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Abstract

Biocompatible chemical protein cleavage methods have been long-sought to replace enzymatic 

cleavages, but have yet to be realized. Here, we report the development of the SNAC-tag 

(Sequence-specific Nickel Assisted Cleavage) to achieve sequence-specific chemical protein 

cleavage under biocompatible conditions with comparable efficiency to enzymes. We demonstrate 

that the SNAC-tag can be inserted before both water-soluble and membrane proteins to achieve 

fusion protein cleavage, even when enzymatic cleavages fail.

Protein cleavage is an integral step of recombinant protein expression and purification 

processes. Different tags are often fused to the N-terminus or C-terminus of target proteins 

to improve expression yield, solubility, folding or purification.1,2 However, after the target 

protein is purified, removal of these tags is often desired. Currently, the only strategy to 

remove fusion tags under biocompatible conditions is enzymatic cleavage using proteases, 

including Tobacco Etch Virus protease, thrombin protease.3 Unfortunately, the enzymes 

added often need to be removed, adding one more purification step. Enzymes can also be 

prohibitively expensive, especially when producing proteins at large scales. Moreover, 

enzymatic cleavages often fail, and this is especially common for membrane proteins when 

the enzyme recognition site is proximal to the hydrophobic domain. Finally, detergents and 

denaturants, which are widely used to solubilize membrane proteins or proteins expressed in 

inclusion bodies, inactivate common proteolytic enzymes used to cleave tags3.

One approach to circumvent enzymatic cleavage and its drawbacks is chemical cleavage. 

Cyanogen bromide has been used for chemical protein cleavages. However, under harsh 

conditions with low sequence specificity (recognizing single Met residue).4 Metal ions 
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including Pd2+, Cu2+, Ni2+ have also been explored to this end.5–8 Though use of Pd2+ and 

Cu2+ has major obstacles, Ni2+ has shown more potential. Bal and coworkers found Ni2+ 

could cleave the sequence pattern –XSXHZ– prior to the Ser residue.7 The best optimized 

sequence was inserted in a mini-protein SPI-2 to show cleavage can indeed progress.9,10 

However, the reaction requires heating to 50 °C for ~20 hours,9,10 which makes this method 

impractically harsh for most proteins.

To find better methods for biocompatible chemical protein cleavage, we turned to substrate 

phage display.11 We built a hexapeptide substrate phage library between a N-terminal 

AviTag12 and M13 phage pIII protein (in Fig. 1a). We performed four rounds of selection 

(Supplementary Fig. 1) in the presence of different metal ions with increasingly stringent 

cleavage conditions (shorter incubation, lower temperature). Final output phage libraries 

were sequenced and we readily identified a consensus sequence pattern for cleavage using 

Ni2+ ion (Fig. 1b).

This sequence pattern agrees with previous reports where Ser and His are very effective at 

positions P1
’ and P3

’.13 We found a small but significant preference for His at P2’ and Thr at 

P4’. We picked the two most enriched sequences and made the corresponding peptides to 

test the cleavage efficiency by HPLC. The most frequently observed sequence (–

GSHHTDLP–) could achieve 90% cleavage at room temperature at pH 8.2 within 18 hours 

(Fig. 1c).

We found Gly at P1 position is critical for high cleavage efficiency. A Gly to Ala 

replacement leads to a dramatically reduced cleavage rate (Supplementary Fig. 2). This can 

be rationalized through the proposed cleavage mechanism (Supplementary Fig. 1), involving 

Ni2+-assisted N-to-O acyl shift of the P1 carbonyl to the P1’ Ser side chain.14 The resulting 

ester intermediate is then cleaved during the rate-limiting ester hydrolysis,7 and hence is 

sensitive to steric effects that slows hydrolysis for residues other than Gly.15,16 We therefore 

introduced a Gly at position P1 of a previously reported cleavage sequence7 to give -

GSRHW-. This peptide performed slightly better than the best phage selected sequence (Fig. 

1c-d). We further confirmed that His at P2’ position (-GSHHW-) indeed performs better than 

Arg (-GSRHW-) when embedded in a short peptide construct (Fig. 1d-e). We then did a 

cleavage comparison without or with the critical Gly insertion on the miniprotein SPI-2 

(Supplementary Fig. 3).9 With the critical Gly insertion, the cleavage progressed to more 

than 90% yield (22 °C, 16 hours). As expected, absence of the Gly gave only 15% cleavage 

yield under the same conditions. These data together designate the resulting minimal 

sequence –GSHHW– as the SNAC-tag, which was generated from combined efforts of our 

phage selection, validation using synthetic peptides and previous reports.7

We also examined the effect of buffers and exogenous nucleophiles on the rate of the 

cleavage reaction. We found CHES and HEPES buffers performed the best (Supplementary 

Fig. 4), weak nucleophile acetone oxime can accelerate cleavage slightly without inducing 

non-specific cleavages (Supplementary Fig. 4).

Encouraged by the activity of the SNAC-tag, in peptides and a small protein, we sought to 

examine its utility as a cleavable tag in a number of difficult cases where fusion-tag 
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enzymatic cleavage was very inefficient. We first examined its utility in conjunction with a 

HisTag (6xHis) fused to the N-terminus of a water-soluble α-helical bundle protein, 

HB2225. Between the HisTag and HB2225, a cleavage site was included: either TEV (-

ENLYFQS-, Fig. 2a) or a SNAC-tag (–GSHHW–, Fig. 2b). Cleavage by TEV protease under 

standard conditions was mostly incomplete (Fig. 2a). However, cleavage of the SNAC-tag 

containing construct yielded ~80% cleavage into the desired product (Fig. 2b) with good 

reagents compatibility (Fig. 2c). This result demonstrates that the SNAC-tag can indeed 

achieve biocompatible cleavage in full-sized globular proteins when enzymatic cleavage 

fails.

We next explored the utility of SNAC-tag for membrane protein cleavage. In particular, we 

sought to cleave a construct consisting of a designed membrane protein 3hbtmV2 fused to 

T4 lysozyme via a TEV-cleavable linker. After screening a number of constructs, we found 

only a very low level of cleavage with TEV (<20%) (Fig. 2d). By contrast, replacing the 

TEV substrate sequence with the SNAC-tag (–GSHHW–) at the same site, resulted in >90% 

cleavage (Fig. 2e). This demonstrates SNAC-tag is perfectly compatible with cleavage of 

membrane proteins and detergent micelles. The SNAC-tag cleavage was further tested in two 

more water soluble proteins and one more membrane protein, all cleavages achieved >80% 

completion at pH 8.2, 22 °C, 18 hours (Supplementary Fig. 7). In another T4L fusion 

membrane protein (T4L-PL5) where thrombin cleavage was met with difficulty 

(Supplementary Fig. 8). We inserted SNAC-tag to replace thrombin cleavage sequence and 

shown SNAC-tag can be effectively cleaved (Supplementary Fig. 8).

We investigated the effect of different buffer and detergent conditions on the SNAC-tag 

cleavages (Fig. 2c, Fig. 2f-g). Importantly, cleavage was fully compatible with common mild 

detergents, although the reaction was partially inhibited by SDS (Sodium dodecyl sulfate) 

(Fig. 2g). Gratifyingly, strong denaturing conditions including 6 M guanidinium chloride or 

8 M Urea are also compatible, though with decreased efficiency. Lower concentrations up to 

2 M of guanidinium chloride or Urea do not obviously affect cleavage efficiency 

(Supplementary Fig. 9). The SNAC-tag is most efficiently cleaved at pH 8.6, with a small 

decrease in yield at lower (8.2) and higher (9.0) pH. Removal of salt has little effect on 

T4L-3hbtmV2 cleavage, and only a modest effect for HisTag-HB2225 cleavage. We also 

found that HEPES and CHES buffers perform comparably while the weakly Ni2+ chelating 

Tris buffer slows cleavage rate. Ni2+ concentration at 1 mM seems to be necessary for 

efficient cleavage. Low levels of reducing agent (1 mM TCEP, 0.5 mM DTT) are 

compatible, and in fact cleavage of a Cys-containing peptide shows negligible oxidation 

(Supplementary Fig. 10). For proteins that require low temperature handling, cleavage can 

occur at 4 °C albeit at a significantly slower rate than at room temperature.

We studied the potential for cleaving SNAC-tag from proteins bound to Ni2+-NTA 

(nitrilotriacetic acid) resins, via a HisTag. One miligram of HisTag-T4L-GSHHW-3hbtmV2 

was loaded onto a bed volume of 0.5 mL Ni-NTA resins. After exchange into cleavage 

buffer, 1 mM NiCl2 was added and the reaction was incubated overnight at 22 °C 

(Supplementary Fig. 11). On-resin cleavages proceeded nearly to completion, comparable to 

the efficiency observed in solution. No HisTag containing protein was eluted off the beads 

during cleavage, nor did we observe protein cleavage while SNAC-tag containing proteins 
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were purified using Ni-NTA resins. Thus, SNAC-tag cleavage is compatible with Ni-NTA 

purifications and on-resin cleavages.10 However, significant scale-up of protein loading for 

on-resin cleavage (50 mg protein per mL bed volume Ni-NTA resin) resulted in visible 

protein precipitation as the cleavage proceeds, suggesting loading as an important variable to 

consider for on-resin applications.

Knowing that Gly at P1 position plays a key role in the rate of hydrolysis, we generated a 

second targeted phage library (–X1X2X3GSX4HX5X6X7–) to further explore the influences 

of nearby residues on cleavage efficiency. Four more rounds of selection were performed 

and the final output library was sequenced. We ranked each particular sequence observed in 

the output library (normalized to the control library: the same selection protocol in the 

absence of Ni2+) shown in Supplementary Table 2. Guided by this analysis, we then picked 

11 distinct sequences from this selection and the top two sequences from the initial phage 

selection to replace the TEV substrate site in HisTag-HB2225 and in HisTag-T4L-3hbtmV2 

for Ni2+ cleavage. We confirmed that several of these SNAC-tag variants yielded more than 

80% cleavage under our standard conditions (Fig. 2h). For the water-soluble HisTag-

HB2225, efficiency is slightly lower (Fig. 2i). This result indicates that a number of diverse 

sequence combinations can be used to achieve high cleavage efficiency. All the high-ranking 

cleavage sequences are listed in the Supplementary Table 2. To achieve high cleavage 

efficiency, Gly at P1, Ser at P1’ and His P3’ seems to be mandatory, while hydrophobic 

residues at P2’ are not favored. For the sequences listed in Fig. 2h-i and Supplementary 

Table 2, the specific sequences seem to be important to achieve high cleavage efficiency, 

though we didn’t investigate further to find the minimal sequence for each individual 

sequence. Furthermore, cleavage requires correct geometry of the Ni2+ complex 

(Supplementary Fig. 1), and is only likely achieved in poorly structured protein regions. 
9,14,17

We also systematically evaluated the effect of the surrounding residues by screening 

hundreds of peptides at five nearby positions (Supplementary Table 3-4). Better cleavage 

peptides than –GSHHW– were identified. However, they didn’t perform better when 

inserted in proteins (Supplementary Fig. 12).

In summary, we develop the SNAC-tag as a new chemical protein cleavage strategy. The 

SNAC-tag can be inserted into both water soluble and membrane proteins to achieve 

biocompatible protein cleavage in a sequence-specific manner with efficiency comparable to 

enzymes. The method is particularly attractive as it only leaves a small Gly residue at the C-

terminus of the released protein, when it is used as a C-terminal tag. Additionally, this 

approach circumvents the demands of subsequent enzyme removal. Critically, we show 

cases where the SNAC-tag can succeed when enzymatic cleavage fails. We suggest using –

GSHHW– as a general SNAC-tag although –GSRHW– is also efficiently cleaved. Cleavage 

conditions are: protein concentration ~1 mg/mL, 1 mM NiCl2, 0.1 M CHES buffer, 0.1 M 

acetone oxime, pH 8.6, incubating at room temperature, 0.1-0.5 M NaCl. For specific 

sequence requirements and additional cleavage details, consult the methods. We expect the 

SNAC-tag to greatly reduce the cost and labor of recombinant protein production at both the 

laboratory and industrial scale and to find broad applications throughout medicine, basic 

biological research, and biotechnology.
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Methods

Reagents.

All reagents were used without further treatment. Fmoc-protected amino acids were 

purchased from GL Biochem. 2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-

tetramethylaminium hexafluorophosphate (HCTU), trifluoroacetic acid (TFA), and 

hydroxybenzotriazole hydrate (HOBt) were purchased from Chem-Impex International. 4-

methylpiperidine were purchased from Acros Organics. Rink Amide-ChemMatrix resin (0.5 

mmol/g loading) was purchased from Biotage. All other reagents including tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), DL-Dithiothreitol (DTT), N,N-

Dimethyldodecylamine N-oxide (LDAO), N-Dodecyl-N,N-dimethyl-3-ammonio-1-

propanesulfonate (C12 Betaine), Triton X100 were purchased from Sigma-Aldrich. Fos-

choline-12 (DPC), Decyl β-D-maltopyranoside (DM) were purchased from Anatrace. 

Sodium dodecyl sulfate (SDS) was purchased from Calbiochem, IPTG (isopropyl β-D-1-

thiogalactopyranoside) was purchased from Genesee Scientific Corporation.

Protein Gels and DNA Gels.

Precast NuPAGE 4-12% Bis-Tris polyacrylamide protein gels were purchased from 

Invitrogen. Protein gels were run at 200 V for 35 minutes in MES buffer, gels were then 

washed 9 times with warm water, stained with coomassie blue for 4 hours. It was then 

destained using tap water for 16 hours before we imaged them on Bio-Rad ChemiDoc MP 

imaging System. All protein bands were analyzed and quantified using Imagelab 5.2.1. 

Agarose DNA gels were made in house using 1% UltraPure Agarose 1000 in TAE buffer 

with 0.01% EZ-Vision (Amresco), DNA gels were run at 150 V for 25 minutes and 

visualized under UV.

Reverse-phase HPLC and Mass Spectrometry.

Analytical reverse-phase HPLC analyses were performed on an Agilent 1100 series HPLC 

system using a Phenomenex Kinetex 2.6 μm C18, 50 × 2.1 mm column. Chromatographic 

separations were obtained using a linear gradient of 1-61% acetonitrile (with 0.08% TFA) in 

water (with 0.1% TFA) over 10 min, 1-41% acetonitrile (with 0.08% TFA) in water (with 

0.1% TFA) over 20 min, or 1-41% acetonitrile (with 0.08% TFA) in water (with 0.1% TFA) 

over 40 min with column at room temperature. Flow rates were controlled at 0.35 mL/min. 

Peptide detection was based on UV absorption at 220 nm, and mass spectrometry data were 

obtained using Shimadzu AXIMA Performance MALDI-TOF spectrometer in a reflectron 

mode with α-Cyano-4-hydroxycinnamic acid as the matrix.

Preparative HPLC.

Products from solid-phase peptide synthesis were purified using a Phenomenex Jupiter 5.0 

μm C4, 250 × 10.0 mm column. A shallow gradient of acetonitrile (with 0.08% TFA) versus 

water (with 0.1% TFA) was designed for each peptide based on its elution characteristics. 

Flow rates were controlled at 5 mL/min. Fractions containing the desired pure peptide were 

identified by analytical HPLC and mass spectrometry, then combined and lyophilized.
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Solid-phase peptide synthesis (SPPS).

All peptides were synthesized at 20 μmol scale using a Biotage Syro II parallel peptide 

synthesizer or at 0.1 mM scale using a Biotage Initiator+ Alstra peptide synthesizer. Rink 

Amide-ChemMatrix resin (Biotage, 0.5 mmol/g loading) was used for the synthesis. A 

typical SPPS reaction cycle includes Fmoc deprotection, washing, coupling, and post-

coupling washing steps. The deprotection was carried out for 5 min at room temperature 

with 20% 4-methylpiperidine in dimethylformamide (DMF). A standard double coupling 

was done for 8 min at room temperature or 5 min under microwave with 5 equivalents 

Fmoc-protected amino acids, 4.98 equivalents HCTU, and 10 equivalents DIEA (relative to 

the amino groups on resin) in DMF at a final concentration of 0.125 M amino acids.

Phage library construction.

All phages were propagated in the E. coli strains TG1 (Lucigen). E. coli CJ236 was 

purchased from Lucigen. The recombinantly expressed BirA enzyme used for biotinylating 

AviTag was a gift from the Wells lab at UCSF. Phagemid vector pCES1 was obtained from 

Craik lab at UCSF. Pierce streptavidin coated high capacity plates were purchased from 

ThermoFisher Scientific. The AviTag-displaying M13 phage libraries were constructed in 

phagemid vector pCES1. AviTag-TEV sequence was first fused to the N-terminal of pIII 

protein in pCES1 vector using ApaL1 and Not1 restriction sites affording protein sequence 

as MGLNDIFEAQKIEWHEGGSENLYFQGGSAAAHHHHHHGAAEQKLISEEDLNG-, 

Single strand M13 DNA was purified using the M13 DNA kit from Qiagen. For library 

construction, we followed the protocol by Chen et al.18 Phage libraries were constructed 

using an oligonucleotide encoding the reverse complement of protein sequence –

IEWHEGGSXXXXXXGGSAAAHHH- using primer 5’-

TGATGATGATGTGCGGCCGCACTACCACCMNNMNNMNNMNNMNNMNNGCTGC

CGCCTTCATGCCATTCAAT-3’ for AviTag-XXXXXX- library, or using 5’-

TGATGATGATGTGCGGCCGCACTACCACCMNNMNNMNNATGMNNACTACCMNN

MNNMNNACCACCGCTGCCGCCTTCATGCCATTCAAT-3’ for AviTag-

XXXGSXHXXX-library (codon M = A, C; N = A, C, T, G). Double-stranded DNA was 

generated according to Sidhu et al. 18,19 and electroporated into TG1. Library size of 4×109 

were generated and amplified for 15 h at 37 °C in 250 mL 2xYT broth containing AMP (30 

mg/mL) and Kan (15 mg/mL final). For phage biotinylation, purified phages (4 × 1012 cfu) 

were resuspended in 0.5 mL of 10 mM Tris, pH 8.0 to exchange buffer (10 mM Tris, pH 8.0) 

three times using 30 kDa MWCO tube. After buffer exchange, we added 40 uL water, 80 uL 

2× biotinylation buffer (0.1 M Tris, 10 mM MgCl2, 2 mM Biotin, pH 8.0) to wash the tube 

and get the solution to eppendorf tube. 20 uL water, and 20 uL 2× biotinylation buffer was 

added to the centrifugation tube again to rinse one more time. We then added ~6 uL of 0.1 M 

ATP, 2 uL of BirA enzyme (3U/uL) to the ~200 uL phage solution, vortexed gently to mix 

well and leave at 4 °C overnight for biotinylation. Anti-biotin western blot was then 

performed to confirm phages were biotinylated.

Substrate phage selection experiments.

Four rounds of substrate selection were conducted (Supplementary Fig. 1). In round one, 

streptavidin-coated ELISA plate was blocked with 2% BSA for 30 min and washed three 
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times with phosphate-buffered saline containing 0.1 % Tween 20 (PBST) buffer. The plate 

was then coated with ~ 109 phages (one well) by gently shaking the phages for 2 hours. The 

phages were washed out of the wells, well washed with PBST × 6, batch wash with PBST 

(0.3 mL) for 3 × 20 min. Cleavage buffer containing 2 mM NiCl2, 0.1 M Tris, pH 9.0 was 

then added at 37 ˚C for 3 hours. Cleaved phages were amplified overnight in 2xYT (30 mL) 

at 37 ˚C with shaking. The second, third and fourth rounds of selection were performed by 

repeating the procedure above with shorten the cleavage time to 30 min as well as lowering 

the cleavage temperature from 37 °C to room temperature. Over different rounds of 

selection, output phage titer is always around 3×108 cfu. The final output phages were 

sequenced either by picking colonies or doing deep sequencing.

We also ran a control selection along with the cleavage selections. In the control selection, 

all selection procedures were kept the same except in the elution step (cleavage step), which 

lacked added Ni2+ in the Tris buffer. The purpose of performing control selection was to 

estimate sequence enrichment due to differences in growth rate or background-binding for 

individual displayed peptides.

Protein expression, purification and cleavage.

Initial HB2225 and 3hbtmV2 genes were introduced into a pET-28a vector (Novagen) using 

Gibson assembly, their sequences were confirmed (Genewiz San Francisco), and were then 

transformed and expressed in One Shot® BL21(DE3) Chemically Competent E. coli 
(ThermoFisher Scientific). Different cleavage peptide sequences (Supplementary Table 5) 

were then introduced into the pET-28a vector containing the HB2225 and 3hbtmV2 genes 

following Gibson assembly protocol (New England Biolabs).

Protein sequences are listed as below:

6×His-ENLYFQS-HB2225:

MGSSHHHHHHSSGENLYFQSHMDYLRELLKLELQAIKQYEKLRQTGDELVQ

AFQRLREIFDKGDDDSLEQVLEEIEELIQKHRQLASELPKLELQAIKQYREALE

YVKLPVLAKILEDEEKHIEWLEEAAKQGDQWVQLFQRFREAIDKGDKDSLE

QLLEELEQALQKIRELARLTRKILEDEEKHIEWLETILG

6×His-GSHHW-HB2225:

MGSSHHHHHHSSGGSHHWSHMDYLRELLKLELQAIKQYEKLRQTGDELVQA

FQRLREIFDKGDDDSLEQVLEEIEELIQKHRQLASELPKLELQAIKQYREALEY

VKLPVLAKILEDEEKHIEWLEEAAKQGDQWVQLFQRFREAIDKGDKDSLEQL

LEELEQALQKIRELARLTRKILEDEEKHIEWLETILG

6×His-T4L-ENLYFQG-3hbtmV2:

MGSSHHHHHHSSGLVPRGSHMGNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHL

LTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLK

PVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAK

SRWYNQTPNRAKRVITTFRTGTWDAYAAGGSGSTENLYFQSNSPDLEAWLLFI

MLLTNALIFLAQKWVRETRDGDEAWKKIFLATFALNLLXXXXXXXXXXXXX
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XXXXXXXXXXXXTLAFNLLTILLGYKTIEGR (de novo designed membrane 

protein, full sequence to be released in a separate paper)

6×His-T4L-GSHHW-3hbtmV2:

MGSSHHHHHHSSGLVPRGSHMGNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHL

LTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLK

PVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAK

SRWYNQTPNRAKRVITTFRTGTWDAYAAGGSGSTEGSHHWNSPDLEAWLLFI

MLLTNALIFLAQKWVRETRDGDEAWKKIFLATFALNLLXXXXXXXXXXXXX

XXXXXXXXXXXXTLAFNLLTILLGYKTIEGR (de novo designed membrane 

protein, full sequence to be released in a separate paper)

For expressing HB2225 constructs, cells were grown in LB broth (15 μg/mL Kan), induced 

at 0.6-0.8 OD600 with 1 mM IPTG (isopropyl β-D-1-thiogalactopyranoside) and incubated 

for 4 hours at 37 °C before harvesting. Cell pellets were resuspended in buffer containing 50 

mM Tris (pH 8.0), 300 mM NaCl, 2% glycerol and lysed by sonication, and cell debris was 

subsequently removed by centrifugation (18000 rpm and 4 °C for 30 min). The soluble cell 

lysate was purified with Ni-NTA affinity chromatography.

For expressing 3hbtmV2 constructs, cells were grown in LB broth (15 μg/mL Kan), induced 

at 0.6-0.8 OD600 with 0.4 mM IPTG (isopropyl β-D-1-thiogalactopyranoside) and incubated 

overnight at 18 °C before harvesting. Cell pellets were resuspended in buffer containing 50 

mM Tris (pH 8.0), 300 mM NaCl, 2% glycerol, 5 mM DPC and lysed by sonication, and cell 

debris was subsequently removed by centrifugation (18000 rpm and 4 °C for 30 min). The 

soluble cell lysate was purified with Ni-NTA affinity chromatography.

For cleaving HB2225 constructs, proteins were first exchanged into buffer containing 0.1 M 

CHES, 0.1 M Acetone oxime, 0.1 M NaCl at appropriate pH, 1 mM NiCl2 was then added, 

the solution was mixed well and left at room temperature (~22 °C) for cleavage to proceed 

without shaking or stirring. Imidazole from Ni-NTA elution needs to be removed completely 

prior cleavage. For cleaving 3hbtmV2 constructs, procedure is essentially the same as 

HB2225 except appropriate detergents needs to be added to the cleavage solutions. Cleavage 

efficiency were quantified using Imagelab 5.2.1 on Bio-Rad ChemiDoc MP imaging System. 

A time course cleavage of HisTag-T4L-GSHHW-3hbtmV2 and HisTag-GSHHW-HB2225 

are shown in Supplementary Fig. 13.

TEV protease was purchased from Sigma-Aldrich, TEV cleavage was carried out under 

standard conditions: protein 1 mg/mL, 50 mM Tris, pH 8.0, 0.5 mM EDTA, 1 mM DTT, 

0.25 M NaCl, 22 °C, 5 mM DPC, 16 hours, TEV 0.04 mg/mL. We also tried TEV cleavage 

at 34 °C for HisTag-T4L-ENLYFQS-3hbtmV2 and HisTag-ENLYFQS-HB2225, no obvious 

difference was observed from 22 °C cleavage. We ran a positive control of TEV protease 

cleavage on a different protein that could be efficiently cleaved by TEV protease to show 

TEV protease we obtained indeed has good quality (Supplementary Fig. 14).

Thrombin was purchased from EMD Milipore. Cleavage conditions: 50 mM Tris, pH 8.4, 

150 mM NaCl, 0.5 mM CaCl2, 5 mM DPC, 22 °C, 16 hours. One thrombin unit is defined as 
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that amount of enzyme required to cleave 1 mg of a test protein when incubated in standard 

digest buffer at 20°C for 16 hours.

Peptide cleavage screening:

As an alternative approach to explore nearby amino acid influence on cleavage efficiency, 

we made ~100 peptides (Supplementary Table 3) varying the amino acid identity 

individually around the cleavage site in the peptide WLX1X2SX3HX4X5. Peptides cleavage 

were performed under cleavage conditions described above in Fig. 1, cleavage yields were 

quantified using Agilent HPLC online system by integrating peak area. The sum of the 

extinction coefficient for the two product peaks was assumed to be the same as the initial 

peptide. We found position X5 has minimum impact on cleavage; position X4 has strong 

preference for Trp; position X3 strongly prefer His; for position X2, His, Asn, perform the 

best, followed by Lys, Arg; position X1 prefer Pro. We then further picked ~30 sequence 

combinations (Supplementary Table 4) and tested the cleavage efficiency. We found two 

sequence combinations (-PGSHHW- -HNSHHW-) indeed gave better cleavage efficiency 

(Supplementary Fig. 12). But when we then inserted these two sequences individually into 

the globular protein and membrane protein construct we tested previously. Unfortunately, 

they didn’t perform better (Supplementary Fig. 12). Thus, for searching best protein 

cleavage sequences, peptide models didn’t seem to be the best system. Protein based 

selections such as phage display is probably a more reliable way as we did here. Another 

thing to point out is the amino acid preference at X2 position didn’t fully hold up in a 

different peptide system (Supplementary Table 4), so we think Gly is still the best amino 

acid to use for best cleavage at X2 position.

A few tips for running cleavage reactions:

For peptide cleavage tests, lyophilized peptides were dissolved in cleavage buffer (0.1 M 

CHES, 0.1 M NaCl, 0.1 M acetone oxime, pH 8.2 or otherwise noted in the context) at 0.2 

mM concentration, 1 mM NiCl2 was then added for the reaction to proceed without stirring 

or shaking.

We tested the compatibility of single unpaired cysteine with cleavage conditions in a peptide 

sample (Supplementary Fig. 10) and found no obvious Cys oxidation was observed during 

the cleavage process. In cases where cysteine oxidation is observed, 1-2 mM TCEP could be 

added to keep cleavage under reducing conditions to minimize oxidation while keeping 

cleavage rate essentially the same.

For the cleavage of short peptides, pH does make a big difference, cleavage rate increase 

about two-fold from 8.2 to pH 8.6, and from pH 8.6 to pH 9.0 (Supplementary Fig. 15). 

However, this trend of rate increase didn’t hold for the two protein cleavage examples, we 

therefore recommend doing cleavage at pH 8.6 as it performs slightly better on the two 

protein examples shown in Fig. 2.

For some proteins, adding 1 mM NiCl2 could cause protein precipitation. Under this 

situation, adding 0.5 M GuHCl to protein solution prior mixing protein with Ni2+ could 

dramatically reduce protein precipitation without affecting cleavage efficiency 

(Supplementary Fig. 9), since most of the proteins cannot be denatured with this diluted 
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GuHCl concentration, we recommend using 0.5 M GuHCl when protein precipitation 

occurs. Alternatively, 1 mM TCEP could be added to protein solution prior adding NiCl2, 

since TCEP binds with Ni2+ weakly and could minimize non-specific metal mediated 

protein-protein interactions preventing protein precipitation. Other weak Ni2+ ligand could 

potentially be explored to achieve the same result. The detailed protocol for SNAC-tag 

cleavage has been published on Protocol Exchange.20

Data Availability

The data that support the findings of this study are available from the corresponding author 

upon appropriate request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Phage selection and optimization of best Ni2+ cleavage sequence.
a. Substrate phage construct. b. Sequence frequency plot of Ni2+ cleavage selection, red 

dashed line indicates cleavage site between P1 and P1’ positions, P2’ to P7’ correspond to the 

randomized positions in Fig. 1a. Panels c-e. Evaluation of the cleavage of synthetic peptides 

(black arrow indicates uncleaved peptide). c. The most frequently observed phage selected 

peptide sequence YFLGGSHHTDLPGGSRRLFY; d. optimized peptide YFLPGSRHWG; e. 
best optimized peptide YFLPGSHHWG (the Arg for His substitution is based on the 

sequence logo in Fig. 1b). All peptides contain C-terminal carboxamides. The cleavage 

conditions were: peptide 0.2 mM, 0.1 M CHES, pH 8.2, 1 mM NiCl2, 22 °C, 16 hours. The 

mass of uncleaved and cleaved peptides were measured using MALDI-TOF shown in 

Supplementary Fig. 5.
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Fig. 2. SNAC-tag cleavage in fusion proteins.
a. TEV protease cleavage of HisTag-ENLYFQS-HB2225 construct, cleavage conditions: 

protein 1 mg/mL, 50 mM Tris, pH 8.0, 0.5 mM EDTA, 1 mM DTT, 0.25 M NaCl, 22 °C, 16 

hours, TEV protease 0.04 mg/mL. b. Ni2+ cleavage of HisTag-GSHHW-HB2225 construct, 

cleavage conditions: protein 1 mg/mL, 1.0 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, 

0.1 M NaCl, pH 8.2, 22 °C, 16 hours. c. Cleavage compatibility test for Ni2+ cleavage of 

HisTag-GSHHW-HB2225. d. TEV protease cleavage of HisTag-T4L-ENLYFQS-3hbtmV2 

construct, cleavage conditions: protein 1 mg/mL, 50 mM Tris, pH 8.0, 0.5 mM EDTA, 1mM 

DTT, 0.25 M NaCl, 22 °C, 5 mM DPC, 16 hours, TEV 0.04 mg/mL. e. Ni2+ cleavage of 

HisTag-T4L-GSHHW-3hbtmV2 construct, cleavage conditions: protein 1 mg/mL, 1.0 mM 

NiCl2 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, pH 8.2, 22 °C, 5 mM DPC, 16 

hours. f. Cleavage compatibility test for Ni2+ cleavage of HisTag-T4L-GSHHW-3hbtmV2. g. 
Ni2+ cleavage of HisTag-T4L-GSHHW-3hbtmV2 in different detergents. h. Cleavage of the 

membrane protein HisTag-T4L-XXXXXXXX-3hbtmV2. Lane 1 shows protein before 

cleavage, lanes 2 to 14 shows cleavage using difference sequences from phage selections, 

the sequence inserted for each lane is shown on top of the lane. i. Cleavage of the globular 

protein construct HisTag-XXXXXXXX-HB2225, lane 1 shows the position of the protein 

before cleavage, lane 2 to lane 13 shows cleavage using difference sequences from phage 

selection, the sequence inserted for each lane is shown on top of the lane. Cleavage 

percentages were quantified based on cleaved and uncleaved protein bands in each 

individual lane in Imagelab 5.2.1 and is summarized in Supplement Table 1, 2. Full gels are 

shown in Supplementary Fig. 6.
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