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Abstract

Streptococcus pneumoniae (Spn) is a leading respiratory tract pathogen that colonizes the

nasopharynx (NP) through adhesion to epithelial cells and immune evasion. Spn actively

interacts with other microbiota in NP but the nature of these interactions are incompletely

understood. Using 16S rRNA gene sequencing, we analyzed the microbiota composition in

the NP of children with or without Spn colonization. 96 children were included in the study

cohort. 74 NP samples were analyzed when children were 6 months old and 85 NP samples

were analyzed when children were 12 months old. We found several genera that correlated

negatively or positively with Spn colonization, and some of these correlations appeared to

be influenced by daycare attendance or other confounding factors such as upper respiratory

infection (URI) or Moraxella colonization. Among these genera, Corynebacterium showed a

consistent inverse relationship with Spn colonization with little influence by daycare atten-

dance or other factors. We isolated Corynebacterium propinquum and C. pseudodiphtheriti-

cum and found that both inhibited the growth of Spn serotype 22F strain in vitro.

Introduction

Streptococcus pneumoniae (Spn) causes a variety of illnesses, including pneumonia, otitis

media, bacteremia, and meningitis [1, 2]. Despite availability of pneumococcal vaccines, Spn

remains the most common cause of bacterial infection in the developing world and most fre-

quently infects children under 5 years old or elderly over 65. It was included as one of 12 prior-

ity pathogens by WHO in 2017 [3]. Spn colonizes the nasopharynx (NP) of children in the first

month of life and 27–65% of children carry Spn asymptomatically [3]. It is incompletely

understood how Spn progresses from a commensal state to a pathogenic state and eventually

invades tissues and blood stream to cause local invasiveness and systemic infections. We
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hypothesize that commensal bacteria in NP may influence this process and promote or prevent

Spn-related diseases in children.

The NP microenvironment harbors commensal flora, which maintain immune homeosta-

sis and suppress pathogenic progression and/or colonization of respiratory tract pathobionts.

Based on studies in the gut and in the NP, protective microbiota compete with pathogens in

the microenvironment, through nutrient deprivation, production of anti-microbial molecules,

and modulating the innate and adaptive immune system [3–12]. One dominant commensal

genus in the NP is Corynebacterium. There are over 100 species of Corynebacterium [13], and

at least 23 are present in NP [14]. Whether the different species exert distinct effects on Spn

pathogenesis is not clear, highlighting the limit of our understanding of the influences of Cory-
nebacterium on Spn-related illnesses. An inverse correlation of Corynebacterium detection in

the NP to Spn colonization had been reported [15–18]. Some Corynebacterium spp. showed

direct inhibition on in vitro Spn growth or in vivo colonization. For example, C. accolens was

shown to inhibit growth of Spn in vitro [15]. C. pseudodiphtheriticum was reported to prevent

Spn-induced pneumonia in mice but this effect appeared to be specific to particular C. pseudo-
diphtheriticum strains [19, 20].

In this study, we examined the NP microbiome of children at age 6 and 12 months with or

without Spn colonization detected by bacterial culture. We found that detection of Corynebac-
terium spp. was inversely correlated with Spn colonization, consistent with previous reports

[15–18]. We isolated two species of Corynebacterium: C. pseudodiphtheriticum and C. propin-
quum. We then investigated the effects of these Corynebacterium spp.on Spn growth in vitro
and found that both exhibited inhibitory functions.

Materials and methods

The Rochester General Hospital IRB approved the study and written informed consent was

obtained from parents before enrollment. All methods were performed in accordance with the

IRB’s relevant guidelines and regulations.

Subject information and sample collection

NP washes were obtained during a prospective cohort study conducted in Rochester NY from

2006–2018 involving healthy children of 6 and 12 months old for study of respiratory illnesses,

in particular acute otitis media (AOM), supported by the National Institutes of Deafness and

Communication Disorders. Details of the cohort have been described previously [21–23].

Briefly, these children were recruited from middle-class suburban sociodemographic pediatric

practices in Rochester, NY. Informed consent was obtained in writing at enrollment from the

child’s parents or legally authorized representative. The parent/guardian agreed to provide fol-

low-up information and arrange for all scheduled visits. Because this study was designed to

investigate the impact of microbiome on AOM in children, individuals with uncertain diagno-

sis of AOM were excluded from the study. Additional exclusion criteria included diagnosis of

otorrhea, presence of tympanostomy tube, or diagnosis of Down syndrome, cleft palate,

craniofacial disorders, cystic fibrosis/mucoviscidosis immotile cilia syndrome, congenital

immunodeficiency or HIV/AIDS, or other medical conditions that may interfere with imple-

mentation of the protocol or interpretation of study results. All children were vaccinated with

pneumococcal conjugate vaccines (either PCV13 or PCV7 according to availability).

Definitions: Viral URI: Diagnosis of viral URI was made when children presented symp-

toms of nasal congestion, rhinorrhea, cough, and/or sore throat with or without fever, follow-

ing established guidelines [24–27]. AOM: AOM was diagnosed using pneumatic otoscopy by

validated otoscopists according to American Academy of Pediatrics guidelines [28]. The
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children presented acute onset of symptoms consistent with AOM and had tympanic mem-

branes (TMs) that were: 1) bulging or full, with a cloudy or purulent effusion, or 2) completely

opacified, and 3) with reduced or absent mobility.

NP washes from the children were cultured in vitro on Chocolate agar and tryptic soy agar

(TSA) with 5% sheep blood (BD) for identification of Spn and other common respiratory bac-

terial pathogens using microbiology methods previously described [29, 30]. Spn was identified

based on their colony morphology, alpha hemolytic activity on TSA blood plates, and sensitiv-

ity to optochin disc. Haemophilus influenzae (Hi) was identified based on their colony mor-

phology, gram negative staining, growth on Chocolate agar plates but not on TSA blood plates,

and their presence or absence of growth in specific quadrants on hemo ID quad plates (BD),

depending on X- and V-factor requirements for the various Haemophilus species. We did not

confirm every Hi isolates but our recent study found that more than 95% of Hi strains were

non-typable (Fuji N et al, in press). Moraxella catarrahlis (Mcat) was identified based on col-

ony morphology, gram-negative stain, positive oxidase reactivity, and positive reactivity to

Remel Catarrahlis Test disc (Thermofisher). Staphylococcus aureus (SA) was identified based

on its beta-hemolytic activity on blood plates and its being coagulase-positive and catalase-

negative. Based on these microbiology methods, samples were split into Spn+ or Spn- groups

for microbiome comparisons. The demographic information of the patient samples is listed in

Table 1. The samples were stored at -80˚C in Virus Transfer Media (VTM) after collection and

then sent for 16S rRNA gene sequence analysis at the Microbiome Core Facility, University of

North Carolina, Chapel Hill (https://www.med.unc.edu/microbiome/). All the above informa-

tion on the samples could be accessed in S1 Table.

16S rRNA gene sequencing analyses

Sample submission and sequencing analyses have been previously described [23]. Briefly, the

V4 region of 16S rRNA gene was sequenced via Illumina sequencing, which were processed by

Illumina Bcl2Fastq 2.18.0.12 and Cutadapt, and DADA2 [31]. The fastq sequences were

Table 1. Demographic factors associated with Spn colonization.

# of

samples

Race (White:

non-white)

Female:

Male

Breast-feeding

(Yes:No)

Exposure to smoke

(Yes:No)

Atopy (Yes:

No)

Abx Treatment

(Yes:No)

Daycare Attendance

(Yes:No)

Siblings

(Yes:No)

Spn+

6 m 25 22:3 [0.53] 10:15

[0.46]

10:15 [0.46] 0:24 [0.17] 5:18 [0.57] 1:20 [0.41] 9:15 [0.0006]�� 3:22 [1]

12 m 28 24:4 [0.77] 12:16

[0.17]

10:16 [0.47] 1:26 [0.26] 6:19 [0.60] 8:13 [0.060] 10:17 [0.0078]� 4:24 [1]

total 53

Spn-

6 m 48 39:9 [0.53] 24:24

[0.46]

24:23 [0.46] 6:42 [0.17] 13:29 [0.57] 6:35 [0.41] 2:45 [0.0006]�� 6:42 [1]

12 m 56 46:10 [0.77] 33:23

[0.17]

27:28 [0.47] 8:47 [0.26] 15:34 [0.60] 7:38 [0.060] 6:49 [0.0078]� 9:47 [1]

total 104

Note: Demographic factors are listed as column names. The number of children who were female or male, or who were Yes or No for a particular demographic factor is

shown for each age group (6-month or 12-month) and for each Spn colonization phenotype (Spn+ or Spn-). In each age group, the proportion of children carrying a

demographic trait was compared between Spn+ and Spn- samples and statistical significance assessed by Fisher’s Exact test. The p values are listed in square brackets.

�: p< 0.05;

��: p< 0.005.

https://doi.org/10.1371/journal.pone.0257207.t001
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deposited at Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) with accession num-

ber PRJNA720045. Bar plots were created by ggplot2 in R (version 3.6.1, r-project.org), after

the conglomerate of data files at phylum, class, and family level. Alpha diversity indices of the

samples were measured via estimate_richness and graphed by the plot_richness command in

Phyloseq in R. To measure beta diversity of samples, Bray-Curtis distance and weighted uni-

frac between samples were calculated via phyloseq::distance command and NMDS plots were

created by ordination method. For differential abundance analyses, 30 genera with the highest

abundance, or genera present in at least 50% of the samples, were analyzed through DESeq2

(version 1.24.0) in R and the outcomes were corrected for batch effects. Adjusted p values were

calculated after correction for multiple hypothesis testing using Holm-Bonferroni method and

those less than 0.05 were graphed in ggplot2.

Isolation of Corynebacterium species

Cultures from NP swabs were plated on blood agar plates. Colonies with an appearance consis-

tent with Corynebacterium spp. were randomly selected for PCR analyses [32] and for cultur-

ing in brain heart infusion (BHI) media at 37˚C. Primers targeting the rpoB gene were used in

the PCR analyses, which effectively distinguish species in the Corynebacterium genus [33]. The

primer sequences are: C2700F: 5’-CGTATGAACATCGGCCAGGT– 3’, and C3130R: 5’-
TCCATTTCGCCGAAGCGCTG-3’. The PCR program used was: 95˚C 5min then 40 cycles of

95˚C 15s, 55˚C 15s, 72˚C 15s. PCR products were separated on 1.5% agarose gel with an

expected size of ~450bp and were subsequently isolated and extracted for DNA sequencing.

Sequencing results were searched against GenBank database (blast.ncbi.nlm.nih.gov/Blast.cgi)

for matches. C. propinquum and C. pseudodiphtheriticum were scored as the top candidates.

In vitro co-culture experiments

C. propinquum and C. pseudodiphtheriticum were cultured in BHI media to reach OD600 = 0.5.

5 μl of the culture was spotted on a blood agar plate and grown at 37˚C for one day (for C. pro-
pinquum) or two days (for C. pseudodiphtheriticum), before 5 μl of Spn 22F strain (grown in

THBY media to OD600 = 0.5) was spotted next to the Corynebacterium at different distances.

Images were taken every 24 hours and analyzed by ImageJ. To correct for the variations in

images taken on different days, the diameter of each image for the same plate was measured

on each day and the ratio of its square over the square of the diameter measured on the first

day was used as a normalizing factor. The area covered by each colony was measured via Ima-

geJ, which was divided by the normalizing factor before being imported for graphing in Micro-

soft Excel. In the second approach to visualize how Corynebacterium might affect Spn growth,

600 μl of Spn 22F (OD600 = 0.5) or non-Spn alpha-hemolytic Streptococcus (AHS) as a control

was spread onto 10 cm blood agar plates to form a lawn. The AHS strain was an alpha-hemo-

lytic Streptococcus isolate from a pediatric patient that showed resistance to optochin, in con-

trast to Streptococcus pneumoniae. Cultures of C. propinquum and C. pseudodiphtheriticum
were concentrated by centrifugation. 5 μl of the pellet was spotted onto the Spn22F or AHS

lawn and incubated at 37˚C. Images were taken the next day.

Statistics

Demographic factors and other factors that may influence Spn colonization were compared

between Spn+ and Spn- samples by Fisher’s Exact test (https://www.socscistatistics.com/tests/

fisher/default2.aspx). The difference in abundance of taxa, as shown in bar plots and in alpha

diversity between Spn+ and Spn- samples, was calculated by Wilcoxon signed-rank test with
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Holm-Bonferroni adjustment. Statistical significance of differences between two populations

based on beta diversities was calculated by Permanova via Adonis in R.

Results

Demographic and risk factors that associate with Spn colonization

96 children were included in the study cohort. 73 NP samples were analyzed when children

were 6 months old and 84 NP samples were analyzed when children were 12 months old

(Table 1). Gender, race, breast-feeding history, exposure to smoke, history of atopy, antibiotic

treatment (30 days prior to sample collection), daycare attendance, and presence of siblings

were variables that had frequently been examined for their association with Spn colonization

and some were reported as risk factors [34–39]. We evaluated these factors in our cohort. As

previously reported [34], daycare attendance correlated significantly with Spn colonization in

the child’s NP, but none of the other demographic factors did in this study cohort (Table 1).

We investigated the association between Spn colonization and common respiratory patho-

gens, clinically-diagnosed viral upper respiratory infection (URI), and proness to acute otitis

media (AOM) (Table 2). Spn colonization in NP has been reported to positively correlate with

colonization of other otopathogens and with URI [36, 40]. In our study, Moraxella catarrhalis
detected by culture was significantly associated with Spn carriage at 6 months, although not at

12 months (Table 2). Haemophilus influenzae (Hi) did not show significant association with

Spn colonization although our group has previously reported an association [40]. This lack of

significance in association could be due to the fact that few samples were positive for Hi in this

cohort. Staphylococcus aureus did not show correlation with Spn colonization in our cohort

(Table 2), although a negative association had been reported in other studies [41, 42]. URI was

significantly associated with Spn carriage in 12-month samples but not so in 6-month samples

(Table 2). AOM is a common disease in children and is frequently caused by Spn infection

[43]. We have previously reported that while some children never develop AOM (AOM-free),

some have frequent occurrences [44]. Those who develop at least 3 episodes of AOM (con-

firmed by tympanocentesis) within 6 months or 4 episodes in 12 months were categorized as

sOP (stringently-defined Otitise-Prone). Elevation of Spn colonization was reported in sOP

children compared with AOM-free children [36]. Similarly, in our cohort, sOP children had

Table 2. Other factors associated with Spn colonization.

# of samples Mcat Hi SA URI AOM-free: sOP

Spn+

6 m 26 15+, 11- [0.011]� 3+, 23- [0.69] 0+; 25- [0.088] 5+, 21- [0.76] 13:12 [0.036] �

12 m 29 10+, 19- [0.18] 3+, 26- [0.69] 1+, 27- [0.26] 10+,19- [0.024]� 16:12 [0.037]�

total 55

Spn-

6 m 48 12+, 36- [0.011]� 4+, 44- [0.69] 6+, 42- [0.088] 8+, 40- [0.76] 37:11 [0.036] �

12 m 56 11+, 45- [0.18] 4+, 52- [0.69] 8+, 48- [0.26] 7+, 48- [0.024] � 45:11 [0.037]�

total 104

Note: Specific factors are listed as column names. The number of children who were positive (+) or negative (-) for each potential bacterial respiratory pathogen or for

URI, or were AOM-free or sOP, are indicated for each age group (6-month or 12-month) and for each Spn colonization phenotype (Spn+ or Spn-). In each age group,

the proportion of children colonized with an otopathogen or URI, or designated as AOM-free or sOP, was compared between Spn+ and Spn- samples and statistical

significance was assessed by Fisher’s Exact test. The p values are included in square brackets. SA: Staphylococcus aureus.
�: p< 0.05.

https://doi.org/10.1371/journal.pone.0257207.t002
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more frequent Spn colonization at both 6 months and 12 months of age compared to AOM-

free children (Table 2).

Microbiome composition during Spn colonization

16S rRNA gene sequencing was performed to analyze the microbiome composition in each

NP sample. Five phyla were most abundant: Actinobacteria, Bacteroidetes, Firmicutes, Fuso-

bacteria, and Proteobacteria (Fig 1A). Among these, Actinobacteria was significantly reduced

in Spn+ samples of both 6 (p = 0.029) and 12 months of ages (p = 0.009), relative to Spn- sam-

ples. This was also observed at the class level, where Actinobacteria was found inversely corre-

lated with Spn colonization (Fig 1B; p = 0.026 in samples from 6-month olds and p = 0.005 in

samples from 12-month olds). At the family level, Corynebacteriaceae was less abundant in

Spn+ samples than in Spn- samples from children of 6 (p = 0.049) or 12 months old

(p = 0.002), Moraxellaceae family was more abundant in Spn+ samples from 6 month old chil-

dren (p = 0.023), and Carnobacteriaceae family was less abundant in Spn+ samples from 12

month old children (p = 0.0009).

Four indices of alpha diversity were measured and no significant difference was observed

between Spn+ and Spn- samples from children of either 6 or 12 months old (S1 Fig). In con-

trast, beta diversity measurements showed composition differences in the microbiome of

Spn+ and Spn- samples. Bray-Curtis dissimilarity and weighted unifrac were measured among

the samples and visualized in NMDS plots (Fig 2). Both measurements identified a significant

difference in microbiome composition between Spn+ and Spn- samples from children at 12

months of age (p = 0.001 and 0.009), although only weighted unifrac identified a significant

difference in microbiome composition between Spn+ and Spn- samples from 6-month old

children (p = 0.054).

Individual bacteria genera that change abundance upon Spn colonization were identified

(Fig 3). In samples from 6 month-old children, reduced abundance of Actinomyces

Fig 1. Abundance of taxa in Spn+ and Spn- NP samples. Proportion of taxa in Spn+ or Spn- NP samples at different

ages were shown at the level of phylum (A), class (B), family (C) as bar plots. �: p< 0.05; ��: p< 0.005; ���: p< 0.0005,

Wilcoxon signed-rank test with Holm-Bonferroni adjustment. The absolute p values are included in parentheses on

the graphs.

https://doi.org/10.1371/journal.pone.0257207.g001
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(p = 0.0001), Prevotella_7 (p = 0.002), Dolosigranulum (p = 0.034), Veillonella (p = 0.002),

Corynebacterium_1 (p = 0.032), Gemella (p = 0.003), and Anoxybacillus (p = 0.034) were iden-

tified in Spn+ samples compared to Spn- samples (Fig 3A). No genera, not even Streptococcus,
were found in higher abundance in the Spn+ group. This observation could be explained if

lower abundance of Streptococcus spp. other than S. pneumoniae were present in Spn+ samples

relative to Spn- samples, as previously reported [27], so the genus of Streptococcus as a whole

did not exhibit prominence in Spn+ samples. In 12 month-old children, the Streptococcus
genus was more abundant (p = 8.7 x 10−14) and Corynebacterium less abundant (p = 9.9 x

10−5) in Spn+ samples compared with Spn- samples (Fig 3B). Because Spn colonization is

influenced by demograhic factors such as daycare attendance (Table 1), we asked whether day-

care attendance affects Spn-induced microbiome change. Indeed, fewer differentially abun-

dant genera were observed between Spn+ and Spn- samples when daycare attendance was

considered a covariate: among the genera listed in Fig 3A, only Dolosigranulum (p = 0.0007),

Corynebacterium_1 (p = 0.0003), and Actinomyces (p = 0.0007) remained differentially abun-

dant in Spn+ samples versus Spn- samples from 6-month old children (Fig 3C), and only

Fig 2. Difference in beta diversity of microbiome between Spn+ and Spn- NP samples in children at 12 months.

Bray-Curtis distance (A and B) or weighted unifrac (C and D) of samples collected at 6 months or 12 months were

measured and visualized on NMDS plots. Permanova was performed for samples stratified by age to assess the

difference between Spn+ and Spn- samples. The p values are shown at the right bottom corner of each plot.

https://doi.org/10.1371/journal.pone.0257207.g002

Fig 3. Bacterial genera that show differential abundance between Spn+ and Spn- samples. Abundance of bacterial

genera was compared between Spn+ and Spn- samples collected at 6 months (A), or at 12 months (B) without

correction for daycare attendance, or with correction for daycare attendance (C, 6 months; D, 12 months) using

DESeq2 software (see Materials and methods). The ones with adjusted p value less than 0.05 are shown as dots in the

graphs. The adjusted p value is indicated next to each dot. The x axis exhibits the log2 ratio between abundance of

bacterial genera in Spn+ samples and that in Spn- samples.

https://doi.org/10.1371/journal.pone.0257207.g003
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Corynebacterium_1 remained differentially abundant in Spn+ samples compared with Spn-

samples from 12-month old children (p = 0.041) (Fig 3D).

Among other factors associated with Spn colonization, sOP phenotype, Mcat colonization,

and URI were significantly associated with Spn colonization in children (Table 2). To deter-

mine how these variables influence microbiome changes upon Spn colonization, we divided

samples into variable+ and variable- subgroups and analyzed the differential abundance of

genera between Spn+ and Spn- samples in each subgroup. We found that in the sOP- sub-

group (i.e., AOM-free), Corynebacterium_1 (p = 3.5 x 10−5), Dolosigranulum (p = 0.0047), and

Actinomyces (p = 8.2 x 10−4) remained at lower abundance in Spn+ samples relative to Spn-

samples, but none of the other genera shown in Fig 3A did, and Bacillus became more abun-

dant (p = 0.022) in Spn+ samples from children of 6-month old (Fig 4A). In sOP+ samples,

however, no genus was found to differ in abundance between Spn+ and Spn- samples from

6-month old children. These differential findings from sOP+ and sOP- samples indicate that

the sOP child phenotype may be associated with significant microbiome changes in response

to Spn colonization when children were at 6 months of age. Among children of 12 months old,

Corynebacterium was no longer at lower abundance but Streptococcus stayed at higher abun-

dance in Spn+ samples relative to Spn- samples, once the population was split into AOM-free

and sOP+ subgroups (Fig 4B and 4C; p = 5.5 x 10−10 and 0.008).

Mcat colonization detected by culture significantly segregated Spn+ and Spn- samples

(Table 2) but this only occurred in 6-month old children. Consequently samples from

6-month old children were divided into Mcat+ and Mcat- subgroups to examine the effects of

Mcat on microbiome differences when Spn colonization was detected. Within the Mcat- sub-

group, Corynebacterium_1 (p = 0.019) and Actinomyces (p = 0.022) were at lower abundance

in Spn+ samples, but none of the other genera shown in Fig 3A were, and Alloprevotella
(p = 0.021) showed higher abundance in Spn+ samples, compared with Spn- samples (Fig 4D).

Within the Mcat+ subgroup, however, no genus showed significant difference in abundance

between Spn+ and Spn- samples, suggesting that Mcat colonization may override the effects of

Spn colonization on microbiome changes.

Fig 4. Mcat detection, URI and Otitis Proneness as factors that contribute to microbiome difference between

Spn+ and Spn- NP samples. Samples were divided into AOM-free/sOP, Mcat+/Mcat-, and URI+/URI- samples at

each age group. Differential abundance of genera between Spn+ and Spn- samples was determined in each subgroup:

AOM-free/sOP (A-C), Mcat (D), or URI (E-F), by DESeq2 software (see Materials and methods). The ones with

adjusted p value less than 0.05 are shown as dots in the graphs. The adjusted p value is indicated next to each dot. The x

axis exhibits the log2 ratio between abundance of bacterial genera in Spn+ samples and that in Spn- samples.

https://doi.org/10.1371/journal.pone.0257207.g004
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The third factor we examined was URI, which showed a significant positive association

with Spn colonization in children 12 months age but not children 6 months of age (Table 2).

Consequently only samples from 12-month old children were divided into URI+ and URI-

subgroups and investigated for the influence of URI on microbiome changes in association

with Spn colonization. Withiin the URI+ samples, Haemophilus (p = 0.0013), in addition to

Streptococcus (p = 0.011; as shown in Fig 3B), was found at higher abundance in Spn+ samples

relative to Spn- samples (Fig 4E). Within the URI- subgroup, Corynebacterium_1 (p = 0.022)

and Streptococcus (p = 2.3 x 10−5) remained at lower and higher abundance, respectively, in

Spn+ samples than in Spn- samples (Fig 4F), as shown in the comparison among all samples

from 12-month olds (Fig 3B).

Corynebacterium spp. inhibited Spn proliferation in vitro and reduced Spn

colonization densities in vivo
An inverse relationship between Corynebacterium genus and Spn colonization was observed

(Fig 3A and 3B), which was not affected by daycare attendance (Fig 3C and 3D) or other path-

ogens such as Moraxella or URI. The non-otitis-prone state was associated with the presence

of Corynebacterium genus (Fig 4). Therefore, we hypothesized that Corynebacterium spp.

interfered with Spn NP colonization. To test this, we first isolated Corynebacterium spp. from

NP samples of children and, using PCR primers that target the rpoB gene in Corynebacterium
[33], we identified C. propinquum and C. pseudodiphtheriticum (S2A–S2E Fig).

To evaluate the interaction between Corynebacterium and Spn in vitro, we inoculated a col-

ony of Spn22F at different distances to C. propinquum or C. pseudodiphtheriticum colonies

and monitored their growth over three days (Fig 5A and 5B). Spn colonies farther away from

the Corynebacterium colonies grew faster than those closer (Fig 5C and 5D), indicating an

inhibitory effect of C. propinquum and C. pseudodiphtheriticum on Spn proliferation. An alter-

native approach was employed to confirm this inhibitory effect. Concentrated C. propinquum
or C. pseudodiphtheriticum was added to a lawn of Spn22F on blood agar plates and the growth

of Spn22F was visualized the next day. A pink ring (indicatng minimal hemolysis) of Spn22F

Fig 5. Growth inhibition of Corynebacterium by Spn. A) Schematic representation of co-culture experiment for

Corynebacterium spp. and Spn. Spn22F was inoculated right next to a Corynebacterium colony (position a) or with

some distance (position b). B) Representative images of Corynebacterium spp. co-cultured with Spn22F at position a or

b (as shown in A) on day 1 and day 3. C, D) Measurement of size changes in Spn colonies placed at positions a and b

next to C. propinquum (C) or next to C. pseudodiphtheriticum (D) over 3 days. E) Images of culturing C. propinquum
(left) or C. pseudodiphtheriticum (right) on top of a lawn of Spn22F (top panels) or AHS (bottom panels).

https://doi.org/10.1371/journal.pone.0257207.g005
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was observed around C. propinquum or C. pseudodiphtheriticum colony (Fig 5E, �), in contrast

to the yellow/green lawn (indicating complete hemolysis) of Spn22F, suggesting inhibited

growth of Spn22F by Corynebacterium. This inhibition was not observed when C. propinquum
or C. pseudodiphtheriticum was inoculated on a lawn of non-Spn strain of alpha-hemolytic

Streptococcus (AHS) as a control (Fig 5E) suggesting that the inhibitory effect was not achieved

by competition for nutrients in the agar.

Discussion

The intranasal colonization of Spn is a prerequisite step for its pathogenesis, which occurs via

interactions with host as well as other microorganisms in NP [3]. We show here that several

genera of bacteria in the NP microbiome correlated negatively or positively with Spn coloniza-

tion, and some of these correlations appeared to be influenced by daycare attendance or other

factors such as upper respiratory infection (URI), Moraxella co-colonization, and propensity

to develop AOM among young children. Among these genera, Coryenbacterium showed a

consistent inverse relationship with Spn colonization with little influence by daycare atten-

dance or other factors. We isolated C. propinquum and C. pseudodiphtheriticum and found

that both inhibited the growth of Spn serotype 22F strain in vitro.

We first evaluated the distribution of demographic and other factors that associate with Spn

colonization. We found that daycare attendance, Mcat colonization, URI, and AOM recur-

rence were significantly associated with Spn colonization, but breastfeeding, race, gender,

exposure to smoke, symptoms of atopy, presence of siblings were not (Table 1). These findings

were generally consistent with previous reports [34–38]. Some inconsistencies were observed,

in particular in the effects of race and siblings, which had been reported as risk factors for Spn

colonization and infection [37, 39]. This disparity could be due to sampling difference, in that

the majority of samples in our study were collected from children in families that were mostly

middle class and caucacian. We did not observe influence of antibiotic treatment on coloniza-

tion of Spn, inconsistent with what was reported [37]. Perhaps the antibiotic regimens (types

of antibiotics, duration and intervals) in our cohorts differ from the previous report.

Microbiota in NP consists of pathogens and commensals [4–6, 45], both of which influence

Spn colonization and pathogenesis [3, 45, 46]. We focused on the roles of commensals on Spn

colonization, because they are relatively less studied and impose novel therapeutic potentials

for treating Spn-related diseases. The Actinobacteria phyla had an inverse relationship with

Spn colonization in our chorts, consistent with previous reports on microbiome distribution

in human nostrils [47]. A dominant genus of Actinobacteria phylum in nostrils is the Coryne-
bacterium [48], which was reported to negatively correlate with Spn colonization in pediatric

samples [15, 17, 18] and was confirmed in our study (Fig 3). In URI+ samples however, Cory-
nebacterium no longer exhibited inverse relationship with Spn colonization. Perhaps, the con-

dition of URI supports the colonization of Corynebacterium, counteracting the effects of Spn.

This notion is consistent with the report by Edouard et al that C. propinquum was elevated in

patients with symptoms of viral respiratory tract infections, compared with healthy controls

[49].

We also found an inverse relationship between Dolosigranulum and Spn, as previously

reported [18]. Our study revealed a few new taxa that correlated negatively with Spn coloniza-

tion in NP of 6-month olds—Actinomyces, Prevotella, Veillonella, Gemella, and Anoxybacillus.
Among these, Prevotella, Veillonella, and Gemella were found inversely correlated with pneu-

monia in adults and elderly people [50], who had elevated Spn in oropharyngeal samples. Pre-
vetella was reported to correlate with a reduced risk of hospital-acquired pneumonia in ICU

patients [51]. Notably, these anaerobic genera were most pronouncedly influenced by daycare
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attendance and other confounding factors (Figs 3C and 4), suggesting their sensitivity to these

factors. They were no longer found differentially abundant between the Spn+ and Spn- NPs of

12-month old children (Fig 3B). Perhaps nasal microbiome in young children is more suscep-

tible to changes induced by Spn colonization than older children. It is known that microbiome

composition undergoes profound changes within the first year of a child’s life [50, 52], with

bacteria density increasing and gained dominance of certain taxa such as Moraxella spp. Spn

colonization may thus not be sufficient to alter the abundance of taxa like Moraxella in the NP

of 12-month olds. In contrast, the abundance of Corynebacterium spp. decreases as a child

ages, making them remain susceptible to depletion upon Spn colonization at the age of 12

months, as was observed (Fig 3B).

Among human commensals, the Corynebacterium is one of the most studied and has been

extensively reported to correlate with a healthy state in nasopharynx [53–59]. Its function in

Spn pathology was also reported. C. accolens, for example, was found to inhibit Spn in vitro via

releasing fatty acid; its functions in vivo however were not reported [15]. On the other hand,

C. pseudodiphtheriticum 090104 was shown to inhibit secondary infection of S. pneumoniae in
vivo probably by inducing elevated TNF-alpha and interferon gamma levels [19]. The immune

effect of Corynebacterium was reported to be strain-specific, since a different C. pseudo-
diphtheriticum strain did not exhibit this function [20].

Our study showed the in vitro effects of two Corynebacterium species, C. propinquum and

C. pseudodiphtheriticum, on Spn proliferation. We do not know the nature of this inhibition,

but we suspect that it would differ from aforementioned inhibition by C. accolens [15], since C.

accolens is a lipophilic species and requires lipid for its growth but C. propinquum and C. pseu-
dodiphtheriticum are not [13]. It was reported recently that C. propinquum released sidero-

phores to inhibit the growth of coagulase-negative Staphylococcus species but not coagulase-

positive Staphylococcus species such as S. aureus [60]. This inhibition was not observed from

C. pseudodiphtheriticum so likely differs from the inhibition we observed in this study.

Our study has several limitations. First, 16S rRNA gene sequencing at the V4 region does

not provide resolution to the species level, therefore we do not know what bacterial species

correlate with Spn colonization. This limitation significantly reduces the number of taxa to

be uncovered and imposes difficulty in isolating relevant commensals for follow-up studies.

Full-length 16S rRNA gene sequencing or shotgun metagenomics with genome reconstruc-

tion would need to be performed to overcome this shortcoming. Second, our in vitro assays

imply that the Corynebacterium species inhibit the proliferation of Spn22F. This interpreta-

tion needs to be considered cautiously, as only one isolate of each species was tested in our

study. Additionally, the in vitro effects we observed may not directly translate to their effects

on Spn colonization in patients, since Spn colonization involves more steps (survival, adhe-

sion, etc.) than proliferation. Furthermore, we only used one Spn strain (Spn22F) in our

study whereas in human more than 90 strains of Spn have been identified. More Spn strains

would need to be tested to evaluate whether the Corynebacterium species inhibit Spn prolifer-

ation in general, but not specific to Spn22F. We also do not know whether the inhibitory

effects of Corynebacterium in vitro could be translated to their effects in vivo. C. pseudo-
diphtheriticum had been shown recently to induce a pro-immune response in mice [19],

which in turn may imped the colonization of Spn. In contrast, C. propinquum was reported

to correlate with anti-flammatory mediators in human nasopharynx [61]. Whether and what

type of immune responses the Corynebacterium species may elicit in vivo to imped Spn colo-

nization thus await future investigation. Finally, our study population is from middle-class,

suburban pediatric practices and thus may not represent the general population which are

more socioeconomically diverse.
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Supporting information

S1 Fig. Alpha diversity does not differ between Spn+ and Spn- NP samples. Alpha diversity

indices of nasal microbiome from Spn+ or Spn- children of 6 and 12 months olds were calcu-

lated and graphed in box plots.

(TIF)

S2 Fig. Isolation of Corynebacterium propinquum and Corynebacterium pseudodiphtheriti-
cum. A) Agarose gel electrophoresis of PCR products from rpoB gene. Lanes 1 and 3: PCR

products from colonies grown on chocolate plates; lanes 2 and 4: PCR products from colonies

grown on blood agar plates. The growth of Corynebacterium on chocolate plates was not as

robust as on blood agar plates, so the colonies grown on chocolate plates were found to differ

from Corynebacterium and served as a negative control. B,C) Sequences of PCR products from

two Corynebacterium species that were later identified as C. propinquum and C. pseudo-
diphtheriticum. D) Alignment of PCR sequences from C. propinquum against GeneBank data-

base. E) Alignment of PCR sequences from C. pseudodiphtheriticum against GenBank

database.

(TIF)

S1 Table. Demorgraphic and clinical information of the samples.

(XLSX)

S1 Raw images.

(TIF)
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