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ABSTRACT: Systems with short-range attraction and long-range repulsion can form
ordered microphases in bulk and under confinement. Using grand canonical Monte
Carlo simulations, we study a colloidal system with competing interactions under
confinement in narrow spherical shells at thermodynamic conditions at which the
hexagonal phase of cylindrical clusters is stable in bulk. We observe spontaneous
formation of different ordered structures. The results of the simulations are in a very
good agreement with the predictions of a simple mathematical model based on the
geometry and optimal packing of colloidal clusters. The results of the simulations and
the explanation provided by a relatively simple geometric model may be helpful in manufacturing copolymer nanocapsules and may
indicate possible ways of coiling DNA strands on spherical objects.

■ INTRODUCTION
Systems with competing attractive and repulsive interactions
are ubiquitous. Examples of these systems are block
copolymers, mixtures of oil, surfactants and water, proteins,
and colloidal suspension with depletants.1,2 When the ranges of
interaction are properly tuned, systems with competing
interactions can form a variety of ordered microphases such
as cluster-crystals, hexagonal, bicontinuous, and lamellar
phases. These ordered phases might be important in the
development of new technological applications such as
templating for nanomaterial synthesis,3,4 catalysis, drug
delivery, and sensing.5,6 It has been demonstrated, by theory1

and simulations,7,8 that systems with competing interactions
exhibit a universal phase behavior in bulk. Thus, the physical
behavior observed in one such system can be discovered in
other systems, and the results presented here are also relevant
for a wide range of physical systems.

Recent studies have shown that by confining systems with
competing interactions into pores with the proper geometry,
new ordered microphases can be induced.9−11 The pore size
must be carefully tuned to be commensurate with the
periodicity of the ordered microphases to induce the formation
of new ordered structures. In a previous study, we showed that
the shape of the confining channels could strongly affect the
structure of colloidal fluids with competing interactions.9

In this article, we study, by means of Monte Carlo
simulations, the behavior of a colloidal fluid with short-range
attraction and long-range repulsion (SALR) confined into
narrow spherical shells. The geometry of the bulk phases in
this system is incommensurate with the geometry of the
spherical shell. We investigate how the cylindrical clusters that
form the hexagonal phase are arranged in spherical shells of
different sizes.

■ MODEL AND SIMULATION DETAILS
The colloidal system we model here is composed of mono-
dispersed spherical particles that interact with each other via a
SALR interaction potential. In particular, we consider the
square-well-linear potential, consisting of a hard core, an
attractive square-well, and a repulsive ramp. The pair potential
is given by the following expression
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Here, rij denotes the inter-distance between particles i and j, σ
is the diameter of the colloidal particles, ϵ is the depth of the
attractive well, λ is the attractive range, ζ denotes the repulsion
strength, and κ is the repulsion range.12,13 The parameters are
set to: ζ = 0.05, λ = 1.5, and κ = 4.0. The plot of the pair
potential is presented in Figure 1a. For this set of parameters,
the bulk phase diagram has already been calculated.14

The colloidal fluid is confined into spherical shells with hard
walls. The system is finite and quasi two-dimensional since we
focus on narrow shells. To construct such shells, we define an
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inner sphere of radius, Rinn, and an outer sphere of radius, Rout.
Both spheres are concentric. The region between the two
spheres defines the shell in which the particles are located at S
= {r|Rinn ≤ r ≤ Rout} where r is the radial coordinate. Based on
the volume of the shell, the external potential is defined as
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Here, ri denotes the radial coordinate of particle i. The total
energy of the system is thus given by
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Figure 1. (a) Square-well-linear SALR potential used to model the
interactions between colloidal particles. (b) Snapshot of the simulated
system. The thermodynamic conditions are μ* = −2.170, T* = 0.35,
Rinn = 6.0σ, and Rout = 11.0σ.

Figure 2. Examples of closed packing of tori and spheres in a shell of a fixed width. (a) Three tori, (b) two tori and two spheres, and (c) one sphere
and two tori. The diameter of the tori and spheres is equal to the width of the shell. (d) Construction of new structures from the configuration
shown in (a) (in red) by rotating one hemisphere by an angle θ/2 (rotation at the intermediate position) and θ (new structure formed after a
complete rotation). (e) Construction of two hybrid structures made by joining the hemispheres shown in (a,b) (in red and in yellow) and by
rotating one of these hemispheres by an angle θ/2 and 3θ/2, respectively.
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N is the total number of colloidal particles.
The structure of the colloidal fluid confined in spherical

shells is investigated by Monte Carlo simulations in the grand
canonical ensemble (μ, V, T). All the values of the
thermodynamics parameters (chemical potential, temperature,
internal energy, density, and distance) are reported using σ and
ϵ as units of distance and energy, respectively. The simulated
systems contain between 1000 and 2200 particles. The length
of the equilibration run depends on the system size. The
production run, where averages are taken, consists of 2 × 1010

MC steps, from which 2 × 105 independent configurations are
taken for calculating the local density. A Monte Carlo step is
defined as a trial move that may be a displacement, insertion,
or deletion of a particle. We set the displacement attempt
probability at 95% and the remaining 5% to the particle
insertion or deletion attempts. Simulations are performed for
the temperature T* = kBT/ϵ= 0.35 and for values of the
chemical potential within the range −2.35 ≤ μ/ϵ = μ* ≤
−2.10. In these thermodynamic conditions, the hexagonal
phase of cylindrical clusters is stable in bulk. We explore
different system sizes in the range 6.0σ ≤ Rout ≤ 12.5σ. In a
preliminary study, we found that the width of the spherical
shell must be about 5σ to promote the formation of a single
layer of cylindrical clusters. Thus, we set the shell width to W =
Rout − Rinn = 5σ for all the studied cases. To calculate the
number density of the system, ρ* = Nσ3/V, we consider that
the centers of the particles can be placed at the limits of the
shell (i.e., at both Rinn and Rout) and subtract and add σ/2 from
the inner and outer radii, respectively, to account for the
particle’s hard cores. Thus, the volume used for the calculation
o f t h e n u m b e r d e n s i t y i s ,

= +( ) ( )V R R4
3 out 2

3 4
3 inn 2

3
.

The structure of the colloidal fluid is identified by the visual
inspection of iso-density surfaces built from the three-
dimensional local density of the systems. These profiles are
calculated by dividing the simulation box into small
subvolumes [approximately (σ/2)3], measuring the particle
density in each of these cells and averaging over 10,000
independent configurations. The iso-density surfaces are
plotted for ρiso = 0.4 using OpenDX software. A snapshot of
the configuration taken from the simulations is shown in
Figure 1b.

■ RESULTS AND DISCUSSION
We have noticed that many structures obtained in the
simulations can be constructed considering a relatively simple
mathematical model. Consider a shell composed of two
concentric spheres with radii Rinn and Rout, Rinn < Rout, where W
= Rout − Rin is the width of the shell. We want to fill the volume
of the shell with spheres and tori of diameter W. For fixed
width W, it is possible to calculate the values of the radii Rinn
and Rout to obtain optimal packing of the shell with tori and
spheres, as illustrated in Figure 2. There are three possible
arrangements of tori and spheres inside the shell to obtain an
optimal packing. The shell can be filled with: (a) only tori, (b)
tori and two spheres, and (c) tori and one sphere. The number
of tori and spheres depends on the values of Rinn and Rout. It is
interesting to note that the closed packed structures composed
of k tori or k − 1 tori and two spheres are obtained for the
same size of the shell as shown in Figure 2a,b. The structures
composed of only tori and spheres can be used to generate
many other closed packed configurations. To obtain new

structures, the shell is cut through a plane containing the
rotation axis, as shown in Figure 2. Next, one hemisphere is
rotated around the axis passing through the center and
perpendicular to the cutting plane, as shown in Figure 2d. For
a specific set of the rotation angle, open ends of the tori
forming two hemispheres can be smoothly connected. The
rotation angle can be calculated by dividing 2π by the number
of open toroidal ends and open small hemispheres. Each cut
torus has two open ends. When the closed packed structure is
built of k tori and l spheres (with l = 1 or 2), then the angle of
rotation θ can be calculated according to the following formula
θ = 2π/(2k + l). With the method we have described to obtain
the derived structures, both right- and left-handed structures
can be constructed. Although we are just presenting structures
obtained in simulations with one handedness, we often
observed the formation of both chiral structures.

The inner radius of the shell Rinn for a given number 2k + l
of closed packed torii and spheres and the shell width W can
b e c a l c u l a t e d f r om t h e f o l l o w i n g f o rmu l a :

=R (1/sin( /2) 1)W
inn 2

.
Since the sizes of the systems built of k tori or k − 1 tori and

two spheres are the same, it is possible to combine
hemispheres of two different arrangements of tori and spheres
to obtain new closed packed structures. In such a case, the
angle of the first rotation is θ/2. We call such structures the
hybrid ones (see Figure 2e). They are pictured in the figures
presented in this article with two colors, red and yellow. A
similar method has been already used to predict the possible
solutions to the problem of finding the longest rope on the
surface of a sphere.15

The cylindrical and spherical clusters obtained in the
simulations of the SALR model are not rigid and, due to the
long-range repulsion, these clusters repel each other. Loosely
speaking, this soft repulsion plays a similar role to the hard
core repulsion in the previously discussed mathematical model.
In the case of the hexagonal phase made of cylindrical clusters,
the distance between the centers of the neighboring clusters
can be considered as equivalent to the size of the diameter of
hard tori. Thus, one might expect that the structures calculated
in the mathematical model may also be obtained in the
simulations. It has to be noted that the local density of the
colloidal particles in the middle distance between the clusters is
close to zero. In the figures presented in this article, the
configurations from the mathematical model are compared
with the configurations from the simulations. We decrease the
diameter of the tori and visualize the iso-density surface at ρiso
= 0.4 for easier identification of the corresponding config-
urations. In the simulations, the radius of the clusters (spheres
and tori) and the separation distance between them are
determined by the interplay between attraction and repulsion.
The separation distance between clusters must be close to that
of the lattice constant of the hexagonal phase of cylindrical
clusters in bulk, l0 ≈ 6σ, and the radius of the clusters to that of
the equilibrium radius of the cylindrical clusters, r0 ≈ 1.5σ.9,10
Simulations. For very small spherical shells (Rout of the

order of l0), the colloidal particles on the opposite sides of the
limiting inner sphere are within the repulsive range of the
interparticle potential and the ordered structures that form
instantaneously have short life times at T* = 0.35.
Consequently, we found that the minimum limiting radius of
the inner sphere that allows for the formation of ordered
structures at this temperature is approximately Rinn = 1.5σ.
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Below this limit, colloidal particles located near the surface of
the inner sphere in diametrically opposite positions start to
experience some repulsion because the distance between them
is lower than the range of the repulsive interactions (see eq 1
and Figure 1).

We first discuss the results obtained for small spherical
shells. In Figure 3a, we present all the possible structures for a
shell with Rinn = 3.0σ and Rout = 8.0σ. We note that for the
same chemical potential, it is possible to obtain different
structures. We observe single and double helices, toroidal
structures, structures formed by a combination of toroidal and
spherical clusters, by a cylindrical cluster forming closed loops,
by a cluster with two open ends, and by a combination of
closed and open clusters. Note that all these structures can be
derived from the previously discussed mathematical model. In
a recent study of SALR disks confined to the surface of a
sphere, structures very similar to the ones considered by us
have been reported.16

In Figure 3b, we present a more complex example of the
larger hybrid structure for the spherical shell of Rinn = 5σ and
Rout = 10σ. The simulations predict the stability of the
structure with four tori and the structure with two spheres at
the poles and three tori for μ* = −2.180 and −2.170,

respectively, with very similar densities and energies. All the
possible structures derived from the mathematical model are
obtained from the simulations within a small range of chemical
potential. Hybrid structures composed of two different
arrangements of closed packed tori and spheres can also be
obtained by rotating the hemispheres by odd multiples of θ/2.
The hybrid structures are pictured in two colors (red and
yellow), representing hemispheres of two different structures.

Figure 4a shows all the possible structures obtained for the
spherical shell with Rinn = 6σ and Rout = 11σ. The generating
structure is composed of one spherical cluster and four toroidal
clusters. The derived structures are obtained by rotating one of
the hemispheres of the generating structure by multiple
integers of an angle, θ = 2π/9. Interestingly, we observe that
the average energies of all the structures are quite similar. The
number densities of the systems are also very similar, but they
increase as the chemical potential increases. The derived
structures corresponding to rotations of θ, 2θ, and 4θ are
composed of only one coiled cylindrical cluster. The structure
corresponding to a rotation of 3θ is composed of two clusters.
The first one is an open cluster resembling a single-helix, and
the second one is a closed cluster. In the θ structure, the two
ends of the cylindrical cluster are placed at the same pole. This

Figure 3. Ordered structures obtained from simulations by confining the colloidal fluid into a small spherical shell of (a) Rinn = 3.0σ and Rout = 8.0σ
and (b) Rinn = 5σ and Rout = 10σ. The temperature is T* = 0.35. The chemical potential, (μ*), the average number density, (⟨ρ*⟩), and the average
energy, (⟨u*⟩), are shown in the figure. The iso-density surfaces are presented in gray with ρiso = 0.4, and the outer and inner spheres are shown in
blue and cyan, respectively. The corresponding structures pictured in red and yellow are obtained from the mathematical model. Hybrid structures
are pictured in two colors. The angle of rotation θ is π/3 for (a) and π/4 for (b). The corresponding angles for each structure are shown in the
figure.
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structure resembles a double helix that closes on itself at the
opposite pole. In the 2θ structure, the ends of the cylindrical
cluster are separated by one of its folds. Two folds separate the
ends of the 3θ structure, but, as already mentioned, the
structure is composed of one open cluster and one closed
cluster. Finally, the 4θ structure has its ends placed at opposite
poles separated by four folds. This structure resembles a single
helix structure.

In Figure 4b, we show all the structures obtained for a shell
of Rinn = 7.5σ and Rout = 12.5σ. The generating structure is
composed of one spherical cluster and five toroidal clusters.
Besides the fact that the average energies and densities are very
similar for all the structures, we found that two different
structures can be obtained at exactly the same thermodynamic
conditions (see second and sixth structures in Figure 4b),
suggesting that all the possible structures can exist for a similar
range of the chemical potentials within the range of stability of
the hexagonal phase of cylindrical clusters in bulk at T* = 0.35.
Unlike the Rout = 11σ shell, all the derived structures are
formed by only one open coiled cylindrical cluster. The
derived structures follow the same pattern as in the previous
case; the ends of the open cluster are placed first at the same
pole for a rotation of θ, then the ends are separated by one fold
for 2θ and so on.

It should be stressed that the structures obtained in the
simulations for a given size of the shell are related by
geometrical transformations. Therefore, it is natural to expect
that the properties such as energy and density are comparable
for the related structures. The transitions between the related
structures are also possible if the energy barrier between the
minima is not very large. In fact, in long simulations we have
observed such transitions. However, when the structure is
formed in a simulation, it is stable for a long time, and we are
easily able to obtain statistically accurate results for energy,
average, and local density. The structures are formed from
random configurations. No special initial configuration is
needed to facilitate the formation of the obtained structures.

■ SUMMARY AND CONCLUSIONS
We have studied self-assembly of a colloidal system with
competing interactions confined in narrow spherical shells of
constant width W = 5σ, at thermodynamic conditions, μ, V,
and T, at which the hexagonal phase of cylindrical clusters is
stable in bulk. All the possible structures for a given shell size
have very similar average densities and energies and are
obtained in a narrow range of chemical potentials. We found
that different structures can be obtained at the same
thermodynamic conditions (see, e.g., Figure 4b, for rotations

Figure 4. Structures obtained from simulations by confining the colloidal fluid into a spherical shell of (a) Rinn = 6σ and Rout = 11σ and (b) Rinn =
7.5σ and Rout = 12.5σ. The temperature is T* = 0.35 and the chemical potential, μ*, the average number density, (⟨ρ*⟩), and energy, (⟨u*⟩), are
presented for each structure. The iso-density surfaces are presented in gray with ρiso = 0.40, and the outer and inner spheres are shown in blue and
cyan, respectively. The corresponding structures pictured in yellow are obtained from the mathematical model. The first structure is successively
rotated by the proper angle θ, 2π/9 for (a) and 2π/11 for (b), to form all the derived structures.
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of θ and 5θ, and some structures presented in Figure 3). We
also observed that the fluctuations of the number of particles
often drive the transitions from one structure to another.

The existence of the structures observed in simulations can
be explained based on a simple mathematical model where
only the geometry of the system is taken into account.
Interestingly, the structures reported in this paper are
analogous to the solutions to the problem of the longest
rope on the surface of a sphere. Based on the results of the
simulations, we found that the system self-assembles into a
new type of hybrid structures, composed of two hemispheres
corresponding to different arrangements of tori and spheres
(see Figure 3). We were able to construct such closed packed
structures in the mathematical model as well (see Figure 2).
Thus, we demonstrated how the simulations of a physical
system can help find the solutions of some mathematical
problems.

The structures described in this article could be realized
experimentally with block-copolymers adsorbed on spherical
particles. The length and composition of the co-polymer must
be finely designed to obtain the appropriate ranges of
interactions with respect to the size of the adsorbing particles.
Similar structures have been reported in the experiments with
thin block-copolymer films adsorbed on the surface of colloidal
particles.17

Likewise, theoretical calculations have predicted that the
stability of helical and toroidal structures in asymmetric
diblock copolymers confined in small spherical cavities18−20 or
core−shell particles with copolymers forming a shell around a
core built form a homopolymer.21 In a fluid of SALR particles
confined to the surface of a sphere, helical structures have also
been obtained in the density functional theory calculations16

and simulations.22 In our study, we are using a SALR potential
with a flat minimum and are modeling a quasi-two-dimensional
system, whereas in refs 16 and 22, a SALR potential with a very
sharp minimum is used, and the system is strictly two-
dimensional. Since different SALR systems behave in a
universal way, one would expect that the structures presented
in this article can be observed in other such systems.

The ordered structures presented in this article are not
exclusive to equilibrium systems. The same structures can be
observed in Turing patterns obtained by solving an appropriate
reaction-diffusion system on the surface of a sphere.23−25 We
believe that the results presented in this paper might be
important to the conceptual design of soft nanomaterials that
involve systems with competing interactions and spherical
geometries.
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