveness of booster vaccination against Omicron one month after its administration
was higher for all outcomes compared to the effectiveness of the primary vaccine course
against the same variant. However, as estimated using random-effects meta-regression,
effectiveness against symptomatic infection decreased by 24% within the first four months
and by 5% in relation to protection from hospitalization, with further decrease projected by
six months [44]. The summary of reviewed studies in this section is provided in Table 2.

Table 2. Summary of studies evaluating the effectiveness of the first COVID-19 vaccine booster
against the Omicron variant.

Reference Design Findings

[43]

• A large, prospective observational study including data of
11,690 adults across 21 U.S. hospitals.

• The effectiveness of mRNA vaccination (BT162b2 and
mRNA-1273) against Omicron, Delta, and Alpha SARS-CoV-2
was evaluated.

• The effectiveness of the mRNA vaccination against the Omicron
variant was 65% and 86% for two doses and booster, respectively.

[44]

• A test-negative case-control study based on an analysis of
16,063 hospital admissions and 19,699 emergency department
admissions across Kaiser Permanente Southern California, a
large integrated healthcare system in California, USA, from 1
December 2021 to 6 February 2022.

• Vaccine effectiveness was calculated in patients aged ≥18 years
admitted to a hospital or an emergency department.

• The effectiveness of two doses of the BNT162b2 vaccine against
the Omicron variant was 41% and 31% against hospital
admission and emergency department admission at ≥ 9 months
after the second dose, respectively.

• The effectiveness of BNT162b2 booster against hospital
admission due to the Omicron was 85% at < 3 months but fell to
55% at ≥3 months.

[45]

• A test-negative case-control design to estimate vaccine
effectiveness against symptomatic disease caused by the
Omicron and Delta variants in England.

• Vaccine effectiveness was evaluated after primary immunization
with two doses of BNT162b2, ChAdOx1 nCoV-19, or
mRNA-1273 vaccine and after a booster dose of BNT162b2,
ChAdOx1 nCoV-19, or mRNA-1273.

• A total of 886,774 persons with symptomatic disease infected
with the Omicron variant were identified during the study
period.

• The increase in the vaccine effectiveness (67.2%, at 2-4 weeks) of
the BNT162b2 booster against the Omicron variant was observed
among patients who received full-dose BNT162b2 vaccination,
and the vaccine effectiveness declined to 45.7% at ≥10 weeks.

[46]

• A large, diverse, test-negative case-control study in the USA to
evaluate mRNA-1273 vaccine effectiveness against infection and
hospitalization with Omicron or Delta.

• This study included 26,683 SARS-CoV-2 test-positive cases with
variants and 109,662 controls.

• The effectiveness of mRNA-1273 booster against Omicron
infection was 71.6% at 14–60 days after the booster.

• It decreased to 47.4% at >60 days whereas the vaccine
effectiveness of two-dose mRNA-1273 against Omicron infection
was only 44% at 14–90 days and waned to 5.9% at 271–365 days.

[47]

• A Cox proportional hazards model and a logistic regression
analysis based on individual-level population-wide data from
the Czech Republic to estimate risks of infection and
hospitalization, including severe COVID-19.

• This study evaluated the protection due to vaccination or
previous SARS-CoV-2 infection against COVID-19 infection,
hospital admission, oxygen therapy and intensive care unit
admission.

• The vaccine effectiveness of a recent (≤2 months) initial
vaccination against Omicron and Delta infections was 43% and
73%, respectively.

• The booster dose increased effectiveness against infection to 56%
(Omicron) and 90% (Delta).

• The effectiveness against Omicron-related hospitalization of
initial vaccination and booster was 45% and 87%, respectively.

[48]

• Multistate analysis of 241,204 emergency department/urgent
care encounters and 93,408 hospitalizations among adults with
COVID-19–like illness during 26 August 2021–22 January 2022 in
the USA.

• This study evaluated the durability of protection after 3 doses
during periods of Delta or Omicron variant predominance in the
USA.

• During the 2 months after the booster (third dose), the vaccine
effectiveness value of the booster against COVID-19-associated
ED/UC visits and hospitalizations was 87% and 91%,
respectively. But by the fourth month after the booster
vaccination, the vaccine effectiveness value decreased to 66% and
78%, respectively.

[49]

• A matched, retrospective cohort study design that emulated a
target trial in the USA.

• This study evaluated the relative vaccine effectiveness (RVE) of a
homologous booster dose of mRNA vaccine compared with the
primary vaccine series alone in preventing infection,
hospitalization, and intensive care unit admission, and death in
the Department of Veterans Affairs healthcare system in the USA.

• Booster group: 198,860 subjects receiving BNT162b2 mRNA
booster and 264,090 receiving mRNA-1273. No-booster group:
198,860 subjects receiving BNT162b2 mRNA booster and 264,090
receiving mRNA-1273.

• The RVE of the booster for confirmed infection, hospitalization,
and intensive care unit admission or death was 19%, 52%, and
83%, respectively.

• RVE was highest for subjects receiving the booster vaccine
within 28 days of the starting period of Omicron predominance
(40% for BNT162b2 and 30% for mRNA-1273),

• The protection against infection was negligible for both vaccines
for subjects with ≥4 months since booster receipt.

• Despite the low RVE of mRNA booster vaccine dose in
preventing Omicron infection, it was substantial in preventing
hospitalization.
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Table 2. Cont.

Reference Design Findings

[56]

• A test-negative, case–control analysis to assess the effectiveness
of four vaccination regimens against symptomatic infection with
severe acute respiratory syndrome coronavirus 2 during the
Omicron predominance period in the USA.

• Four regimens included a single priming dose of Ad26.COV2.S,
a single priming dose of Ad26.COV2.S plus a booster dose of
Ad26.COV2.S (Ad26.COV2.S/Ad26.COV2.S), a single priming
dose of Ad26.COV2.S plus a booster dose of mRNA vaccine
(Ad26.COV2.S/mRNA), and two priming doses of an mRNA
vaccine plus a booster dose of mRNA vaccine
(mRNA/mRNA/mRNA).

• Either the BNT162b2 vaccine (Pfizer–BioNTech) or the
mRNA-1273 vaccine (Moderna) was used in the mRNA vaccine
regimens.

• Compared with no vaccination, the vaccine effectiveness of the
Ad26.COV2.S regimen against symptomatic infection during the
period of 14 days to 1 month since receipt of the last dose and
during the period of 2 to 4 months since receipt of the last dose
was 17.8% and 8.4%, respectively.

• During the studied periods, the vaccine effectiveness of
Ad26.COV2.S/Ad26.COV2.S regimen were 27.9% and 29.2%,
respectively; 61.3% and 54.3% for the Ad26.COV2.S/mRNA
regimen, respectively; 68.9% and 62.8% for the
mRNA/mRNA/mRNA regimen, respectively.

• All three booster regimens protected against symptomatic
infection. The highest vaccine effectiveness was in the regimens
including mRNA vaccine booster dose, the lowest in the
homologous group.

[57]

• Two matched retrospective cohort studies to assess the booster
effectiveness of booster, compared to that of initial vaccination
conducted during the Omicron infection period (19 December
2021–26 January 2022) in Qatar.

• In a population of 2,239,193 persons receiving at least two doses
of BNT162b2 or mRNA-1273 vaccine, those receiving a booster
were matched with persons not receiving a booster.

• The effectiveness of the BNT162b2 and mRNA-1273 booster
against symptomatic omicron infection was 49.4% and 47.3%,
respectively.

• The mRNA boosters were highly effective against Delta infection,
but less effective against Omicron infection.

• mRNA boosters conferred strong protection against Delta and
Omicron-related hospitalization and death.

[58]

• A test-negative design using consolidated national
administrative data in Malaysia to compare the vaccine
effectiveness of homologous and heterologous BNT162b2,
CoronaVac, and AZD1222 booster vaccination against
SARS-CoV-2 infection during the Delta and Omicron
predominance periods (27 October 2021–4 February 2022; and
5–22 February 2022, respectively).

• Compared to the primary vaccination reference (2× BNT162b2),
the adjusted marginal vaccine effectiveness of six booster
vaccination regimens ((1). PPP (3× BNT162b2), (2). SSA (2×
CoronaVac + AZD1222), (3). SSP (2× CoronaVac+BNT162b2); (4).
SSS (3× CoronaVac), (5). AAP (2× AZD1222+BNT162b2), and (6)
AAA (3× AZD1222)) were 51.08%, 49.05%, 47.64%, 33.42%,
52.96%, 30.14%, respectively.

• The heterologous booster vaccinations were associated with
higher adjusted marginal effectiveness.

• A BNT162b2 booster was recommended for subjects receiving
the primary regimen with inactivated and vectored primary
vaccines.

[59]

• A test-negative design study to estimate vaccine effectiveness of
homologous and heterologous COVID-19 booster following 1
Ad.26.COV2.S vaccine dose against COVID-19-associated
emergency department and urgent Care (EDUC) encounters and
hospitalizations among adults across 10 USA states during the
Omicron predominance period (December 2021–March 2022).

• This study included 80,287 emergency department/urgent care
encounters and 25,244 hospitalizations.

• The vaccine effectiveness of heterologous booster practice (1 ×
Ad26.COV2.S/1 × mRNA dose) against emergency
department/urgent care visits and hospitalization was 79% and
78%, respectively, higher than in the homologous
Ad26.COV2.booster vaccination (54% and 67%, respectively).

• The subjects receiving Ad.26.COV2.S primary vaccine should
preferentially receive the mRNA vaccine booster to improve the
protection against Omicron.

4. Fourth Dose–What Is the Evidence So Far?

This section’s objective was to review the studies reporting on the effect of administra-
tion of an additional booster dose (second booster) of the COVID-19 vaccine not adapted
specifically to match Omicron lineage. On 29 March 2022, in response to growing concerns
about a rapid decline in the Omicron-neutralizing activity of the booster, the Food and Drug
Administration (FDA) authorized a second booster dose of either BNT162b2 or mRNA-1273
vaccines for older persons and immunocompromised individuals who are considered high-
risk populations for severe COVID-19. This additional shot is the fourth vaccine dose for
immunocompetent people, and for patients with a weakened immune system, it is the fifth
due to the three-dose primary vaccination. FDA authorization was followed immediately
by a recommendation from the Centers for Disease Control and Prevention to allow eligible
persons to receive a second booster dose. Both institutions decided without consulting their
vaccine advisory committees, which is an unusual procedure, explaining it as the growing
threat of a wave of BA.2 omicron variant infections. A second booster dose of BNT162b2 or
mRNA-1273 was recommended for persons 50 years of age and older at least four months
after the last shot of any already-approved COVID-19 vaccine. In addition, the BNT162b2
vaccine may be administered on the same schedule to individuals 12 years of age and older
following solid organ transplantation or with an equivalent degree of immunodeficiency.
Recommendations for the fourth dose of the vaccine were based on published findings
from Israel suggesting better protection against the severe course of the disease and no
safety issues [67,68]. Israel became the first country worldwide to begin using the fourth
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dose of the BNT162b2 vaccine in January 2022. According to the regulations, this was
offered to health care professionals and adults over 60 years [69].

The effect of additional booster dose administration based on the first-generation
COVID-19 vaccines was already a subject of selected real-world studies and prospective,
open-label, non-randomized studies (Table 3) [67,68,70]. The latter evaluated both mRNA
vaccine formulations, BNT162b2 and mRNA-1273, administered to Israeli medical staff
vaccinated with the third dose of BNT162b2 at least four months earlier with IgG anti-
body levels equal to or lower than 700 BAU/mL [67]. The analysis included 1050 health
care workers, 154 persons received the fourth dose of the BNT162b2 vaccine, and another
120 received the mRNA-1273 vaccine one week later. The control group consisted of the
age-matched individuals meeting the same eligibility criteria, two for each vaccine re-
cipient. All participants were screened weekly for SARS-CoV-2 infection by PCR testing.
Both formulations induced a 9–10-fold increase in IgG antibodies against the SARS-CoV-2
receptor-binding domain and neutralizing antibody titers within two weeks after vaccina-
tion. There was also an 8–10-fold increase in live neutralization against the Omicron and
other variant strains with titer restoration to the peak after the third dose of BNT162b2n.
Compared to controls, the efficacy against SARS-CoV-2 infection compared to controls
was 30% and 11% for BNT162b2 and mRNA-1273, respectively. Although sequencing
of the infecting virus was not performed, the omicron variant accounted for 100% of the
isolates typed during the study period, so it can be assumed that it was responsible for
breakthrough infections. The higher protection was documented against symptomatic
COVID-19, 43% and 31% for BNT162b2 and mRNA-1273, respectively, compared to con-
trols. However, the authors emphasized that within the wide confidence intervals of the
estimates, the vaccine’s effectiveness in protecting against symptomatic disease did not
exceed 65%. Therefore, the incidence of breakthrough infections, mostly mild, was high.
The study also demonstrated that the fourth dose of mRNA vaccine was safe despite
triggering mild systemic and local symptoms in most recipients.

Table 3. Summary of studies evaluating immunogenicity and efficacy/effectiveness of the second
booster of COVID-19 vaccine.

Reference Design Findings

[67]

Prospective, open-label, non-randomized study
Participants–healthcare workers ≥ 18Arms
treatment arm

• 3 doses BNT162b2 + 4th dose of BNT162b2 (n = 154)
• or mRNA-1273 (n = 120)age-matched control arm
• 3 doses BNT162b2 (n = 547)

Immunogenicity and efficacy

• 9–10-fold increase in IgG RBD and neutralizing antibody titers
2 weeks after the 4th dose of both formulations.

• 8–10-fold increase in live neutralization against Omicron and
other variants with titer restoration to the peak after the 3rd dose
of BNT162b2.

• Efficacy against any SARS-CoV-2 infection: 30% for BNT162b2,
11% for mRNA-1273 compared to controls.

• Percentage of Omicron infection: 18.3% for BNT162b2, 20.7% for
mRNA-1273 and 25% in control arm.

• Protection against symptomatic disease: 43% for BNT162b2, 31%
for mRNA-1273 compared to controls.

[68]

Retrospective real-world population-based study
Participants ≥ 60 yrs

• four-dose group (8–14 days after 4th dose of BNT162b2)
• internal control four-dose group (3–5 days after 4th dose of

BNT162b2)
• control three-dose group (persons after 3 doses of BNT162b2,

eligible for 4th dose, but not yet vaccinated)

Effectiveness

• The adjusted rate of severe COVID-19 in the fourth week after
receipt of the 4th dose was lower than that in the three-dose
group by a factor of 3.5 (95% confidence interval [CI], 2.7 to 4.6)
and lower than that in the internal control group by a factor of
2.3 (95% CI, 1.7 to 3.3).

• Protection against severe disease did not wane during the
6 weeks after receipt of the 4th dose.

• The adjusted rate of confirmed infection in the fourth week after
receipt of the 4th dose was lower than that in the three-dose
group by a factor of 2.0 (95% CI, 1.9 to 2.1) and lower than that in
the internal control group by a factor of 1.8 (95% CI, 1.7 to 1.9);
this protection waned in later weeks.

[70]

Retrospective real-world population-based study
Participants ≥ 60 yrs

• four-dose group (after 4th dose of BNT162b2)
• Control three-dose group (persons after 3 doses of BNT162b2,

eligible for 4th dose, but not yet vaccinated)

Effectiveness–protection assessed 7–30 days and 14–30 days after 4th
dose against

• SARS-CoV-2 infection confirmed by RT-PCR–45% and 52%
• Symptomatic COVID-19–55% and 61%
• COVID-19-related hospitalization–68% and 72%
• Severe COVID-19–62% and 64%
• COVID-19-related death–74% and 76%
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Although in the study by Regev–Yochay et al. [67], including only healthcare workers,
the primary endpoints were immunogenicity of the fourth dose of mRNA vaccines and
their safety, and the secondary endpoint was efficacy, the studies published later focused
on older adults and evaluated only the clinical effects of administering the fourth dose of
BNT162b2 vaccine [68,70].

For the purpose of the analysis conducted by Bar-On et al., data were obtained from
the Israeli Ministry of Health database between 10 January through 2 March 2022, covering
the period of the dominance of the omicron variant, B.1.1.529. The records of 1,252,331
individuals over 60 years who were eligible for the fourth dose of BNT162b2 were analyzed.
The risk of both confirmed SARS-CoV-2 infection and severe COVID-19 was assessed in
the patients who received the fourth dose compared to the population after three doses of
the vaccine. The incidence of confirmed SARS-CoV-2 infection was lower with the fourth
dose by a factor of 2.0 compared to only three doses and by a factor of 1.8 compared to the
internal control group consisting of patients 3–5 days after the fourth dose of BNT162b2.

The four-dose group achieved a lower rate of severe COVID-19 by a factor of 3.5 and
2.3 compared to that in the three-dose group and the internal control group, respectively.
In addition, protection against confirmed SARS-CoV-2 infection waned with time, whereas
the prevention of severe disease was stable over six weeks. However, the analysis did not
include other endpoints, such as the risk of hospitalization and death. Another limitation of
the study was that it did not consider the impact of comorbidities, which are independent
risk factors for severe COVID-19.

The assessment of the efficacy of the fourth dose of the BNT162b2 vaccine, considering
the risk of confirmed SARS-CoV-2 infection, symptomatic and severe disease, hospitaliza-
tion, and death due to COVID-19, was performed by Magen et al. [70]. This observational
study from Israel was conducted among individuals aged ≥60 from 3 January through
18 February 2022. Individuals who previously had not been infected with SARS-CoV-2
and received a fourth dose of the vaccine were compared with the population vaccinated
with a third dose at least four months earlier by individually selecting subjects based on
sociodemographic and clinical variables. Data of 182,122 matched pairs of patients from
medical records of the largest Israeli health care organization was included in the analysis.
Relative vaccine efficacy assessed 14 to 30 days after the fourth dose for protection against
SARS-CoV-2 infection, symptomatic COVID-19, hospitalization, severe disease, and death
was 52%, 61%, 72%, 64%, and 76%, respectively. A limitation of this study was that the
follow-up time was too short to assess the long-term effect of the fourth dose.

In summary, the existing studies demonstrate that administering the second booster
dose increases the protection levels against all outcomes related to the Omicron variant
(Table 3). However, it is also clear that this effectiveness is reduced due to antigen mismatch
between vaccines and circulating viral variants. This mismatch also increased with the
emergence of BA.4 and BA.5 subvariants [71] and will likely continue due to the evolution
of SARS-CoV-2. The use of first-generation vaccines, which are readily available, can
temporarily improve protection levels–a necessity especially during the predicted future
waves of SARS-CoV-2 infections (e.g., during the autumn-winter season in the USA and
Europe [72,73]).

5. Conclusions

Although the COVID-19 vaccination remains pivotal in decreasing the overall COVID-
19 burden and suppressing SARS-CoV-2 evolution [74,75], it is essential to recognize that
receiving the primary course vaccination does not protect sufficiently against infection
with the Omicron lineage variant. The booster vaccination increases Omicron-neutralizing
activity, thereby improving the effectiveness of preventing Omicron-associated infection,
symptomatic and severe disease, hospitalization, and death. However, this effect wanes
over time due to a gradual decrease in antibody levels three to four months after booster
administration, while the vaccine-induced T-cells responses to spike protein of the Omi-
cron variant are lower than to preceding SARS-CoV-2 variants. We outline the potential
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strategies that could be considered in order to maintain high levels of protection dur-
ing future waves of SARS-CoV-2 (Figure 1). One should however bear in mind that
in any case, the risk/benefit ratio must be analyzed before recommending the booster
vaccination [52,76–78].
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during future SARS-CoV-2 infection waves with their advantages and disadvantages.

1. Offering an additional (second) booster dose of the first generation before the expected
wave. This approach has potential limitations in the long-term effectiveness since
first-generation vaccines are not adapted to a heavily mutated spike protein of the
Omicron variant, while novel sublineages of this variant (i.e., BA4, BA5), with high
immune evasion, are emerging [71]. The necessity for repeated vaccinations may be
met with increasing unwillingness and hesitancy–the share of individuals vaccinated
with subsequent doses may gradually decrease.

2. Development and use of Omicron-adapted booster dose before the expected wave.
This approach would likely increase the specificity of the responses against the Omi-
cron lineage but also does not come without challenges. Firstly, the Omicron variant
continues to evolve, and its novel sublineages, characterized by enhanced transmissi-
bility, are characterized by some unique mutations increasing antibody evasion [79,80].
The question remains which variant of spike protein should be selected as an antigen
for such a booster vaccine. Furthermore, studies show that despite the Omicron domi-
nance, other SARS-CoV-2 variants, including Delta, remain in cryptic circulation [81].
If one considers the asymmetric cross-immunization in which a person with a history
of Omicron infection is four-fold less protected from Delta infection than protection
from Omicron in a Delta-immunized individual [82,83], basing booster strategy on
the vaccine adapted only to the Omicron variant could bring the potential risk of
contracting other SARS-CoV-2 variants.

3. Development and use of multiple antigen-based (multivariant-adapted) booster dose
before the expected wave. This approach would possibly allow inducing a broad
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immunity against various variants, including Delta, Omicron, Beta, and others. This
approach is used against influenza, with trivalent and quadrivalent vaccines targeting
three and four strains of the virus, respectively [84]. However, it also comes with
some shortcomings. Firstly, the chemical inactivation of SARS-CoV-2 has been shown
to induce a transformation of prefusion conformation of spike protein to form re-
sembling postfusion conformation, which is less immunogenic [85]. This challenge
can be overcome by developing multivalent subunit vaccines, but their production
is longer and more expensive [86]. A more cost- and time-efficient approach would
involve the development of multivariant mRNA vaccines. However, these vaccines
would require using more than one mRNA molecule to encode different versions of
the spike protein. Whether using multiple mRNA molecules in a single-dose vaccine
would affect translation efficiency, immunogenicity, and efficacy remain to be under-
stood. There is, however, some evidence that such an approach may provide a broad
neutralizing immunity against different SARS-CoV-2 variants, as shown in vivo for
mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 (present in the first-generation
vaccine developed by Moderna, USA) and mRNA-1273.351 (adapted to Beta vari-
ant) [87,88]. More publicly available data is required to understand whether mRNA
vaccines adapted to different SARS-CoV-2 variants, including Omicron, are providing
efficient protection.

4. Development of vaccines providing broad immune responses with enhanced dura-
bility. The main challenge of currently available COVID-19 vaccines is related to a
gradual decrease of antibody levels observed within a few months from dose ad-
ministration [16]. Although a booster dose temporarily restores antibody levels and
strengthens cellular responses [89], the provided protection from different outcomes
(including infections and hospital admission) of Omicron infection starts to wane after
three-four months from administration [44,48,66]. It becomes more and more evident
that vaccine strategies that would increase the durability of protection are necessary.
This requires more studies to understand which amino acid substitutions could extend
the half-life of antibodies but not decrease their neutralization activities and then
design an antigen that would trigger their production. Moreover, some promise is
also brought with vaccine candidates based on self-amplifying RNAs (saRNA), which
enhance antigen presentation and may therefore mount a robust adaptive immune
response against SARS-CoV-2 [90,91]. Further studies are required to understand
whether saRNA can enhance the durability of protection.
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