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Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has unmasked mankind’s vulnerability to biological threats.
Although higher age is a major risk factor for disease severity in COVID-19, several predisposing
risk factors for mortality are related to low cardiorespiratory and metabolic fitness, including obesity,
cardiovascular disease, diabetes, and hypertension. Reaching physical activity (PA) guideline goals
contribute to protect against numerous immune and inflammatory disorders, in addition to multi-
morbidities and mortality. Elevated levels of cardiorespiratory fitness, being non-obese, and regular
PA improves immunological function, mitigating sustained low-grade systemic inflammation and
age-related deterioration of the immune system, or immunosenescence. Regular PA and being
non-obese also improve the antibody response to vaccination. In this review, we highlight potential
physiological, cellular, and molecular mechanisms that are affected by regular PA, increase the host
antiviral defense, and may determine the course and outcome of COVID-19. Not only are the immune
system and regular PA in relation to COVID-19 discussed, but also the cardiovascular, respiratory,
renal, and hormonal systems, as well as skeletal muscle, epigenetics, and mitochondrial function.
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1. Introduction

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), rapidly increased to pandemic magnitude during
the first quarter of 2020 [1]. The severity of COVID-19 appears to be a net consequence of
the combination of SARS-CoV-2 infection and the person’s cardiorespiratory and metabolic
fitness, age, sex, and ethnicity [2–6]. Some individuals who become infected with SARS-
CoV-2 present with mild or no symptoms of illness, whereas others become critically ill
and dependent on intensive care with a poor prognosis [7].

The physiological and cellular factors that interact and determine an individual’s
vulnerability to SARS-CoV-2 remain to be determined. Research has highlighted several
predisposing risk factors for mortality in COVID-19, many of which are related to low
cardiorespiratory and metabolic fitness, including obesity, cardiovascular disease (CVD),
diabetes [2,4,8–10], and metabolic syndrome (MetS) [11]. It is reasonable to assume that a
physically active lifestyle results in physiological and molecular stress-induced adaptations
in all tissues affected by exercise, which may be protective following SARS-CoV-2 infection,
in contrast to the sedentary lifestyle associated with obesity [12].

The objective of this narrative review is to highlight potential physiological, cellular,
and molecular mechanisms affected by regular physical activity (PA) and exercise that
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may regulate antiviral defenses and determine the course and outcome of COVID-19. First,
we aim to explain the deterioration of fitness due to physical inactivity and sedentariness.
Second, the biology of SARS-CoV-2 is briefly reviewed. Finally, we aim to illuminate the
physiological and cellular effects of exercise on fitness and the potential of exercise as a
protective measure against severe complications induced by SARS-CoV-2 infection. In
addition to the immune system, also the cardiovascular, respiratory, renal, and hormonal
systems, as well as skeletal muscle, epigenetics, and mitochondrial function in relation to
regular PA and antiviral defense is discussed in novel aspects.

2. Definitions

PA is defined as any bodily movement generated by the contraction of skeletal muscles
that raises energy expenditure above resting metabolic rate [13]. Exercise is a subcategory
of PA that is planned and structured, favoring physical fitness. The World Health Orga-
nization (WHO) recommends either 150–300 min of moderate-intensity (3–6 metabolic
equivalents, 1 metabolic equivalent = 3.5 mL of O2 per kg of body weight per minute) or
75–150 min of vigorous-intensity (>6 metabolic equivalents) PA per week for adults [14].
To confer additional health benefits, 300 min of moderate-intensity or 150 min of vigorous-
intensity PA per week is suggested. Being physically active entails fulfilling these guidelines
and not fulfilling them is considered being physically inactive [15]. Sedentary behavior is
defined as any waking behavior with an energy expenditure ≤ 1.5 metabolic equivalents
while sitting or lying. Consequently, a person can be physically active and still be classified
as sedentary.

3. Fitness and Health Status, Immunity, and Infection

A sedentary lifestyle with obesity or MetS increases the risk of severe disease due
to viral infections [16,17]. In contrast, PA elicits protective effects against both bacterial
and viral infections [18–21]. How this knowledge can be extrapolated to COVID-19 is yet
to be determined. However, emerging data indicate that obesity, diabetes, and MetS are
some of the major risk factors associated with COVID-19 severity and mortality [4,8,22–24].
Although obesity is closely associated with all features of MetS, including abdominal
adiposity, hypertension, dyslipidemia, and insulin resistance [25,26], PA and fair cardiores-
piratory fitness are significant factors that counteract MetS, even in obese individuals [27].
Risk factors linked to obesity are more or less treatable with exercise [28], and epidemi-
ological research has clearly shown that regular PA decreases the risk of comorbidities
and all-cause mortality [29,30]. Common to several of the aforementioned risk factors and
comorbidities are sustained low-grade systemic inflammation, characterized by increased
levels of proinflammatory cytokines and disturbed regulation of fibrinolysis [31]. In this
context, PA and exercise, or the lack thereof, play an important role in wide-ranging effects
on brain, cardiorespiratory, metabolic, endocrine, muscular, and immunological functions.

4. Deterioration of Fitness Status during a Short Period of Physical Inactivity

Lockdowns and restrictions have affected the majority of humanity during the COVID-
19 pandemic. Protective measures aiming to slow the spread of COVID-19 have affected
the possibilities for PA and exercise according to data retrieved from activity trackers
and mobile phones from all over the world [32,33]. These temporary restrictions have
negatively affected the already ongoing crises of physical inactivity and obesity frequently
addressed during the COVID-19 pandemic [34–36]. Longitudinal studies have shown that,
in some cohorts, COVID-19 lockdowns led to an increase in body weight, snacking, and
the consumption of ultra-processed foods, whereas activity decreased [37].

Physical inactivity and sedentary time are associated with multiple chronic diseases
and premature mortality and contribute to a major economic burden worldwide [38].
Physical inactivity has been indicated to be the cause of 9% of deaths worldwide [39].
Physical inactivity plays a role, independent of other factors, in lowering cardiovascular
and muscular fitness and, thus, the age of onset of chronic disease, decreasing the quality of
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life and shortening the health span [40]. Total sitting time, independent of PA, is associated
with a higher risk of several major chronic diseases and all-cause mortality [41]. Physical
inactivity and sedentary time are also substantial predictors of hospitalization and have
been described as the central driver of mortality risk in longitudinal studies [42]. In
contrast, increased PA at any intensity, of any duration, and less time spent being sedentary
are associated with a reduced risk of premature mortality [30]. In terms of PA, doing
something is better than doing nothing [29,30]; although more is better, a small dose of PA
corresponding to 75 min per week, below current recommendations, substantially reduces
mortality [43].

Changes in PA patterns are quickly reflected in human physiology. This is exemplified
by the effects of 2 weeks of a reduced step count, which deteriorated multiorgan insulin sen-
sitivity and muscle mass, and increased central and liver adiposity and dyslipidemia [44,45].
In the short term, prolonged sitting time negatively impacts metabolic markers, which is
attenuated by PA [46]. Notably, from the perspective of COVID-19, physical inactivity per
se is associated with low-grade systemic inflammation [47], which is further exacerbated
by obesity [48], abdominal obesity in particular [49]. Undoubtedly, this is a major concern
given restrictions, general mobility, and PA during the COVID-19 pandemic.

Accordingly, physical inactivity and a sedentary lifestyle are linked to an increase in
all-cause mortality, and just a few days of being sedentary is sufficient to induce negative
effects on metabolism, cardiorespiratory fitness, and skeletal muscle fitness.

5. SARS-CoV-2 and COVID-19

SARS-CoV-2 belongs to the Coronaviridae family within the order of Nidovirales. It trans-
mits between humans mainly through droplets, but also via contact and/or aerosols [50].
The virus mainly targets the respiratory tract, but in some patients with severe illness,
the virus disseminates to other organs, including the heart, liver, brain, kidneys [51], and
intestine [52]. Infectious virions are equipped with a positive sense, single-stranded RNA
genome that is unusually large compared to other RNA viruses. The genome encodes
several non-structural and structural proteins, including the receptor-binding spike (S)
protein, membrane (M) protein, envelope (E) protein, and a nucleocapsid (N) protein [53].
The cell and tissue tropism appear to be largely, but not entirely, dependent on the expres-
sion of the entry receptor angiotensin-converting enzyme 2 (ACE2), as well as cellular
proteases, including TMPRSS2 [54]. Neutralizing antibodies mainly target the S protein,
which contains a relatively high level of N-linked glycans compared to receptor-binding
viral glycoproteins of other viruses [55]. These glycans partially protect the S protein from
neutralizing antibodies. To interact with the ACE2 receptor, proteases, including TMPRSS2,
cleave and activate the S protein, which undergoes a conformational change, resulting in
exposure of the receptor-binding domain and facilitating a high-affinity interaction with
ACE2 (Figure 1) [52,54,56,57].

Recent studies suggest that heparan sulfate [58] and neuropilin 1 [59] are additional
host factors that can be used for attachment and cell entry by SARS-CoV-2 in addition to
ACE2 and TMPRSS2, which together contribute to and regulate SARS-CoV-2 infection and
tissue-tropism. Infection also activates innate immunity, which consumes additional energy.
After cell entry, SARS-CoV-2 downregulates the expression of ACE2 [60]. This contributes
to reduced uptake of more virus, but also inflammation and blood flow, potentially leading
to multiorgan failure due to the overactivation of angiotensin (Ang) II [61]. Of significant
interest here is the consequence of the physiological-cellular Ang II-ACE-ACE2 interaction
following SARS-CoV-2 infection from the perspective of exercise versus MetS.

COVID-19 mostly affects the respiratory system, although multiple extrapulmonary
manifestations are common [62]. The initial infection of epithelial cells and the sequential
pulmonary capillary endothelial cell infection prompt an influx of inflammatory cells,
causing endothelialitis, alveolar wall thickening, and hyaline membrane formation, which
are visualized at autopsy [63,64]. Interstitial infiltrates of leukocytes and edema create
the typical ground-glass opacities seen on computer tomography. Ultimately, pneumonia
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vascular leakage and fluid accumulation lead to pulmonary edema, respiratory failure,
hypoxia, and hypercapnia (Figure 2). Some critically ill patients develop fulminant acute
respiratory distress syndrome (ARDS), septic shock, or multiorgan failure, and respiratory
failure is the leading cause of death in patients with COVID-19 [65,66].
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cellular heparan sulfate adjacent to the ACE2-binding site (not depicted).
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Figure 2. How SARS-CoV-2 can trigger the cytokine storm leading to severe COVID-19. The virus infects lung epithelial
cells and is detected by resident macrophages, which trigger the production of interferons and cytokines. When more
immune cells are attracted, more cytokines are produced, leading to a cytokine storm. Cell damage can occur via the
formation of fibrin and weakened blood vessels, leading to fluid accumulation in the alveoli, respiratory failure, and general
deterioration of organ function.
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Pneumonia caused by SARS-CoV-2 is often accompanied by increased levels of C
reactive protein (CRP), equivalent to those seen in bacterial pneumonia, and the secretion of
hyaluronan, which affects oxygenation [67]. Some patients develop a hyperinflammatory
syndrome and coagulopathy with a prothrombotic state. Thrombotic complications include
both arterial and venous manifestations [62]. Critically ill patients have very high levels of
inflammatory markers, such as CRP, erythrocyte sedimentation rate, fibrinogen, ferritin,
interleukin (IL)-1, IL-6, and D-dimer. Leukocytosis is rarely seen, and lymphocytopenia
is common. High levels of CRP and D-dimer and low lymphocyte counts are associated
with poorer prognosis and death [68,69]. Disseminated intravasal coagulation (DIC) is a
frequent occurrence [70]. However, COVID-19-associated hypercoagulopathy is dominated
by thrombosis, whereas bleeding is the most prominent feature of DIC. The presence of
endotheliopathy has been reported in COVID-19 and is likely associated with critical
illness and death [62]. A subgroup of patients develops a cytokine storm syndrome, with
unrestrained release of cytokines and devastating consequences for the host (Figure 2).
Cytokine storm and hypercoagulopathy lead to destruction of the lungs, multiorgan failure,
and thrombotic tendencies, with micro-thrombosis of the lungs further exacerbating lung
tissue destruction. Immune-mediated lung injury (e.g., DIC and ARDS) is associated with
adverse outcomes in patients with COVID-19 [63]. The hyperinflammatory response to the
infection may be responsible for many of the commonly seen complications of the disease,
such as lung damage, kidney failure, cardiovascular complications, neurological problems,
and liver damage [71].

Redox regulators, mitochondrial factors, and non-coding RNAs are host factors af-
fected by exercise and may dictate the outcome of SARS-CoV-2 infection [72]. PA and
exercise induce several lines of stress, followed by adaptations if the exercise is repeated
over time [28]. The adaptations are specific to the type, volume, and intensity of training
and include physiological and cellular adaptations in many organs [73–76]. Some adaptive
responses to stress following exercise include neuromuscular, respiratory, cardiovascular,
hormonal, immunological, and cellular adaptations that improve or maintain factors that
affect endurance, strength, and mobility, as well as health. In this context, the cellular and
physiological mechanisms that determine the outcome of COVID-19, the effects of PA, and
fitness state are of interest when examining differences in the impact of the virus in young
vs. elderly, and in men vs. women as noted in epidemiological studies [4].

6. Effects of Physical Activity and Exercise on Human Biology in View of COVID-19

Epidemiological studies have shown that regular PA reduces the incidence of bacterial
and viral infection across an individual’s lifespan and decreases the mortality and incidence
of influenza and pneumonia [77,78]. Prospective studies have consistently shown that
elevated levels of cardiorespiratory fitness and regular PA improve immunological function,
confirming the association. Regarding COVID-19 and physical fitness, a few studies
have shown protective effects of higher physical fitness (measured as cardiorespiratory
fitness (VO2max), muscle strength, sport participation, walking pace or attending to
PA guidelines). One study reported that maximal exercise capacity is independently
and inversely associated with the likelihood of hospitalization due to COVID-19 [79].
Although more studies are warranted, cardiorespiratory fitness was argued to directly
reflect the integrated function of multiple organ systems and an individual’s ability to
tolerate cardiopulmonary stress. Another physiological rationale is the enhanced immune
function with moderate PA. Another study showed that people over 50 years of age who
engage in PA twice a week or more often have a lower risk of COVID-19 hospitalization,
with the protective effect explained by muscular strength [80]. Others have found that
regular sports participation, regardless of sex and age, positively affects the clinical outcome
of hospitalized COVID-19 patients [81]. One study on self-reported walking pace, a simple
measure of physical fitness, reported that slow walkers have almost twice the risk of severe
and lethal COVID-19 compared to brisk walkers [5]. A prospective observational study in
hospitalized patients with COVID-19 that assessed muscle strength on admission observed
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that the length of hospital stay was significantly shorter among patients in the highest tertile
of strength [82]. Recently, a study investigating a cohort of 76,395 South Korean adults
found that adults engaging in the recommended levels of PA had a decreased likelihood
of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related death [83]. In
the aforementioned study, the authors argue that enhanced immunosurveillance, delayed
onset of immunosenescence and reduced systemic inflammation, all to be discussed here,
as possible explanations as immunological effects decreasing the risk of infection and
severity due to COVID-19.

6.1. Adipose Tissue, Obesity, MetS, and Endocrine Effects in Relation to COVID-19 and the
Effects of Exercise

Several of the detrimental effects of aging and low-grade systemic inflammation
(specifically immunosenescence and inflammaging discussed in Section 6.2) go hand-in-
hand with the effects of obesity, MetS, and physical inactivity [21]. Although obesity
and MetS are risk factors for cardiovascular mortality [84], they also lead to a decrease
in immune function [85], similar to immunosenescence. Regarding COVID-19, MetS is
associated with increased mortality in SARS-CoV [86,87] and MERS-CoV [88,89] infection.
Obesity was also determined to be a risk factor for the 2009 H1N1 pandemic [90].

Expansion of the adipose tissue (AT) mass during obesity is a key factor in increased
systemic inflammation. The obese inflammatory state is characterized by elevated levels of
TNF-α, IL-1β, IL-6, IL-17, IL-22, and CRP [91–93], which is also seen in physically inactive
and sedentary individuals [47,49,94]. Reduced levels of anti-inflammatory and organ-
protective adipokines (cytokines secreted by AT) are seen in obesity [95]. Pro-inflammatory
Toll-like receptors (TLRs) are also overexpressed in obese subjects [96] as discussed in
Section 6.2. Accumulation of AT, especially abdominal AT, leads to increased infiltration by
pro-inflammatory M1-type macrophages, reducing the presence of anti-inflammatory M2
macrophages [91,92,97]. In turn, M1 macrophages release pro-inflammatory adipokines,
including TNF-α, IL-1B, and IL-6. This shift towards M1 macrophages plays a central
role in the systemic inflammation induced by obesity [98]. Some have called the base-
line inflammatory obese state a barrier to the induction of a robust antiviral response,
allowing for increased viral shedding and transmission [17]. Many argue that AT is a
reservoir for extensive viral spread and increased shedding, not least of all due to the
pro-inflammatory and immunocompromised state described below. This is also argued
by Ryan and Caplice [99], as AT-resident cells are a proven target for multiple viruses:
influenza A, SARS-CoV, adenovirus, and HIV target macrophages; SARS-CoV and HIV
target lymphocytes; and H1N1, influenza A, and adenovirus target adipocytes.

Similar to other coronaviruses, SARS-CoV-2 activates the NACHT-, LRR-, and pyrin
domain-containing 3 (NLRP3) inflammasome, increasing the production of pro-inflammatory
cytokines [100–103]. As reviewed by Freeman and Swartz [104], NLRP3 has a known role in
hyperinflammatory ARDS, severe MERS-COV, and SARS-CoV infection, and initial studies
have indicated its involvement in severe COVID-19 [105]. Obesity, as well as aging, triggers
activation of the NLRP3 inflammasome [106,107]. Thus, age-induced (inflammaging) and
obesity-induced NLRP3 hyperactivity could predispose patients to the cytokine storm often
seen in severe COVID-19 [106]. Thus, several NLRP3 inhibitors are in pre-clinical or clinical
trials for the treatment of COVID-19, as summarized by van den Berg and te Velde [108].
Overall, obese individuals have been shown to be more susceptible to other infections,
with more intense cytokine storms due to obesity-induced systemic inflammation [109].

In obese individuals, the antibody response to influenza vaccine is impaired [110].
Vaccinated obese adults have twice the risk of influenza compared to non-obese vaccinated
adults [110]. Consequently, the primary means of preventing influenza, and speculatively
COVID-19, could be weakened due to obesity. This is troublesome given the significant
increase in obesity worldwide in the last few decades. An initial study showed that central
obesity, as well as hypertension and dyslipidemia, is associated with lower antibody
titers 1–4 weeks after the second inoculation with a COVID-19 mRNA vaccine [111].
Another study showed that higher BMI is associated with lower antibody titers in Italian
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health workers [112]. Furthermore, in obese individuals, the duration of influenza A virus
shedding is prolonged [113], which could increase viral transmission. This has also been
seen with SARS-CoV-2; obese patients require longer hospital stays and longer duration
(6 days) to obtain a negative oropharyngeal or nasal swab [114].

Obesity and physical inactivity may both lead to endocrine abnormalities. Due to
increased activity of the hypothalamic-pituitary-adrenal (HPA) axis, individuals with
abdominal obesity have increased secretion of cortisol [115]. In addition to the adrenal
cortex, cortisol production by adipocytes is also elevated in hyperinsulemic conditions [116].
Excess cortisol is, in turn, associated with increased abdominal adiposity and several
cardiovascular sequelae, including, but not limited to, hypertonia, hyperglycemia, insulin
resistance, dyslipidemia, and MetS [117]. Consequently, increased levels of cortisol induced
by obesity and physical inactivity increase the risk of several comorbidities and risk factors
for severe COVID-19 [4,24,118]. Contracting skeletal muscles release myokines that exert
endocrine effects on abdominal adiposity, whereas other myokines have local paracrine
effects in signaling pathways involved in fat oxidation [119]. Thus, physical inactivity
leads to a metabolic decline, whereas regular PA allows for weight maintenance and/or
the reduction of abdominal obesity and induction of an anti-inflammatory environment.

As ACE2 expression is a key factor for SARS-CoV-2 entry into host cells, it is reasonable
to assume that low levels of ACE2 would protect against infection, viral amplification,
and ultimately a lethal outcome in COVID-19. However, according to a recent model
of viral dynamics and gene expression of ACE2 in rats and humans, there is a strong
negative correlation between ACE2 and lethality [120]. This hypothesis agrees with research
demonstrating that the ACE2 receptor is expressed at lower levels in men than in women,
and decreases with age, inflammatory-related comorbidity, and with reduced testosterone
and estrogen levels [121].

Regarding sex hormones, PA, and immunity, men with subnormal testosterone levels
have higher concentrations of pro-inflammatory cytokines (IL-1β, IL-2, and TNFα) [122,123],
which can be counteracted by testosterone supplementation [124]. In this regard, ex-
ercise has been shown to attenuate the age-related decline in testosterone in sedentary
males [125,126]. Although exercise could diminish the age-related decline in testosterone,
it seems to have no significant effect on basal levels in middle-aged men [127]. Testosterone
is generally thought to be somewhat immunosuppressive, whereas estrogen is a natural
enhancer of immunity [128,129]. In females, estrogen increases humoral immunity and
has been shown to be antiviral, protecting against several viruses, including influenza
A, HIV, Ebola, hepatitis C, and human cytomegalovirus [130]. This protection is due to
several mechanisms, including increased viral-specific T cells (VSTs) in the lungs [131]. In
postmenopausal females, exercise can increase estrogen levels, even in sedentary females.
A small number of studies have examined the role of testosterone in COVID-19. In contrast
to the immunosuppressive reputation of testosterone, some studies have found that low
pre-infection levels of testosterone, or low levels of testosterone during infection, are related
to worse COVID-19 outcomes [132,133]. However, these were preliminary studies and
not rigorous randomized controlled trials. Notably, testosterone levels decrease during
infection [134], making the association of lower levels and worse outcome a self-fulfilling
prophecy. In addition, lower levels of testosterone often come with comorbid conditions
and low metabolic fitness, including obesity, diabetes, and MetS [135]. Thus, testosterone
possibly plays a role in driving ACE-2 and TMPRSS2 to increase viral entry [135], but no
robust evidence yet shows that testosterone explains why men have a disproportionately
high mortality rate in COVID-19.

6.2. The Immune System in Relation to COVID-19 and the Effects of Exercise

The host immunological response following infection with SARS-CoV-2 is crucial
to the progression of COVID-19. An appropriate and well-regulated immune response
with a balanced interaction between the innate and adaptive immune responses is key to
controlling COVID-19 severity [136].



Sports 2021, 9, 121 8 of 29

The immune system is influenced by PA and fitness status [78,91,119,137,138]. Age-
associated deterioration of immune competency, immunosenescence, is a profound and mul-
tifaceted transformation that occurs gradually with age in humans [139–147], and is highly
influenced by regular PA during one’s lifetime. With the vast majority of COVID-19 deaths
occurring in the elderly and pathology data pointing to both immunosenescence and inflam-
maging/systemic inflammation as major risk factors for mortality [49,91,106,137,146,148–151],
the effects of regular PA are of substantial interest.

TLRs are vital components in the innate immune system and important for the detec-
tion of pathogens and antiviral responses [152]. With advancing age, the TLR function is
dysregulated, resulting in inappropriate TLR signaling and cytokine production [143,153].
Downregulated expression of TLRs on monocytes and macrophages, with reduced produc-
tion of pro-inflammatory cytokines has been suggested as an anti-inflammatory effect of
exercise [91,150,154,155]. In contrast, low metabolic fitness, such as obesity with insulin
resistance or MetS, can increase the expression of TLR4 [156]. Exercise-induced alterations
in TLR signaling, such as reduced TLR4 signaling [157], could attenuate the detrimen-
tal effects of low-grade systemic inflammation, improving general health and resiliency.
Subsequently, this may attenuate the hyperactivation of monocyte-derived macrophages
contributing to the cytokine storm and hyperinflammation in COVID-19 (Figure 3).
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Figure 3. Schematic of immunological adaptations influenced by physical activity (PA) that could increase tolerance to
COVID-19. In response to increased levels of catecholamines, viral-specific T cells (VSTs) and natural killer (NK) cells are
redistributed in tissues. Immunosurveillance is increased and viral reactivation decreased, preventing T-cell senescence and
increasing the number and diversity of naïve T cells. This is known to increase the response to influenza vaccination and
decrease the risk of infection. During exercise, skeletal muscle releases myokines with anti-inflammatory effects. Importantly,
production of tumor necrosis factor alpha (TNF-α) is inhibited. Regular PA can lead to downregulated expression of Toll-like
receptors (TLRs) on monocytes and macrophages, leading to reduced production of pro-inflammatory cytokines.

The SARS-CoV-2 S protein interacts with TLRs, especially TLR4 [158,159], leading to
inflammatory responses. Therefore, in obese patients with increased expression of TLR4,
the AT, which is already inflamed, makes a favorable environment for SARS-CoV-2-TLR4
interaction, exacerbating the pro-inflammatory cytokine production and increasing the
severity of COVID-19 [160]. Treatment with TLR4 antagonists has been used successfully
during other viral infections. As summarized elsewhere [161], TLR4 antagonists consis-
tently reduce chemokine and cytokine production, mitigating disease symptoms. Excess
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activation of TLR4 plays a role in the pathogenesis of viral diseases. Several authors have
suggested clinical trials to test TLR4 antagonists in the treatment of severe COVID-19 [162].
However, although no clinical trial data yet support its use, controlling the conditions
related to an adverse outcome in COVID-19, such as being physically active, non-obese,
and metabolically healthy, is essential.

Exercise and PA lead to an immunostimulatory catecholamine-mediated redistribution
of NK cells and VSTs [78,146,149,163]. This increases immune surveillance and apoptosis
of senescent T cells, and reduces reactivation of cytomegalovirus, Epstein-Barr virus, and
varicella zoster virus. Consequently, the accumulation of senescent T cells is prevented,
whereas the count and diversity of naïve T cells is maintained. Animal and human data
support the notion that regular moderate-intensity PA improves viral defense effectiveness
and decreases morbidity and mortality in viral infections and respiratory illnesses [21,78].
Importantly, increased PA has been shown to improve the immunological response to in-
fluenza vaccination [164,165]. Both acute and chronic exposure to exercise seem to enhance
the immunological response to vaccination [166], but the optimal exercise regimen, dose-
response relationships, and clinical importance are yet to be fully elucidated. Increased PA
is also associated with better control of latent viral infections [167] and a reduced risk of
pneumonia [18] and infectious disease mortality [19]. Emerging data show that the severity
of the COVID-19 cytokine storm and its complications is associated with lymphopenia,
with lower counts of and exhausted VSTs, CD4+ and CD8+ T cells, and NK cells [168–170].
High-intensity exercise has also been shown to enhance the effector profile of CD8+ T cells
in mice [171] and obese humans [172]. Accordingly, the anti-immunosenescent effects of
regular PA could be an important measure for maintaining resiliency against COVID-19
and other viral infections with advancing age (Figure 3).

In the context of leukocytes, physically active older adults have been shown to have
increased telomerase activity and longer leukocyte telomere length compared to physically
inactive peers [173,174]. This context is associated with better survival from sepsis and
lower severity of ARDS [175]. Recently, shorter leukocyte telomere length was found to be
associated with a higher risk of adverse COVID-19 outcomes, independent of other major
risk factors, including chronological age [176,177]. As reviewed by Garatachea [178], habit-
ual PA, especially aerobic exercise, as well as good cardiorespiratory fitness, is associated
with longer leukocyte telomere length.

PA has anti-inflammatory effects important for attenuating not only inflammaging,
but also general systemic inflammation as seen in the physically inactive and obese pop-
ulations. Cytokines released by contracting skeletal muscles (“myokines”) have local
and pleiotropic anti-inflammatory, immune-regulatory, and health-promoting effects [179].
With exercise bouts of sufficient load, IL-6 is exponentially released with exercise dura-
tion [180]. With increased levels of IL-6, there is a multiple-fold increase in circulating levels
of anti-inflammatory cytokines IL-10 and IL-1ra). Importantly, exercise-induced release
of IL-6 inhibits the production of the pro-inflammatory cytokine TNF-α [91,181], a master
regulator of inflammatory cytokine production [182] highly involved in the COVID-19
cytokine storm (Figure 3). Although IL-6 is traditionally known as a pro-inflammatory
cytokine vital in the initiation of the acute immunological response, research now sup-
ports IL-6 as a multifaceted cytokine capable of eliciting both pro- and anti-inflammatory
effects depending on the context [183]. In addition, IL-7 [184] and IL-15 [185], which are
both lymphocyte proliferative factors [186], are released during exercise, supporting the
function and proliferation of immune cells, mainly naïve T cells. IL-15 is also essential
for maintaining memory CD8+ T cells [187] and NK-cell activation, production, and cy-
totoxicity [188], making it an important factor in the stimulation of immune responses to
infections. These transient exercise-induced changes lead to improved protection against
sustained low-grade systemic inflammation and pro-inflammatory cytokines [180,181]. It
is also important to mention that these anti-inflammatory effects are seen in both young
and elderly people, and are even more evident in pathological conditions, such as obesity,
CVD, and type II diabetes [47,180,189].
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In summary, the connection between physical inactivity, obesity, and MetS with di-
minished viral defense is evident, creating an immunological case for increasing PA and
reducing obesity and MetS in society [21]. Compared to an unfit, obese, and physically
inactive individual, a fit, lean, and physically active individual has improved immune func-
tion and viral defenses. In the elderly, the anti-immunosenescent and anti-inflammatory
effects of PA are of particular interest for increasing resiliency against COVID-19 and its
cytokine storm.

6.3. The Cardiovascular System in Relation to COVID-19 and the Effects of Exercise

In addition to the hyperinflammatory state and coagulopathy, the pathophysiological
features of the cardiovascular system observed in COVID-19 patients include detrimental
effects on the heart and vascular compartment [190]. Regarding cardiac health, exercise
training and endurance training, in particular, generate anatomical, functional [191], and
metabolic [192] effects on the cardiovascular system that promote overall health and
physical endurance.

Importantly, PA mitigates several of the cardiovascular and metabolic risk factors
associated with COVID-19 severity, not the least of which is MetS [193]. In short, the
therapeutic effects of PA improve coagulation and fibrinolytic homeostasis, endothelial
function, and blood pressure regulation, increases blood volume and cardiac ejection
fraction, and reduces myocardial oxygen demand and platelet aggregation [28]. This could
decrease some of the major cardiovascular complications caused by COVID-19, including
myocarditis, cardiogenic shock, and thromboembolism. Due to cellular adaptation to
temporary exercise-induced stress, training has been proposed as a preconditioning strategy
for cardioprotection against myocardial damage by ischemia/reperfusion [194,195].

Vascular immunopathology, coagulopathy, and thrombosis are well-recognized fea-
tures of lung abnormalities in COVID-19 that correlate with mortality risk. An imbal-
ance between the activators and inhibitors of the coagulation and fibrinolytic system is
commonly seen in obesity, and an increased level of obesity positively correlates with
COVID-19 severity and mortality [196]. Therefore, the disturbed hemostatic balance in
overweight individuals, with increased coagulation and impaired fibrinolysis, prior to
SARS-CoV-2-infection may increase the risk of severe COVID-19. Thus, regular exercise
is a natural approach to either prevent or reduce inflammation, and preserve or restore
hemostasis. Studies indicate a positive effect of exercise on the regulation of both coag-
ulation and fibrinolysis [197]. This is strengthened by the fact that regular PA reduces
all-cause and cardiovascular mortality [198] independent of the intensity of PA [199].
Additional adaptive responses to exercise are indicated by decreased red blood cell aggre-
gation in obese men [200] and improved systolic blood pressure in men and women with
pulmonary hypertension.

Due to the vascular adaptation to PA and exercise, the renin-angiotensin system (RAS),
which includes ACE2, is of particular interest in the outcome of SARS-CoV-2 infection.
ACE2 cleaves Ang II into Ang(1-7) [201]. The RAS is a complex endocrine system that
plays an important function in controlling metabolic and cardiovascular homeostasis. In
individuals with low fitness and/or cardiometabolic disease, there is an imbalance between
the RAS axes, which have been described in depth by others [202]. In short, exercise
shifts the balance of the RAS towards the protective ACE2/Ang(1-7)/proto-oncogene,
G protein–coupled receptor (MAS) axis in relation to the ACE/Ang II/Angtiotension II
receptor type I (AT1R) axis. The latter axis is often hyperactivated in individuals with
diabetes, obesity, hypertension, and/or sustained low-grade systemic inflammation [203].
Similarly, increased Ang II is associated with vasculopathy and coagulopathy syndromes
in COVID-19 patients [204]. In contrast, activation of the ACE2/Ang(1-7)/MAS axis is
anti-inflammatory and vasodilatory, and has several protective effects on the cardiovascular
and renal systems, such as anti-thrombolytic functions.

Manipulation of the RAS, balancing it towards the protective arm, is considered a
potential therapy for COVID-19 [205]. Accordingly, it strengthens the significance of PA



Sports 2021, 9, 121 11 of 29

and exercise in improving fitness and the clinical outcome of COVID-19. This has also
been argued by others [206,207], suggesting that higher levels of cardiorespiratory fitness
may confer innate immune protection against COVID-19 by attenuating the cytokine
storm by modulating the RAS and ACE2 activity. As reviewed by Magalhaes, et al. [208],
the protective arm of the RAS plays a central role in COVID-19. Antihypertensive ACE
inhibitors have successfully been used in the treatment of severe COVID-19 [205,209],
and multiple clinical trials suggesting that Ang(1-7) can be used to treat COVID-19 are
ongoing (see https://clinicaltrials.gov/ct2/show/NCT04332666, accessed on 5 June 2021,
https://www.clinicaltrials.gov/ct2/show/NCT04401423, accessed on 5 June 2021 and
https://clinicaltrials.gov/ct2/show/NCT04375124, accessed on 5 June 2021). Notably,
ACE inhibitors act by modulating the RAS similar to the response to PA and exercise.

Collectively, exercise has a positive effect on the hemostatic balance and blood pres-
sure, which may prevent high frictional resistance and shear stress on the vascular wall,
coagulopathy, and thrombosis, reducing the risk of severe COVID-19. Furthermore, a well-
regulated RAS and activated ACE2/Ang(1-7)/MAS axis induced by PA and exercise could
be a significant factor in decreasing COVID-19 severity. These adaptations are summarized
in Figure 4.
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training, promotes hormonal homeostasis and improves maximal stroke and blood volume, enhancing blood perfusion
and oxygen saturation of tissues. In an unfit state with hypertension, an imbalance between the innate and adaptive
immune systems, increased platelet aggregation, dyslipidemia, and abnormally high glucose levels increase the risk of
lipid deposition, protein glycation and clot formation, inflammatory responses in the vascular wall, and atherosclerosis,
which decrease blood perfusion and oxygen saturation, potentially leading to an infarct in the worst-case scenario. At
the cellular level, the temporary metabolic and mechanical stress induced during PA results in improved stress-defense
(e.g., heat shock proteins [HSPs], antioxidants), improved mitochondrial capacity in aerobic adenosine triphosphate
production and antiviral response (mitochondrial antiviral signaling protein [MAVS]), enhanced uptake and utilization of
glucose and fatty acids via increased expression of glucose transporter type 4 (GLUT-4) and lipoprotein lipase (LPL), and
improved endothelial functions, including the balance between ACE/ACE2, nitric oxide (NO) production, and endothelin
release. Regular PA may also produce a favorable balance between epigenetic factors that facilitate the expression of
genes encoding proteins that enhance general cellular functions and activate proteins and non-coding genes that inhibit
amplification of SARS-CoV-2.
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6.4. The Respiratory System in Relation to COVID-19 and the Effects of Exercise

From a pulmonary perspective, PA can increase the strength and endurance of the
respiratory muscles [210]. Although it does not directly improve pulmonary function,
it can make them more efficient and reduce the work of breathing. Concerning lung
tissue damage and ARDS, PA can increase the diffusing capacity of the pulmonary alveoli.
Endurance training is especially effective in this manner [211]. Highly fit, older adults
have an increased diffusion capacity compared to less fit, age-matched peers [212]. In
mice, aerobic exercise has been shown to attenuate acute lung injury by modulating the
inflammatory and reactice oxygen species (ROS) balance [213–215].

Obesity also plays a role in respiratory dysfunction. It is associated with low lung
volume and low respiratory muscle strength [216]. Being obese impairs respiratory mecha-
nisms by increasing airway resistance and gas exchange [216]. Furthermore, obstructive
sleep apnea (OSA) is more common in obese than normal-weight adults. However, obesity
can also entail obesity hypoventilation syndrome (OHS), and some individuals suffer
from both conditions. In OHS, obese individuals experience hypoventilation-induced hy-
poxia and hypercapnia regardless of the time of day, whereas OSA causes hypoventilation
only during sleep [217]. Pre-existing OSA or OHS seriously limit respiratory function
and, once affected by COVID-19, there is a minimum spare capacity. Accordingly, more
mechanical ventilation is required in obese patients hospitalized with COVID-19 [218].
Abdominal adiposity can also obstruct the prone positioning necessary to avoid intuba-
tion in critically ill COVID-19 patients. Others have reported that abdominal adiposity
and high intramuscular fat deposition are independent risk factors for critical care illness,
mechanical ventilation, and death [219,220]. Therefore, regular exercise and being non-
obese could improve respiratory resilience in COVID-19 due to the higher tolerance for
pulmonary stress.

6.5. The Kidneys and Gastrointestinal System in Relation to COVID-19 and the Effects of Exercise

Reduced renal function is a risk factor for COVID-19 mortality [4]. Acute kidney injury
(AKI) and chronic kidney disease (CKD) were evaluated in a recent meta-analysis, and
both demonstrated a strong association with disease severity and mortality in COVID-19
compared to patients without CKD or AKI [221]. CKD and AKI are strongly interrelated
with diabetes [222], and fasting blood glucose is an independent predictor of COVID-19
mortality in patients without a previous diabetes diagnosis [223]. Furthermore, ACE2 is
highly expressed in the kidneys [224], offering a high possibility for SARS-CoV-2 infiltration
and subsequent down-regulation of ACE2 by SARS-CoV-2. Thus, reduced expression of
ACE2 in the kidneys, which reduces the ACE/ACE2 ratio, has been suggested as a possible
cause of local vasoconstriction and inflammation, necrosis, and kidney damage in COVID-
19 patients [225,226].

PA prevents many of the risk factors associated with the development of CKD, such as
diabetic hypertension [227]. Some of the effects attributed to this include the preservation
or improvement of insulin sensitivity, glucose tolerance, vascular endothelial function,
hormonal balance, and altered adipocytokine profiles, which are all achievable through PA.

Although the direct effect of PA and exercise on the kidneys and renal function in
humans remains unclear, PA prevents and reduces many of the aforementioned risk fac-
tors [227]. In this regard, the gene encoding protein Klotho is an attractive factor suggested
as an anti-aging protein in the hallmark study by Kuro-o et al. [228]. Klotho is crucial for
the performance of fibroblast growth factor (FGF) and involved in a multitude of regulatory
roles, the metabolism of fatty acids and glucose, and anti-inflammatory and anti-oxidative
actions [229]. In this context, Klotho supports and preserves blood vessel and kidney
functions [230]. Klotho is abundantly expressed in the kidneys and brain, and modestly
expressed in skeletal muscle [228]. The secreted, circulating form of Klotho (S-Klotho) is
decreased with age, CKD, and CVD [231]. Interestingly, a 10- to 13-year prospective cohort
of middle-aged males without any underlying disease demonstrated that low S-Klotho at
baseline predicts an increased risk of developing high fasting plasma glucose (FPG) [232].
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High FPG is a pre-diabetic state that also increases the risk of developing hypertension and
kidney disease [233] and of death from COVID-19 [223].

A cohort study of master sprint athletes showed that they had better renal func-
tion, lower degree of inflammation, and higher Klotho levels than healthy but untrained
age-matched peers [234]. This is in agreement with other studies that found higher S-
Klotho levels in athletes compared to healthy controls [235] and an increased level with
moderate-intensity exercise training [236]. Interestingly, a positive relationship has been
shown between the S-Klotho level and the fat oxidation capacity at rest, as well as during
exercise [237]. In rats, endurance training results in increased Klotho levels in the brain
and kidneys, accompanied by an increased life span and attenuation of excessive ROS
production [238]. In mice, the protein level of Klotho is acutely decreased in the skeletal
muscle following one bout of exhaustive exercise, accompanied by a marked increase
within 24 h compared to baseline [239]. The acute decrease in Klotho in the skeletal muscle
may contribute to the increase in S-Klotho seen in studies of humans, which indicate a
role of S-Klotho as a health-preserving myokine in the prevention of severe COVID-19.
Furthermore, a marked acute increase in S-Klotho by exercise observed in endurance run-
ners, but not in sprinters [240], suggests that the increase in S-Klotho could be dependent
on aerobic fitness level and composition. A release of Klotho into the bloodstream from
the skeletal muscle, despite relatively low expression per mass, could potentially account
for a significant amount of S-Klotho, particularly as an effect of exercise training, because
the muscle mass comprises approximately 30–40% of the total body mass. Consequently,
muscle-derived Klotho may represent a novel myokine that may help explain some of the
health and anti-aging effects of PA via anti-inflammatory, anti-oxidative effects and the
preservation of vessel functions, which ultimately protect against severe COVID-19. Klotho
is a promising candidate for predicting health status and as a biomarker for evaluating
rehabilitation progress post-COVID-19.

Collectively, it is generally accepted that PA prevents the development of hyperten-
sion [28], insulin resistance [46,241], endothelial dysfunction [28], and systemic inflamma-
tion [91,150,151]. The regulatory factors underlying increased Klotho levels and improved
ACE2/ACE ratio in the kidneys in relation to lifestyle factors, such as exercise, are yet to
be discovered.

Gastrointestinal (GI) symptoms, such as diarrhea, nausea, and abdominal pain, are
commonly seen in COVID-19 patients [242]. The high expression of ACE in the GI tract [243]
may partly explain the vulnerability of the GI tract to SARS-CoV-2. Research on effects
of PA and exercise on the GI tract is limited. However, regular PA seems to improve
the microbiota composition and homeostasis of the immune system [244]. Intestinal
dysbiosis and a leaky gut may contribute to the systemic inflammation generally seen
in MetS. Clinical observations demonstrate that many COVID-19 patients have severe
GI symptoms and detectable SARS-CoV-2 RNA in their stool, along with microbiome
dysbiosis and inflammatory indicators [245]. A clinical study including patients with type
2 diabetes showed that 6 months of exercise, combined with caloric restriction, improved
the intestinal microbiota composition and gut barrier function and reduced intestinal
mycetes overgrowth and systemic inflammation [246]. Furthermore, a growing body of
evidence indicates that obesity, MetS, intestinal dysbiosis, and asthma are closely associated.
Interestingly, improved asthma control, lung function, and airway hyperresponsiveness are
often seen after bariatric surgery, which also goes along with an improved gut microbial
ecosystem and glycemic control [247]. Therefore, evidence indicates a close immunological
link between the GI and respiratory tracts. At this point, a gut–lung axis has been proposed
that affects the outcome of microbial infections and the progression of several diseases [248].

Whether exercise improves the mucosal dysbiosis in the lungs and intestines, thus
preventing the development of severe COVID-19, remains to be elucidated. However, main-
taining gut barrier function and controlling systemic inflammation by being metabolically
healthy is advisable.
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6.6. Skeletal Muscle in Relation to COVID-19 and the Effects of Exercise

The regular use of the skeletal muscles via PA and exercise training has fundamental
effects at several physiological levels, including an acute increase in the utilization of fatty
acids and glucose, followed by muscle adaptations that enhance the uptake of these energy
components during exercise [249]. These adaptations to training are important for handling
the challenge of the acute increase in blood glucose and lipids following a meal, preventing
sustained vascular stress by these factors and, ultimately, CVD (Figure 4). The role of
acute exercise and adaptation to training in relation to glucose and fat metabolism and the
prevention of CVD and type 2 diabetes are reviewed in depth elsewhere [250–252].

Contrasting physiological, cellular, and molecular adaptations are developed through
a lifestyle with or without regular PA. Regular PA, particularly recurrent exercise training,
results in an improved capacity within the energy systems to meet the increased demand for
adenosine triphosphate (ATP) during PA [253]. Exercise training also results in adaptations
related to other challenges, such as mechanical, heat, and hormonal stress, increased
levels of ROS [254], decreased blood and muscular pH and oxygen, the accumulation of
metabolites, and changes in ion homeostasis.

Both endurance and resistance workouts [255] are accompanied by an acute increase
in BP. Extremely high systolic and diastolic BP can occur during weightlifting, exemplified
by a group mean value of 320/250 mmHg (highest 480/350 mmHg) during leg press
with heavy resistance [256]. With this in mind, regular exercise has been shown to reduce
the BP at rest in hypertensive subjects [257,258]. Furthermore, PA and exercise training
improve hemodynamics and prevent vascular damage. Exercise-induced exposure to hy-
drostatic pressure and shear stress leads to adaptations that may prevent pro-inflammatory
responses and vasculopathy following infection with SARS-CoV-2. These include increased
expression of endothelial nitric oxide synthase (eNOS), which promotes vasodilatation via
NO, increased capillarity, enhanced autonomic tone, and production of the vasoconstrictor
endothelin-1 [259]. All of these may prevent pro-inflammatory responses and vasculopathy
following infection with SARS-CoV-2. In obese rats, endurance training has been shown to
modulate the cardiac RAS pathways, enhancing the ACE2 pathway over the ACE path-
way [260]. Hypertensive rats subjected to endurance training have reduced blood pressure,
decreased levels of the Ang II receptor AT1R, and increased levels of the Ang-(1-7) receptor
MAS in brain tissue, with a parallel decrease in the production of ROS [261].

A potential adaptive response in humans to exercise training, such as reduced cell sig-
naling in the Ang II pathway and increased activity of the ACE2-Ang-(1-7)-MAS pathway,
may also enhance cellular energy metabolism in addition to increased defenses against
ROS. In addition to the negative effects on the vascular system of the hyperactivated RAS,
Ang II has been shown to suppress the phosphorylation of AMP-activated protein kinase
(AMPK) in rat skeletal muscle [262]. This is an important finding, as AMPK is a central reg-
ulator of adaptation to exercise training, such as improved insulin sensitivity and glucose
uptake [263]. As hyperglycemia is a risk factor for CVD and severe COVID-19 [223], the
metabolic functions of the skeletal muscle are of major importance for health. Maintaining
muscle mass and function with PA is crucial to sustaining insulin sensitivity and glucose
disposal and protecting against comorbidities [264]. Dysfunctional skeletal muscle, as seen
with chronic inactivity, aging, and tissue damage, is a precipitating cause in conditions
such as type II diabetes, CVD, and cancer.

6.7. Epigenetics in Relation to COVID-19 and the Effects of Exercise

Epigenetic factors are modulated by exercise [265] and may play a protective role in
the physiological and cellular responses to viral infection. Epigenetics includes factors
that regulate gene expression through histone methylation and acetylation, DNA/RNA
methylation, chromatin remodeling, and non-coding RNAs [266]. Recently, a role of
microRNAs (miRNAs) was suggested in the regulation of translation processes involved
in SARS-CoV-2 infection and its disease, COVID-19, by either blocking or degrading
mRNA with subsequent knockdown or suppression of specifically related genes [267,268].
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MiRNAs are non-coding RNAs that play a role in the regulation of gene expression, binding
to target gene mRNAs and inducing mRNA degradation to inhibit protein synthesis [269].
A potential role of miRNA in lung diseases is exemplified by elevated levels of several
sequences found in the plasma of patients with chronic obstructive pulmonary disease
(COPD) [270] and may play a role in COVID-19. Interestingly, recent research identified
42 potential human antiviral miRNAs predicted to target SARS-CoV-2 [271]. Among these,
circulatory miR-125a has been shown to increase in response to high-intensity exercise [272],
as well as miR-23b in skeletal muscle following aerobic exercise, but without any concordant
increases in plasma vesicular miR-23b [273–276]. The role of exercise-induced miRNAs
in the obstruction of viral gene expression is an exciting field of research for the future.
The miRNA signature in the cardiorespiratory system, skeletal muscle, kidneys, brain,
blood vessels, and blood plasma may all respond to exercise and correlate with fitness
status; thus, they may have a protective role in the defense against detrimental effects of
SARS-CoV-2.

It could be hypothesized that the protective feature of regular PA and exercise training
involves inhibition of host cell gene expression that would otherwise be “highjacked”
by SARS-CoV-2 in the development of COVID-19. Exercise has been shown to induce
significant epigenetic changes, regarding both the acetylation and methylation of his-
tones [277,278]. Histone acetylation and methylation are reversible regulatory processes
that facilitate and obstruct, respectively, gene expression [279]. However, epigenetic re-
search in exercise biology is at an early stage and skewed heavily towards muscle function
research. Nonetheless, in the context of vulnerable groups at higher risk of developing
COVID-19, hypermethylation of DNA in the muscle has been observed with aging [280]
and reversed in type 2 diabetes with training [280]. Increased histone acetylation in skele-
tal muscle has been shown following resistance training [281], as well as an increased
frequency of genome-wide hypomethylation, which was preserved over a detraining pe-
riod and further enhanced in response to re-training [282]. Changes in host-derived long
non-coding RNAs (lncRNAs) were recently identified in the lung tissues of patients with
COVID-19 [283]. LncRNAs have been suggested to play an important role in the regulation
of immune responses and comorbidities [284]. Interestingly, lncRNAs have been shown
to be differentially expressed in skeletal muscle between different training protocols [285].
However, the specific roles of lncRNAs in the host response to SARS-CoV-2, or in exercise
biology, remain to be investigated.

Collectively, PA and exercise result in epigenetic changes (Figure 4) together with
increased expression of genes linked to enhanced muscle functions [286–289]. Whether
changes in the epigenetic signature seen in human skeletal muscle following training corre-
spond to similar changes in the cardiovascular-respiratory system is yet to be determined,
although this has been emphasized [290–293]. Although speculative, the aforementioned
epigenetic changes could potentially be involved in increasing resiliency towards viral
infection, including SARS-CoV-2 infection.

6.8. Mitochondrial Health in Relation to COVID-19 and the Effects of Exercise

The mitochondrion is the aerobic powerhouse that generates essential ATP in all cells
that contain this organelle. Beyond the synthesis of ATP, the mitochondrion produces
cofactors, lipids, and cell signaling factors and plays a role in steroid metabolism, calcium
homeostasis, and apoptosis [294]. Furthermore, a vital role of the mitochondrion in antiviral
defense has been discovered in recent years [295].

The quality and quantity of the mitochondrial mass within each cell are significant for
the rate of ATP synthesis, substrate flexibility, stress responses, homeostasis, the cellular
metabolic rate, health, and survival. Therefore, the mitochondrial capacity may be a crucial
factor in organs infected by SARS-CoV-2. Related to risk factors associated with COVID-19,
a reduction in PA results in reduced mitochondrial oxidative capacity and insulin signaling
in human skeletal muscle [296]. Furthermore, hyperglycemia and overproduction of ROS
by the mitochondria have been suggested to be a major trigger of the inflammation and
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vascular damage seen in type 2 diabetes [297]. Sustained low-grade systemic inflammation,
which is commonly observed in individuals at high risk of COVID-19 [298], is associated
with increased mitochondrial ROS production in the endothelium, as well as vascular
dysfunction [299]. Therefore, pro-inflammatory cytokines and ROS likely produce a vicious
cycle in COVID-19 patients [300]. In contrast to reduced PA, increased PA via endurance
training has been shown to improve mitochondrial function and the lipid oxidation capacity
in both lean and obese subjects [301], and to enhance the insulin sensitivity and glucose
uptake [302]. It has been hypothesized [303], and now shown [304], that SARS-CoV-2
manipulates the mitochondrial metabolism. Findings from COVID-19 patients suggest that
mitochondrial dysfunction drives a systemic immune response in COVID-19 pathogenesis.
As suggested by Ajaz et al. [304] and others [305,306], maintenance of mitochondrial health
and function is essential for an adequate innate immune system response to counteract the
modulation by SARS-CoV-2

Mitochondrial biogenesis, the process that increases the mitochondrion density and
aerobic oxidation capacity following exercise, is not restricted only to the skeletal mus-
cle. This is exemplified by enhanced mitochondrial respiratory capacity, redox balance,
abundance of manganese superoxide dismutase (MnSOD), and NO bioavailability in the
arteries of mice following training [307]. Furthermore, exercise training in rats has been
shown to increase the activity of antioxidative enzymes in several tissues, including the
brain, liver, lungs, and muscle [308]. This would be expected to decrease the pro-oxidative
tone of the intracellular milieu, favoring a more reduced and physiologically advantageous
environment for carrying out normal cellular processes. In addition, the level of heat
shock protein 70 (HSP70) has been shown to be upregulated in the lungs of rats after
exercise training, which attenuates heat-induced acute pulmonary edema, inflammation,
and ischemic and oxidative damage in the lungs [309]. Acute thermal stress measured
during exercise, with a temperature of 38–40 ◦C in the core [310] and skeletal muscle
and brain, is likely to be another factor that stimulates the expression of HSPs in many
organs [311]. Related to the panorama of risk factors for COVID-19, an imbalance between
extracellular HSP70 (eHSP70) and intracellular HSP70 (iHSP70) which is counteracted
by exercise, has been proposed to play a role in type 2 diabetes, with eHSP being more
pro-inflammatory and iHSP70 more anti-inflammatory and associated with better insulin
sensitivity [312] (Figure 4). Individuals with chronic disease that is inflammatory in nature
(obesity, type 2 diabetes, CVD) have a disturbed and suppressed anti-inflammatory heat
shock response. Therefore, NF-kB and NLRP3 inflammasomes are activated, leading to a
massive cytokine storm, predisposing these patients to severe COVID-19, as also discussed
by Heck, et al. [313].

We could further speculate that a difference in vulnerability to COVID-19 between fit
and unfit individuals is related to differences at the level of and interconnections between
inflammatory exposure, cytoprotection, and mitochondrial capacity. In line with this
speculation, the mitochondrial dysfunction generally seen with aging and in comorbidities
related to metabolic syndrome and low-grade systemic inflammation has been highlighted
in relation to the poor prognosis of COVID-19 [314]. It can also be speculated that regular
exercise produces some anti-viral mechanism in host cells that inhibits the replication
machinery of the invading SARS-CoV-2 and, thus, the pathogenesis of COVID-19. Here,
the effect of exercise training on the mitochondrial antiviral-signaling protein (MAVS) and
regulating factors is interesting, but not yet explored. As reviewed by Refolo et al. [295],
the MAVS signalosome can rapidly induce the expression of hundreds of genes with
antiviral properties in response to infection with an RNA virus. This is further discussed
by Burtscher, Millet and Burtscher [306], who argued for mitochondrial integrity and,
thus, enhanced MAVS. However, increased fatty acid metabolism could support viral
replication in obese individuals. Several studies have demonstrated that intracellular lipid
droplets interact with RNA viruses and can support their replication and the production of
inflammatory mediators [315,316]. Therefore, increased mitochondrial function and lipid
metabolism via regular PA and being non-obese may be other factors that affect the outcome
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of COVID-19 between fit and unfit individuals [305]. In addition, increased mitochondrial
density (i.e., increased number and size of mitochondria) in all tissues affected by an
increased metabolic rate because of exercise training may increase the density of MAVS,
which enhances the anti-viral response following infection by SARS-CoV-2 (Figure 4).
Lastly, enhanced mitochondrial function has been shown in blood platelets with exercise,
in stroke patients [317], and in patients with heart failure [318], along with improved
aerobic capacity. Thus, improved mitochondrial function in platelets after PA and exercise
may reduce thrombogenesis and the risk of coagulopathy following SARS-CoV-2 infection.

7. Conclusions

The COVID-19 pandemic has unmasked mankind’s vulnerability to biological threats.
Old age and obesity with one or more comorbidities are clearly defined risk factors for
developing severe COVID-19. These risk factors are all associated with a sedentary lifestyle
and low cardiorespiratory fitness. However, PA, such as exercise, generates cellular and
physiological responses that support health and mobility and prevent comorbidities and
mortality. Research on the effects of viral infections at the level of cellular and physiological
mechanisms in relation to physical fitness is clearly lacking. Hopefully, these potential
links will be explored in the future in light of the COVID-19 pandemic. Efforts must
be made against the pandemic of obesity and physical inactivity to increase the average
cardiorespiratory, metabolic, and immunological fitness of the population, thus increasing
host antiviral defenses and the pandemic resistance of mankind. A decreased response
to vaccination and prolonged virus shedding in obese individuals must also be stressed
and further investigated in controlled studies. Research on exercise regimens, including
modality, duration, and intensity, as well for increasing immunological fitness and the
immunological response to vaccination, will benefit our society in future pandemics.
The prevention and treatment of obesity and low physical fitness will likely improve
mankind’s resilience against a global viral challenge, so aptly illustrated by the current
COVID-19 pandemic.
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