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A ferroptosis‑associated gene 
signature for the prediction 
of prognosis and therapeutic 
response in luminal‑type breast 
carcinoma
Yang Peng1,4, Haochen Yu1,2,4, Yingzi Zhang1, Fanli Qu3, Zhenrong Tang1, Chi Qu1, Jiao Tian1, 
Beige Zong1, Yu Wang1, Haoyu Ren1 & Shengchun Liu1*

Ferroptosis is a new form of regulated cell death (RCD), and its emergence has provided a new 
approach to the progression and drug resistance of breast cancer (BRCA). However, there is still a 
great gap in the study of ferroptosis‑related genes in BRCA, especially luminal‑type BRCA patients. We 
downloaded the mRNA expression profiles and corresponding clinical data of BRCA patients from the 
Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome 
Atlas (TCGA) databases. Then, we built a prognostic multigene signature with ferroptosis‑related 
differentially expressed genes (DEGs) in the METABRIC cohort and validated it in the TCGA cohort. The 
predictive value of this signature was investigated in terms of the immune microenvironment and the 
probability of a response to immunotherapy and chemotherapy. The patients were divided into a high‑
risk group and a low‑risk group according to the ferroptosis‑associated gene signature, and the high‑
risk group had a worse overall survival (OS). The risk score based on the 10 ferroptosis‑related gene‑
based signature was determined to be an independent prognostic predictor in both the METABRIC 
and TCGA cohorts (HR, 1.41, 95% CI, 1.14–1.76, P = 0.002; HR, 2.19, 95% CI, 1.13–4.26, P = 0.02). 
Gene set enrichment analysis indicated that the term “cytokine‑cytokine receptor interaction” was 
enriched in the high‑risk score subgroup. Moreover, the immune infiltration scores of most immune 
cells were significantly different between the two groups, the low‑risk group was much more sensitive 
to immunotherapy, and six drugs might have potential therapeutic implications in the high‑risk group. 
Finally, a nomogram incorporating a classifier based on the 10 ferroptosis‑related genes, tumor stage, 
age and histologic grade was established. This nomogram showed favorable discriminative ability and 
could help guide clinical decision‑making for luminal‑type breast carcinoma.

Breast cancer (BRCA) is the most common type of malignant tumor in females and includes numerous subtypes 
with high  heterogeneity1,2. Additionally, BRCA is the leading cause of cancer-related deaths among females 
 worldwide3. With the growing understanding of BRCA at the molecular level, there is a growing focus on the 
precision treatment of BRCA. Four molecular features can be used to group breast tumors based on the following: 
expression of the estrogen receptor (ER), the progesterone receptor (PR), Ki-67 (a proliferation index marker), 
and the HER2 receptor tyrosine kinase (HER2)4. Therefore, substantial heterogeneity exists within and between 
well-established BRCA subtypes and therapies. Luminal-type BRCAs have better potential efficacy than TNBCs 
because of their positive expression of hormone receptors and the location of the target sites of Ki67 and HER2. 
Additionally, in clinical practice, we have also found that the luminal subtype of BRCA accounts for almost 
70% of new cases of BRCA. Since luminal-type BRCA has high ER and PR expression, inhibitors of hormone 
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receptors, such as tamoxifen, are still used in the treatment of this type of BRCA. However, the emergence of 
drug resistance has also made the search for new treatment options imminent.

Ferroptosis is a new form of regulated cell death (RCD)5. The emergence of ferroptosis has provided a new 
approach to the progression and drug resistance of BRCA. Ferroptosis can be induced by experimental com-
pounds (e.g., erastin) or clinical drugs (e.g., sorafenib and artemisinin) in cancer cells and normal cells (e.g., 
kidney tubule cells, fibroblasts and T cells)5–7. Ferroptosis is triggered by the accumulation of lipid peroxidation 
products and toxic reactive oxygen species (ROS) derived from iron  metabolism8. Iron metabolism and lipid 
peroxidation signaling are recognized as the main mediators of  ferroptosis5. Previous studies have reported that 
ferroptosis plays a vital role in BRCA, and some genes, such as  ACSL49 and P53RRA 10, are known to positively 
regulate ferroptosis. On the other hand, other ferroptosis-related genes, such as  ATF211,  NRF212 and  GPX413, 
might inhibit ferroptosis in BRCA.

For better treatment decision-making in early BRCA patients, it is important to accurately predict the risk 
of recurrence and response to therapy. Currently, prediction at the molecular level still relies heavily on ER, 
PR and HER2. However, these traditional factors alone are not sufficient for optimal treatment decisions, and 
consequently, several molecular assays based on multiple gene expression signatures have been developed to 
better predict the prognosis and treatment responses of BRCA patients. Since the introduction of first-generation 
multigene assays, several prognostic assays for early BRCA, such as  Prosigna14 and  EndoPredict15, have subse-
quently been developed. The most commonly used signature in clinical work is a 21-gene signature assay based 
on quantitative real-time reverse transcription-PCR (qRT-PCR). Patients are classified into low-, intermediate-, 
and high-risk categories according to the recurrence score (RS) calculated from the expression of 21 genes, 
comprising 16 cancer-related genes and 5 reference  genes16. Moreover, many immune gene signatures have been 
reported as prognostic or predictive biomarkers in BRCA. Finak et al.17 identified a new 26-gene stroma-derived 
prognostic predictor (SDPP) associated with the clinical outcome of BRCA patients. These 26 genes comprise 
CD48, TRBV5-4, and other genes that are closely related to the immune response. Thus, the exploration of 
BRCA-associated gene signatures is important for precise BRCA treatment.

Ferroptosis has emerged as a new form of death with a growing number of studies on the genes associated 
with it. However, there is still a great gap in the study of ferroptosis-related genes in BRCA patients, especially 
luminal-type BRCA patients. In our study, we downloaded the mRNA expression profiles and corresponding 
clinical data of BRCA patients from different databases. Then, we built a prognostic multigene signature with 
ferroptosis-related differentially expressed genes (DEGs) in the Molecular Taxonomy of Breast Cancer Interna-
tional Consortium (METABRIC) cohort and validated it in The Cancer Genome Atlas (TCGA) cohort. Then, 
we further explored the underlying mechanisms. Finally, a quantifiable and clinically usable gene signature was 
obtained.

Methods
Data collection. The RNA sequencing (RNA-seq) data and clinical information of 1139 luminal subtype 
BRCA patients were downloaded from the METABRIC database (https:// www. cbiop ortal. org/ study? id= brca_ 
metab ric). The mRNA expression profiles and clinical information of another 754 tumor samples were obtained 
from the TCGA database (https:// gdc- portal. nci. nih. gov/). All METABRIC and TCGA data are publicly avail-
able. Ferroptosis-related genes were identified from the latest literature and are provided in Supplementary 
Table  S1. Six immune infiltration cell scores and 28 immune infiltration cell scores were downloaded from 
the Tumor IMmune Estimation Resource (TIMER, available at http:// cistr ome. org/ TIMER) 18 and The Can-
cer Immunome Atlas (https:// tcia. at/) 19. The TCGAbiolinks package (version 2.18.0; https:// github. com/ Bioin 
forma ticsF MRP/ TCGAb iolin ks) was used to download the somatic mutation profiles of BRCA patients from 
the TCGA  database20, and the maftools package (version 2.6.05; https:// github. com/ Poiso nAlien/ mafto ols) was 
used to summarize and analyze the  data21. The copy number variation (CNV) profiles of BRCA patients were 
also obtained from the TCGAbiolinks package, and GISTIC 2.0 was used to generate discrete copy number data 
files (https:// cloud. genep attern. org/) 22. Drug sensitivity data of cancer cell-lines (CCLs) were obtained from 
the Cancer Therapeutics Response Portal (CTRP v.2.0, released October 2015, https:// porta ls. broad insti tute. 
org/ ctrp) and PRISM Repurposing dataset (19Q4, released December 2019, https:// depmap. org/ portal/ prism/).

Study design. The METABRIC cohort was used as the training set, and the TCGA cohort was used as the 
validation set. The R package limma (version: 3.46.0; http:// bioinf. wehi. edu. au/ limma) was utilized to carry out 
normalization and compare DEGs between tumor and adjacent samples with false discovery rate (FDR) < 0.05 
in the METABRIC  cohort23. Then, univariate Cox analysis was used to select DEGs significantly associated with 
overall survival (OS). Finally, the 12 DEGs in the METABRIC cohort most related to OS with P < 0.05 were 
selected for least absolute shrinkage and selector operator (LASSO) Cox regression to narrow down the candi-
date ferroptosis-related genes using the R package glmnet (version: 4.0-2; https:// cran.r- proje ct. org/ web/ packa 
ges/ glmnet/ index. html). Ten ferroptosis-related genes were identified to have nonzero coefficients in the model, 
and the samples were divided into high-risk and low-risk groups based on the optimal cutoff value of 0.22, which 
was derived from the surv_cutpoint function of the survminer R package (Version: 0.4.3, https:// CRAN.R- proje 
ct. org/ packa ge= survm iner). The formula of the risk score was as follows:

The coefficients of the normalized expression level of each ferroptosis-related gene are supplied in Table S2. 
Finally, independent risk factors identified through multivariate Cox regression analysis were chosen to develop 
a nomogram for predicting OS likelihood. In addition, we plotted calibration plots to investigate the perfor-
mance of the nomogram. The concordance index (C-index) was used to assess the agreement between the actual 

Risk score = sum of coefficients × normalized expression level of ferroptosis−related genes
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outcomes and the probabilities predicted by the model. The R package rms was used to plot the nomogram and 
calibration plots (Version: 4.0.2, https:// cran.r- proje ct. org/ web/ packa ges/ rms/).

Gene set enrichment analysis (GSEA) and functional enrichment analysis. To assess the potential 
mechanisms of the ferroptosis-related genes included in the risk score, GSEA was performed to identify the dif-
ferences in the pathways in luminal subtype BRCA patients. The annotated gene set file (c2.cp.kegg.v7.1.entrez.
gmt) was used as a  reference24–26. A P value less than 0.05 was set as the significance threshold. Genes with 
P < 0.05 and |log2-fold change (FC)|≥ 0.2 were recognized as significantly differentially expressed between the 
high-risk and low-risk groups based on the risk score. Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses of the DEGs were performed using the clusterProfiler R package (version 3.18.1; 
https:// yulab- smu. top/ biome dical- knowl edge- mining- book/) 27.

Estimation of immunotherapy and chemotherapy response. The normalized gene expression data 
with standard annotation files from the TCGA cohort were uploaded to the Immune Cell Abundance Iden-
tifier (ImmuCellAI) (http:// bioin fo. life. hust. edu. cn/ web/ ImmuC ellAI/), which uses a gene set signature-based 
method to precisely estimate the infiltration score of 24 immune cell types, including 18T-cell subsets, and to 
predict the immunotherapy response (anti-PD1 or anti-CTLA4 therapy) with high  accuracy28. The R pack-
age pRRophetic (version 0.5; https:// doi. org/ 10. 1371/ journ al. pone. 01074 68) was used to predict chemotherapy 
response as determined by the half maximal inhibitory concentration (IC50) of each BRCA patient in the TCGA 
 cohort29. The methods used to assess the drug sensitivity of each sample from TCGA were referenced from the 
published  literature30.

Statistical analysis. All statistical analyses were conducted using R version 4.0.0 (2020-04-24). The Mann–
Whitney U-test and the Pearson chi-square test were used for comparisons of continuous and categorical vari-
ables, respectively, between the training set and testing set. Univariate and multivariate Cox regression analyses 
were used to identify the predominant prognostic factors of OS (P < 0.05). Kaplan–Meier survival curves were 
compared using the log-rank test. The ggplot2 R package (version 3.3.3; https:// ggplo t2. tidyv erse. org) was used 
to plot the volcano plot and  heatmap31. Correlations between two continuous variables were measured by either 
Pearson’s r correlation or Spearman’s rank-order correlation. The estimated scores, immune scores and stromal 
scores of BRCA were analyzed by the estimate R  package32. K-nearest neighbor (k-NN) imputation was applied 
to impute the missing AUC values. P < 0.05 (two-sided) was considered statistically significant.

Results
Patient characteristics. The flow chart of our research is shown in Fig. 1. A total of 1139 luminal subtype 
BRCA patients from the METABRIC cohort were included as a training set, and 754 patients from the TCGA 
cohort were enrolled as a testing set. The detailed clinical features of these patients are shown in Table 1.

Candidate prognostic ferroptosis‑related DEGs were identified in the METABRIC cohort. More 
than half of the ferroptosis-related genes (32/63) were differentially expressed between 140 adjacent normal 
breast tissues and 1139 luminal subtype BRCA samples, and in the univariate Cox regression analysis, twelve 
of them were associated with OS (Fig. 2A). Some ferroptosis-related genes showed correlations with each other 
(Fig. 2B). The protein–protein interaction (PPI) network showing interactions between candidate genes is pre-
sented in Fig. 2C. A forest plot was used to display the results of the univariate Cox regression analysis of the 
relationship between the expression of candidate genes and OS (Fig. 2D). The heatmap showed that more than 
half of the genes were downregulated in tumor tissue, and consistent with the univariate Cox regression analysis, 
they represented a better prognosis, including PTGS2, ACO1, DPP4, CRYAB, PRKCA, ACSL4 and AKR1C3 
(Fig. 2E).

Constructing a prognostic model based on the METABRIC cohort. To further identify the best 
candidate genes for building a predictive model, LASSO Cox regression was performed in the METABRIC 
cohort. Finally, 10 candidate gene signatures were found to have the optimal value of lambda (Fig. 2F, G). A risk 
score was established to identify the predictive performance of the 10 ferroptosis-related gene-based signature in 
the METABRIC cohort (Table S3). Patients with a risk score greater than 0.22 were categorized into the high-risk 
group, and the remaining patients were stratified into the low-risk group. The distributions of the risk scores, 
survival time, and survival status are displayed in Fig. 3A, B. The high-risk group was found to be significantly 
associated with higher age, postmenopausal status and histologic grade (Table 2). Kaplan–Meier curves were 
constructed and indicated that patients with low-risk scores were significantly correlated with better prognosis 
in the METABRIC cohort (Fig. 3C, P < 0.001). Then, time-dependent receiver operating characteristic (ROC) 
curve analysis was performed to evaluate the area under the curve (AUC). The AUCs of the 10 ferroptosis-
related gene-based signature for predicting OS at 1, 3 and 5 years reached 0.721, 0.604 and 0.646, respectively 
(Fig. 3D). As shown in Fig. 3E, F, principal component analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) analyses showed that patients in different risk groups were spread out in two directions. 
In summary, we believe that increasing the level of ferroptosis in the tumor tissues of BRCA patients would be 
beneficial to these patients. In addition, ferroptosis was found to be increased in the low-risk group. In other 
words, low-risk patients are more prone to ferroptosis, or ferroptosis activity is greater in the low-risk group; that 
is, low-risk patients survive longer because the cancer tissue in their bodies exhibits greater levels of ferroptosis, 
and more cancer cells die.

https://cran.r-project.org/web/packages/rms/
https://yulab-smu.top/biomedical-knowledge-mining-book/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
https://doi.org/10.1371/journal.pone.0107468
https://ggplot2.tidyverse.org
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Validation of the 10 ferroptosis‑related gene‑based signature in the TCGA cohort. The base-
line characteristics of the patients in different risk groups in the METABRIC and TCGA cohorts are shown in 
Table 2. To examine the soundness of the model constructed based on the METABRIC cohort, patients in the 
TCGA cohort were also assigned to either the high-risk or low-risk group with the same calculation formula as 
that for the METABRIC cohort. The high-risk group was also associated with higher tumor stage in the TCGA 
cohort (Table 2). Similar outcomes as those in the METABRIC cohort were obtained, and patients in the low-
risk group had a longer survival time than those in the high-risk group (Fig. S1C, P = 0.0029). In addition, the 
AUC values of the 10 ferroptosis-related gene-based signature were 0.628 at 1 year, 0.593 at 3 years, and 0.649 at 
5 years in the TCGA cohort (Fig. S1D). PCA and t-SNE analyses also confirmed that patients were distributed 
in two subgroups in a discrete direction (Fig. S1E, F). The complete list of the 10 candidate genes in the TCGA 
cohort is provided in Table S4.

Estimation of the independent prognostic value of the 10 ferroptosis‑related gene‑based 
signature. The outcomes of univariate and multivariate Cox regression analyses are illustrated with forest 
plots (Fig. 4), and the complete data are shown in Tables S5 and S6. The risk score based on the 10 ferroptosis-
related gene-based signature was determined to be an independent prognostic predictor in both the META-
BRIC (Fig. 4A) and TCGA (Fig. 4B) cohorts (hazard ratio (HR), 1.41, 95% confidence interval (CI), 1.14–1.76, 
P = 0.002; HR, 2.19, 95% CI, 1.13–4.26, P = 0.02). In addition, tumor stage and age were also independent prog-
nostic predictors in both cohorts (P < 0.01).

Gene expression differences and functional analyses between the high‑ and low‑risk score 
groups in the METABRIC and TCGA cohorts. To better explore the biological functions of the genes 

Figure 1.  Study flow chart of the collection and analysis of data from the METABRIC and TCGA databases.
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in the risk score, the DEGs between the high- and low-risk groups were identified and were consistent with the 
results of previous univariate Cox regression analysis (Fig. 2D). High expression of ferroptosis-related genes, 
including FANCD2, CS, G6PD and NQO1, in the high-risk group represented a higher risk of survival (Figs. 5A 
and S2A). GSEA using the KEGG pathway database (c2.cp.kegg.v7.1.entrez.gmt) showed that cytokine-cytokine 
receptor interactions were enriched in the METABRIC and TCGA cohorts (Figs. 5B and S2B). GO and KEGG 
pathway analyses were also used to explore the potential functions of the DEGs between the two groups. Interest-
ingly, the DEGs from the METABRIC and TCGA cohorts showed enrichment of several cancer-related molecu-
lar pathways, including the PI3K-Akt signaling pathway, proteoglycans in cancer and the cell cycle (Figs. 5C, D 
and S2C, D).

Immune cell infiltration landscapes of high‑ and low‑risk patients with luminal subtype BRCA 
. The latest literature reported that CD8 + T cells downregulated the expression of SLC3A2 and SLC7A11 
to promote tumor cell lipid peroxidation and  ferroptosis33. The use of immunotherapy with immune check-
point blockade targeting CTLA-4 and PD-1 has emerged as a promising strategy for the treatment of various 
 malignancies34. Therefore, the immune microenvironment may have a strong link to ferroptosis. To identify 
immunotherapy targets and assess immunotherapy response in patients in high- and low-risk groups, a cor-
relation analysis was performed, and the results showed that the estimated score (r =  − 0.44; P < 0.001, Fig. 6A), 
immune score (r =  − 0.32; P < 0.001, Fig. 6B) and stromal score (r =  − 0.50; P < 0.001 Fig. 6C) were negatively 
correlated with the gene signature score. Twelve common immune checkpoint genes were negatively correlated 
with the gene signature score (r > 0.2; P < 0.005, Fig. 6D). The correlation analysis bubble diagram shows the 
relationships among the 5 immune infiltration cell scores from TIMER (r > 0.2; P < 0.005, Fig. 6E). Similarly, 18 
and 1 immune infiltrating cell scores from TCIA (r > 0.2; P < 0.005, Fig. 6F) were negatively and positively cor-
related with the gene signature score, respectively. This suggests that low risk patients may have more options 
for immune targets when faced with immunotherapy. As shown in Fig. 6G, the percentage of immunotherapy 
response in the low-risk group was much higher than that in the high-risk group (P < 0.001). This demonstrates 
that the low-risk group had a better response to immunotherapy. To better explore the association between the 
risk score and immune status, ImmuCellAI, which is used for precisely estimating the abundance of 24 immune 
cell types, including 18 T-cell subsets, was used to calculate the immune infiltration scores in and TCGA cohorts 

Table 1.  Clinical characteristics of the BRCA patients used in this study.

METABRIC cohort TCGA cohort

No of patients 1139 754

Age

Mean (SD) 63.7 (12.2) 59.3 (13.4)

Median [Min, Max] 64.3 [26.4, 92.1] 60.0 [26.0, 90.0]

Menopausal state

Post 964 (84.6%) 490 (65.0%)

Pre 175 (15.4%) 264 (35.0%)

Histologic subtype

Ductal/NST 839 (73.7%) 500 (66.3%)

Other 293 (25.7%) 254 (33.7%)

Missing 7 (0.6%) 0 (0%)

Histologic grade

1 134 (11.8%) NA

2 543 (47.7%) NA

3 416 (36.5%) NA

Missing 46 (4.0%) NA

Tumor stage

0 1 (0.1%) 0 (0%)

I 312 (27.4%) 140 (18.6%)

II 483 (42.4%) 396 (52.5%)

III 56 (4.9%) 177 (23.5%)

IV 7 (0.6%) 11 (1.5%)

Missing 280 (24.6%) 30 (4.0%)

OS time (month)

Mean (SD) 131 (73.3) 42.9 (38.5)

Median [Min, Max] 122 [1.23, 337] 29.8 [1.03, 285]

OS

Alive 473 (41.5%) 654 (86.7%)

dead 666 (58.5%) 100 (13.3%)
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(Fig. 6H). Interestingly, several T-cell subsets, including Th2, Th17, Tgd, Tfh, Tem, Tcm and Tc, were signifi-
cantly different between the two groups in TCGA cohorts (adjusted P < 0.05) (Table S7).

Chemotherapy response and chemotherapeutic agent prediction based on the gene signa‑
ture in high‑ and low‑risk patients with luminal subtype BRCA . Chemotherapeutic agents with 
higher drug sensitivity are urgently needed for these patients, so two chemotherapy response datasets (CTRP2.0 
and PRISM) were analyzed. CTRP2.0 contains sensitivity data for 481 compounds over 835 CCLs, and PRISM 

Figure 2.  Identification of candidate genes associated with ferroptosis in the METABRIC cohort. (A) Venn 
diagram to identify differentially expressed genes associated with OS between tumor tissue and adjacent normal 
tissue. (B) The correlation network of candidate genes. Correlation coefficients are shown in different colors. 
(C) The PPI network downloaded from the STRING database shows the interactions between candidate genes. 
(D) The forest plot displays the results of the univariate Cox regression analysis of the relationship between the 
gene expression of candidate genes and OS. (E) Heatmap showing differences in the expression of candidate 
genes between tumor tissue and adjacent normal tissue. (F) The partial likelihood deviation curve was plotted 
versus lambda. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 
1 standard error of the minimum criteria (the 1-SE criteria). (G) The optimal lambda resulted in 10 nonzero 
coefficients.
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Figure 3.  Prognostic analysis of the 10 ferroptosis-related gene signature model in the METABRIC cohort. 
(A) The distribution and median value of the risk score in the METABRIC cohort. (B) The distributions of OS 
status, OS and the risk score in the METABRIC cohort. (C) Kaplan–Meier curves for the OS of patients in the 
high-risk group and low-risk group in the METABRIC cohort. (D) The AUCs of time-dependent ROC curves 
verified the prognostic performance of the risk score in the METABRIC cohort. (E) PCA plot of the METABRIC 
cohort. (F) t-SNE analysis of the METABRIC cohort.
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contains sensitivity data for 1448 compounds over 482 CCLs. Both of these datasets provide area under the 
dose–response curve (area under the curve, AUC) values as a measure of drug sensitivity, with lower AUC values 
indicating increased sensitivity to treatment.

The pRRophetic package of R was used to estimate the drug response for each sample in the TCGA database 
based on CTRP and PRISM, respectively. Then, we used two strategies to identify chemotherapy candidates. 
First, we searched for agents with lower AUC values in the high-risk group (Log2FC > 0.10). Second, we searched 
for agents that had negative Spearman correlation coefficients (r <  − 0.20). These analyses yielded three CTRP-
derived compounds (including panobinostat, SB-743921 and KX2-391) and three PRISM-derived compounds 
(including volasertib, arcyriaflavin-a and CCT128930). All these compounds had lower estimated AUC values 
in the high-risk group and a negative correlation with the risk score (Fig. 7A, B).

We also selected several common ferroptosis inducers (erastin, 1S, 3R-RSL3, ML162, ML210) as positive 
controls for the analysis. The results showed that patients in the low-risk group were more sensitive to these 
drugs (Fig. S3 and Table S11). This result is consistent with our initial hypothesis. The patients in the low-risk 
group survived longer and were more sensitive to known inducers of ferroptosis, illustrating how they could 
benefit from ferroptosis-targeted treatment.

The heterogeneity between high‑ and low‑risk patients. To further explore the heterogeneity of the 
two patient groups, a reverse-phase protein microarray (RPPA) was obtained from prior work in the  literature35. 
Our analysis revealed that the risk score obtained from the ferroptosis-related gene-based signature was signifi-
cantly correlated with tumor purity scores (r = 0.3, P < 0.001) and most pathway scores (Fig. 8A and Table S8). 
In addition, we sought to investigate whether pathway scores exhibit differences between the high- and low-risk 
patients with luminal subtype BRCA (Fig. 8B–K). The results of our analysis suggest that the pathway scores, 
except for EMT, RAS/MAPK and RTK, were all significantly higher in the high-risk group. These results suggest 
that the ferroptosis-related gene-based signature shows differences across most BRCA-associated phenotypes.

Building a predictive nomogram for luminal subtype BRCA patients. To provide a clinically 
appropriate approach for predicting the probability of OS in luminal subtype BRCA patients, the independent 
risk factors were used to build a risk estimation nomogram (Fig. 9A). These predictors included tumor stage, risk 
score related to ferroptosis, age and histologic stage. The C-index of our nomogram was 0.66 in the METABRIC 
cohort. The calibration plots for 3-, 5- and 7-year survival probabilities in the METABRIC cohort are presented 
in Fig. 9B–D, respectively. Importantly, there was good agreement between the predicted survival rate and the 
actual observed survival rate. This means that our nomogram has good predictive value.

Discussion
In our study, we systematically investigated the potential mechanisms of 63 ferroptosis-related genes in luminal-
type BRCA tumor tissues. A new prognostic model comprising 10 ferroptosis-related genes was constructed and 
validated in an external cohort. These genes were also explored for their associations with OS. The functional 
analyses revealed some potential mechanisms for these genes. Additionally, immune-related pathways, especially 

Table 2.  Baseline characteristics of the patients in different risk groups.

Characteristics

METABRIC cohort TCGA cohort

High risk (N = 257) Low risk (N = 882) P-value High risk (N = 182) Low risk (N = 572) P-value

Age  < 0.001 0.528

 < 60 68 (26.5) 342 (38.8) 94 (51.6) 278 (48.6)

 ≥ 60 189 (73.5) 540 (61.2) 88 (48.4) 294 (51.4)

Menopausal state 0.018 0.692

Post 230 (89.5) 734 (83.2) 121 (66.5) 369 (64.5)

Pre 27 (10.5) 148 (16.8) 61 (33.5) 203 (35.5)

Histologic subtype 0.239  < 0.001

Ductal/NST 196 (76.3) 643 (72.9) 153 (84.1) 347 (60.7)

Other 58 (22.6) 235 (26.6) 29 (15.9) 225 (39.3)

Missing 3 (1.2) 4 (0.5) – –

Histologic grade  < 0.001

1 41 (16.0) 93 (10.5) – – –

2 141 (54.9) 402 (45.6) – – –

3 67 (26.1) 349 (39.6) – – –

Missing 8 (3.1) 38 (4.3) – – –

Tumor stage 1 0.023

I + II 37 (14.4) 758 (85.9) 114 (62.6%) 422 (73.8%)

III + IV 3 (1.2) 61 (6.9) 56 (30.8%) 132 (23.1%)

Missing 217 (84.4) 63 (7.1) 12 (6.6%) 18 (3.1%)
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the T-cell pathway, were enriched in our study. Although a few previous studies have suggested that some genes 
might regulate drug-induced ferroptosis in several cancers, especially luminal-type BRCA 36,37, the relationships 
among these genes and their correlation with BRCA remain largely unknown. To our surprise, more than half 
of the ferroptosis-related genes (32/63) were differentially expressed between 140 adjacent normal breast tis-
sues and 1139 luminal subtype BRCA tissues, and in the univariate Cox regression analysis, 12 of them were 
associated with OS. LASSO Cox regression was performed to find the optimal candidate genes for building a 
predictive model. Finally, DPP4 and SQLE were removed from the model, and a 10-gene signature was obtained. 
These results significantly suggested the vital role of ferroptosis in luminal subtype BRCA and the possibility of 
constructing a prognostic signature with ferroptosis-related genes.

The prognostic model proposed in the present study included 10 ferroptosis-related genes (ACO1, ACSL4, 
PTGS2, CRYAB, G6PD, PRKCA, NQO1, FANCD2, CS, and AKR1C3). Previous  studies38 indicated that iron 
metabolism, lipid metabolism and (anti)oxidant metabolism are the three main pathways that regulate ferroptosis. 

Figure 4.  Results of the univariate and multivariate Cox regression analyses of OS in the METABRIC 
derivation cohort (A) and the TCGA validation cohort (B).
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Moreover, energy metabolism has crosstalk with  ferroptosis39. To our surprise, of the genes in the 10-gene prog-
nostic model, only ACO1 was reported to be related to iron metabolism. The remaining genes could be roughly 
classified into other categories. CRYAB, FANCD2 and G6PD are related to energy metabolism. PRKCA, CS, and 
ACSL4 are included in the lipid metabolism category. The (anti)oxidant metabolism category includes NQO1, 
AKR1C3 and PTGS2. The analysis of these ferroptosis-related genes led to an interesting finding that most of 
the genes significantly related to prognosis in luminal-type BRCA are associated with the metabolism of the 
three major nutrients (glucose, lipids and amino acids). They are closely related to the tricarboxylic acid cycle 
(TAC). In contrast, there is less regulation of iron metabolism. ACO1, as an iron homeostasis-regulating gene, 
has been reported to regulate  ferroptosis5. Genetic knockdown of PRKCA significantly protected rhabdomyosar-
coma (RMS) cells from erastin-induced cell  death40. CRYAB, a member of the small heat shock protein (sHSP) 
family, has been shown to be significantly differentially expressed in BRCA 41. sHSP has an inhibitory effect on 
erastin-induced  ferroptosis42. AKR1C3 has been proven to inhibit lipid peroxidation to promote ferroptosis 
and has increased expression in zero-valent iron (ZVI)-induced  ferroptosis43. The increase in PTGS2 has been 
confirmed by many studies as one of the hallmarks of the occurrence of  ferroptosis44,45. G6PD is involved in the 
pentose phosphate  pathway46. Dixon SJ et al. reported that G6PD, when knocked down in non-small cell lung 
cancer cells, prevents erastin-induced  ferroptosis5. Ferroptosis caused by lipid peroxidation is controlled by 

Figure 5.  Functional annotation of genes differentially expressed between the low- and high-risk groups in 
the METABRIC derivation cohort. (A) Volcano plot of differentially expressed genes between the low- and 
high-risk groups. Orange indicates the 10 ferroptosis-related gene signature. (B) Enrichment plots from gene 
set enrichment analysis (GSEA) in the METABRIC cohort. (C) The most significant or shared GO enrichment 
terms in the METABRIC cohort. (D) The most significant or shared KEGG pathways in the METABRIC cohort.
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integrated oxidation and antioxidant systems. The iron-containing enzyme lipoxygenase is the main promoter 
of ferroptosis by producing lipid hydroperoxides, and its function relies on the activation of ACSL4-depend-
ent lipid  biosynthesis47. In hepatocellular carcinoma (HCC) cells, knockdown of NQO1 enhances erastin and 
sorafenib-induced  ferroptosis48. FANCD2, a nuclear protein involved in DNA damage repair, protects against 
ferroptosis-mediated injury in bone marrow  stroma49. Dixon SJ et al. found that cell viability was rescued from 
erastin-induced ferroptosis by silencing  CS5. According to the differential expression of 10 genes in BRCA tissues 
and normal tissues, six of the genes (PRKCA, ACO1, CRYAB, AKR1C3, PTGS2, and ACSL4) in the prognostic 
model were proven to protect cells from ferroptosis, while the remaining four genes (NQO1, FANCD2, G6PD, 
and CS) had the opposite effects. The role these genes play in BRCA patient prognosis by influencing the process 

Figure 6.  Correlation analysis of immune-related scores and ferroptosis-related gene signature scores. (A–C) 
The correlation analysis showed that the estimated score (r =  − 0.44; P < 0.001) (A), immune score (r =  − 0.32; 
P < 0.001) (B) and stromal score (r =  − 0.50; P < 0.001) (C) were negatively correlated with the risk score of the 
ferroptosis-related gene signature. (D–F) The results of Spearman’s correlation analysis of common immune 
checkpoint genes (D), infiltration cell scores from TIMER (E) and immune infiltration cell scores from TCIA 
(F) (r > 0.2 and P < 0.05). (G) The ratio of immunotherapy response is greatly elevated in the low ferroptosis-
related gene signature score group. (H) The immune infiltration scores of high- and low- ferroptosis-related 
gene signature score groups in the TCGA cohort.
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of ferroptosis remains to be further investigated since few related studies on these genes have been reported, 
especially in luminal-type BRCA.

In recent years, cancer immunotherapy based on immune checkpoint inhibitors (ICIs) has achieved great 
success in basic medical research and clinical practice. However, ICIs are significantly limited by the fact that only 
one-third of patients with most types of cancer respond to these  agents50. Tumor cells undergoing ferroptosis 
can trigger robust antitumor immunity in vivo and in vitro, and their efficacy can be synergistically improved 
by ICIs, even in ICI resistance. In 2019, direct evidence for a link between ferroptosis and antitumor immunity 
emerged with the discovery by Wang et al. that CD8 + T cells induce tumor cells to undergo ferroptosis in vivo51. 
The paper reported that CD8 + T cells downregulated the expression of SLC3A2 and SLC7A11 to promote 
tumor cell lipid peroxidation and  ferroptosis51. Subsequently, the same team reported that IFN-γ derived from 
immunotherapy-activated CD8 + T cells synergizes with radiotherapy-activated ataxia-telangiectasia mutated 
(ATM) to induce ferroptosis in human fibrosarcoma cells and melanoma  cells52. Although these findings suggest 
that ferroptosis has a synergistic effect on antitumor immunity, scientific hypotheses still need to be validated 
by more evidence. The immunoediting hypothesis was proposed in 2009 by Dunn et al. Less immunogenic 
cancer cells are selected during tumor development in immune-competent hosts to evade antitumor immune 
 responses53. Thus, we hypothesized that patients in different groups would have different immunotherapeutic 
responses. As expected, we found that patients with low risk scores would generally be more sensitive to tumor 
immune responses than patients with high risk scores in both the METABRIC and TCGA cohorts. To better 
explore the relationship between our prognostic model and immune status, ImmuCellAI was used to determine 
the immune infiltration scores of our two cohorts. Interestingly, several T-cell subsets, including Th2, Th17, Tgd, 
Tfh, Tem, Tcm and Tc, were significantly different between the two groups in both the METABRIC and TCGA 

Figure 7.  Identification of candidate agents with higher drug sensitivity in high- ferroptosis-related gene 
signature score patients. (A) The results of Spearman’s correlation analysis and differential drug response 
analysis of three CTRP-derived compounds. (B) The results of Spearman’s correlation analysis and differential 
drug response analysis of three PRISM-derived compounds. Note that lower values on the y-axis of boxplots 
imply greater drug sensitivity.
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cohorts. The interpretation of the results reinforces our belief that there is some relationship between ferroptosis 
and tumor immunity, particularly with the T-cell family.

Figure 8.  Phenotype heterogeneity among the network-based subtypes. The bubble map shows the correlation 
between the ferroptosis-related risk score and RPPA data-based scores (A). Boxplots show differences in 
(B) tumor purity, (C) proliferation, (D) apoptosis, (E) cell cycle, (F) DNA damage response, (G) EMT, (H) 
hormone a, (I) Ras/MAPK, (J) RTK, (K) TSC-mTOR scores from TCGA between low- and high-risk groups. 
The Kruskal–Wallis test was performed to calculate the P-value, and those associations with P-value < 0.01 were 
considered significant.
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Chemotherapy is the foundation of comprehensive BRCA treatment. Many studies have reported that chemo-
therapeutic agents can induce ferroptosis in different tumors. Recent studies have shown that ferroptosis inhibi-
tors can reduce the ototoxicity caused by  cisplatin54. Doxorubicin is a chemotherapy drug commonly used for 
BRCA, but a common side effect is cardiotoxicity. Studies have suggested that this cardiotoxicity is most likely 
caused by ferroptosis induced by  doxorubicin55.

In modern clinical practice, clinicians have more targeted therapy options to offer patients for whom first-
line treatment has failed. Lapatinib is one such option; lapatinib is a small molecule tyrosine kinase inhibitor 
that has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of anthracycline-, 
paclitaxel- and trastuzumab-resistant HER2-positive progressive or metastatic BRCA. S Ma et al. found that 
ferroptosis is induced following siramesine and lapatinib treatment of BRCA  cells56. Based on these studies, we 
can speculate that the ferroptosis signature plays an important role in predicting chemotherapy and targeted 
therapy drug sensitivity in luminal BRCA patients.

As expected, multiple therapeutic agents that exhibit significant differences in drug sensitivity between the 
high- and low-risk groups were predicted by our signature. We chose the drugs that have been commonly used 

Figure 9.  The 10 ferroptosis-related prognostic gene signature model for predicting 3-, 5-, and 7-year OS in 
luminal-type BRCA patients. (A) The independent risk factors were used to build a risk estimation nomogram 
to predict the probability of OS in luminal subtype BRCA patients. (B) The calibration plots for 3-year survival 
probabilities in the METABRIC cohort. (C) The calibration plots for 5-year survival probabilities in the 
METABRIC cohort. (D) The calibration plots for 7-year survival probabilities in the METABRIC cohort.
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as ferroptosis inducers in clinical treatment to date as positive controls. Interestingly, the low-risk group had 
greater sensitivity to these drugs. These results suggest that known ferroptosis inducers are more effective in 
patients in the low-risk group, whereas the drugs predicted using our prediction model are more effective in 
patients in the high-risk group. This result is consistent with our initial hypothesis. The patients in the low-risk 
group survived longer and more sensitive to known inducers of ferroptosis, illustrating the benefit they could 
receive from ferroptosis-targeted treatment. This also explains why low-risk patients are more sensitive to known 
inducers of ferroptosis (such as erastin). The new drugs we predicted through our gene model are intended for the 
high-risk group, and we continue to look for a potential drug target for high-risk patients with a poor prognosis.

Recently, we found three studies that have reported ferroptosis gene signatures. These three studies focused 
on  HCC57, clear cell renal cell  carcinoma58, and  glioma59. There are some similarities between our research and 
these three articles. Univariate and multivariate Cox regression analyses were performed to identify independent 
predictors of OS. To clarify the functional characteristics of the ferroptosis-related genes in different tumors, GO 
analysis and KEGG analysis were used in several datasets. Although some similarities exist between our study and 
the three studies, several innovations still exist in our study. First, the ferroptosis gene signature has never been 
reported in BRCA, especially luminal-type BRCA. Our team believes that the most important aspect of a good 
signature is that it should provide valuable suggestions on options in clinical work. Therefore, we provide more 
predictions on the choice of treatment, including immunotherapy and chemotherapy. Our research learned from 
the advantages of all three articles. We made two sets, a training set and a validation set, from different public 
databases to clarify the effectiveness of our signature. We built a predictive nomogram in luminal subtype BRCA 
patients and investigated the link between ferroptosis and tumor immunity. It is worth noting that our predictive 
nomogram could predict 3-, 5-, and 7-year OS. Our research went above and beyond what the three previous 
studies did. By comparing the three prediction models associated with ferroptosis, we found that only a few genes 
recurred in the different signatures. This may be due to the heterogeneity of the tumors. In addition, due to the 
physiological characteristics of the breast tissue itself, the development of BRCA may be more related to lipid 
metabolism and energy metabolism than to iron metabolism, which is more widespread in other carcinomas.

here are still some limitations in our study. First, our prognostic model was established by bioinformatics 
analyses of data from public databases. More real-world data are needed to verify its clinical utility. Second, 
we considered only the single hallmark (ferroptosis) genes and excluded genes that are themselves highly cor-
related with BRCA. In addition, we identified the potential relationship between the ferroptosis gene signature 
and tumor immunity, but we did not have a validated risk score to evaluate BRCA patients. Indeed, the most 
malignant molecular type of breast cancer seems to be triple negative breast cancer, not the luminal type. Our 
initial goal was to identify potential therapeutic targets for TNBC. Although we exhausted all available analysis 
methods, we did not obtain a positive result. However, in clinical practice, the luminal subtype of BRCA accounts 
for almost 70% of new cases. Therefore, we think it is also meaningful to analyze and predict targets for the 
luminal subtype. Finally, we analyzed the single mutations in luminal-type BRCA to find new potential targets. 
Although we obtained some results from TCGA, these genes with higher mutation rates were not significantly 
related to ferroptosis.

We think there is a common issue to all predictive modeling research; that is, we may overinterpret the rela-
tionship between these genes and ferroptosis. In our logic, with a gene set, it is possible to divide the luminal 
type BRCA patients into two subgroups. These two subgroups do have some differences in biological function, 
especially in terms of prognosis and survival. Thus, our gene set is of some significance. In addition, regarding 
evidence on ferroptosis-related genes, we only have the studies reported in the literature. Therefore, we really 
cannot definitely say gene expression is related to ferroptosis. To prove that gene expression is relevant to the 
occurrence of ferroptosis, the transcriptome of samples that are sensitive to ferroptosis must be compared with 
those resistant to it.

Conclusion
Our study systematically developed a novel prognostic model of 10 ferroptosis-related genes. The prognostic 
model was established in the derivation cohort and validated in the validation cohort and exhibited potential as 
a biomarker of OS in luminal-type BRCA patients. These 10 genes can provide insights into the identification of 
therapeutic targets for luminal-type BRCA, especially immunotherapy. This study provides a new reference for 
further study of the mechanisms among ferroptosis, tumor immunity and the choice of chemotherapy drugs.
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