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Abstract: Implant connections must resist surgical and prosthetic procedures without deformation.
This study evaluated the deformation of different internal connections (IC) of narrow dental implants
(NDI) after their insertion in artificial dense bone. Thirty NDI, with different IC geometries, Group A
(internal hexagon), Group B (tri-channeled), and Group C (four-channeled), with the same length and
similar narrow diameters, were inserted in type II density bone blocks. Drilling protocols for dense
bone from each implant manufacturer were followed. The Insertion torque (IT), connection length,
vertex angles, and wall deformations were analyzed before and after the insertion of the implants.
ANOVA (Analysis of Variance) and Tukey post-test were used for statistical comparisons. IT values
were higher for Group A, surface damage, and titanium particles were observed in the IC in all the
groups. Angle deformations between 5 and 70 degrees were present in all the groups, and the walls
of Group B connection were the most affected by deformations (p < 0.05). Within the limitations
of this experiment, it can be concluded that narrow diameter implants will suffer deformation of
the implant connection and will also experience surface damage and titanium particle release when
inserted in type II bone density.

Keywords: narrow dental implants; internal connection; deformation; dense bone

1. Introduction

Two-piece dental implant systems include an intraosseous part (the implant body) and an
extraosseous component (the prosthetic abutment) that are usually connected with a retention/prosthetic
screw [1]. The union between these two parts occurs at the implant–abutment interface (IAI) [2],
also known as the implant–abutment junction (IAJ) or the implant–abutment connection (IAC) [3].

For single-implant restorations, the union of the implant and the abutment must be stable enough
to resist functional loads and to reduce screw loosening [4,5]. Different geometric designs have been
introduced for the implant connection (IC) and the prosthetic abutment connection (AC) with the
purpose of facilitating the implant’s insertion, achieving a proper record of the implant’s orientation
during the impression, improving the mechanical engagement between parts at the IAI, enhancing the
mechanical strength, and reducing the screw loosening [6].

This geometric feature is called the “implant/prosthetic index”, and is defined as “a core or mold
used to record or maintain the relative position of dental implants or teeth, to a cast, or to some other
structure” [7]. The implant index corresponds, in terms of design, with its counterpart, the prosthetic
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abutment index, and can be located inside the implant’s body below the level of the implant platform
(internal connection) or above the level of the implant platform (external connection) [7].

The existence of angles, straight walls, channels, boxes, tubes, and cones in the connection’s
design also prevents rotation between the components of the system [8,9]. The structural integrity of
these geometric features at the level of the IC is crucial for the long-term stability of the IAI and the
survival of the prosthetic restoration [10]. A damaged prosthetic abutment can be replaced; however,
the deformation of the IC cannot be reversed, and the implant may become non-restorable [10].

Different factors can induce deformation of the implant connections while the implant functions,
including overload, over-torqueing, and non-axial loads [11], a non-passive fit of the restoration
and forced prosthetic screw tightening [12,13], narrow implant diameters [14], the presence of a
micro-gap and micro movement between the parts [15], frictional wear [16], multiple connections and
disconnections of the prosthetic abutment [17], and the thickness of the implant walls [18,19].

Recently, the action of implant insertion has been described as another potential factor for
deformation of the IC [20]. The insertion torque forces produced during the implant’s insertion are
transferred to the implant index of the IC, causing its potential deformation when the applied force
exceeds the modulus of elasticity [21]. Apparently, external connections suffer greater deformation than
internal connections [22]. Although less deformation might be experienced by internal connections
compared to external connections, internal connections can also be deformed during the implant’s
insertion, which can result in potential enlargement of the micro-gap and, thus, increased wear and
bacterial leakage [23]. To date, the magnitude of the deformation of the IC of narrow dental implants
has not been evaluated, and there is a lack of information about the deformation pattern of different IC
geometries of narrow implants after their insertion in Type II bone.

Therefore, the goals of the present study were to evaluate the insertion torque, the amount of
deformation, and the characteristic pattern of distortion experienced by narrow dental implants with
three different types of IC geometries after their insertion in artificial Type II bone.

2. Materials and Methods

2.1. Bone Samples

Artificial bone blocks (Sawbones, Pacific Research Laboratories, Vashon, CA, USA) with a
polyurethane foam structure and a density of 40 pounds per cubic foot (PCF) (0.64 g/cm3), resembling
Type II bone, were fixed in a vise. These blocks are used as standard analogs for the evaluation of
biomechanical properties of fixation plates, fixation screws, and dental implants [24]. A graphite pencil
was used to mark the future implant beds at intervals of 10 mm. Thirty marks were made in each block.

2.2. Dental Implants and Experimental Groups

The IC of three different titanium dental implants, each with a tapered body and being of the
same length and a similar narrow diameter, was evaluated (Table 1).

Table 1. Characteristics of the three narrow implant designs used for this in vitro experiment. Implant
geometry, dimensions, characteristics of the connection, and composition are provided.

Connection
Characteristics

Implant
Manufacturer/Line

Coupling
System

Implant Index
Geometry Composition Insertion

Device
External

Geometry Diameter Length

Group A
Straight walls

n = 10

Nobel Biocare
Nobel Active

Conical
Friction fit
Angle 12◦

Internal
Hexagon

Six abutment
positions

Cold worked
Titanium
Grade IV

Implant
Driver

Tapered

3.5 mm

10 mm
Group B

Channeled walls
n = 10

Nobel Biocare
Nobel Replace

Butt Joint
Angle 0◦

Three channels
Three abutment

positions
3.5 mm

Group C
Channeled walls

n = 10

Straumann
Bone Level

CrossFit
Conical

Friction fit
Angle 15◦

Four channels
Four abutment

positions

Pre-mounted/
Transfer 3.3 mm
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2.2.1. Group A (Internal Hexagonal Connection)

Group A contained 10 Nobel Replace® (Nobel Biocare, Goteborg, Sweden) conical connection
dental implants, with a narrow platform (3.5 mm in diameter) and a length of 10 mm. These implants are
characterized by a connection with six straight walls that form a hexagon as an anti-rotational feature.

2.2.2. Group B (Internal Three-Channel Connection)

Group B contained 10 Nobel Replace® (Nobel Biocare, Goteborg, Sweden) Trilobe® (Nobel
Biocare, Goteborg, Sweden) connection dental implants, with a narrow platform (3.5 mm in diameter)
and a length of 10 mm. These implants are characterized by a three-channel/lobe connection with
curved walls with convexities and concavities and rounded angles as anti-rotational features.

2.2.3. Group C (Internal Four-Channel Connection)

Group C contained 10 Bone Level® (Straumann, Basel, Switzerland) CrossFit® connection dental
implants, with a narrow platform (3.3 mm in diameter) and a length of 10 mm. These implants are
characterized by connections with channels and boxes as anti-rotational features.

2.3. Standardization of the Implant Insertion

A single operator was calibrated for the drilling and insertion of narrow dental implants with
three different internal connection designs. The operator followed each manufacturer’s recommended
drilling protocol for the insertion of tapered implants in artificial Type II bone blocks.

For the standardization of the implant insertion, 10 implant beds were prepared, and the implant
insertion was repeated 10 times per group. The implant platform was left at the level of the bone
block’s surface. The intraclass coefficient (ICC) for the implant insertion level was used as a calibration
reference. Zero millimeters of difference between the implant platform and the bone level was
considered to be 100% agreement; <0.5 mm of difference between the implant platform and the bone
level was considered to be 90% to 99% agreement; 0.5 to 1.0 mm of difference between the implant
platform and the bone level was considered to be 90% to 80% agreement, and 1.0 to 1.5 mm of difference
between the implant platform and the bone level was considered to be 80% to 70% agreement. A value
equal to or higher than 80% was considered to be a reliable ICC.

2.4. Experimental Procedures

The drilling sequences for dense bone (Type II bone) were completed as follows:

- Group A drilling sequence

A pilot drill with a 2.0 mm diameter followed by a stepped drill with a 2.4/2.8 mm diameter,
a stepped drill with a 2.8/3.2 mm diameter, and a screw tap with a 3.5 mm diameter. The drilling depth
was 10 mm for all of the drills.

- Group B drilling sequence

A pilot drill with a 2.0 mm diameter followed by a conical drill with a 3.5 mm diameter and a
bone tapping drill with a 3.5 mm diameter. The drilling depth was 10 mm for all of the drills.

- Group C drilling sequence

A pilot drill with a 2.2 mm diameter followed by a bone level tapered (BLT) drill with a 2.8 mm
diameter, a BLT drill with a 3.3 mm diameter, and a bone tap drill with a 3.3 mm diameter. The drilling
depth was 10 mm for all of the drills.
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2.4.1. Evaluation of the Insertion Torque

The implants were inserted using an implant driver (Group A and Group B) or by mounting
a pre-mounted implant (Group C). For the implants inserted using an implant driver, each implant
driver was replaced after five uses.

The insertion torque (IT) values achieved when the implants were inserted at a depth of 10 mm
into the bone blocks, and the implant platforms were flush with the bone block surface, were registered
and are expressed in Newton centimeters. Ten IT values were recorded for each group, and the mean
and standard deviations were obtained.

2.4.2. Evaluation of the Implant’s Geometry and Its Deformation

The changes at the implant connection and the changes in the index geometry were evaluated for
all of the implants included in this experimental study using a last-generation three-dimensional (3D)
digital microscope (Keyence VHX-6000, Keyence Corporation, Osaka, Japan). The surface changes
that each connection suffered after insertion into the dense bone were recorded. A description of the
changes at the implant platform is provided, and the apparent deformation of the walls and implant
index is listed.

A magnification of 50× was used for the measurement of the index geometry. For the evaluation
of the connection length, the microscope was focused on the deepest portion of each connection using
a magnification of 100×. For the qualitative evaluation of the IC characteristics, a magnification of
150×was used.

The implants were positioned in the center of the microscope’s stage using an implant holder
in the vertical position. A screen cross allowed us to reproduce this axial centered position for each
implant. Images of the IC before and after insertion were obtained for all of the implants.

2.4.3. Measurement Procedure

Once the deepest part of the IC had been located and focused upon, the motorized stage
was programmed for vertical scanning with a step displacement of 5 µm (down–up). The vertical
displacement was regarded as complete once the most coronal external part of the connection was in
focus; thus, the whole IC was captured by this procedure. The total scanned length was dependent on
the connection depth.

The VHX-6000-950F measurement data software (Version 2016, Keyence Corporation, Osaka,
Japan) was used to register the landmarks and to complete the measurements. The following
measurements were obtained before and after each implant’s insertion:

Connection depth: The distance from the bottom of the IC to the surface of the implant platform
was measured. To obtain the mean IC length for each implant group, the arithmetic mean and
standard deviation of the IC length of the 10 implants in each group were calculated and are expressed
in millimeters.

Hexagonal connection angle: The angles that formed between the walls of the internal hexagonal
connections were obtained. Six angles were obtained per implant; thus, 60 angles were obtained in
this group.

Hexagonal connection length of the wall: The central points at each vertex of the angles were
located and connected; this resulted in six straight lines. The arithmetic mean and standard deviation
of the length of the six lines that were obtained per implant were collated with the other implants
inside the group. Sixty measurements were obtained in this group, and are expressed in microns as the
mean and standard deviation (Figure 1a).
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features are small boxes protruding from the IC walls to the center of the implant connection. The 
internal angles of the boxes were measured. The length of the inner wall of each box was measured. 

Three-channel connection angle: The angles formed between the vertex of the lobe (channel) and 
its side walls were recorded. The median and interquartile range of the measurements of three angles 
per implant were registered; thus, 30 measurements were obtained in this group. (Figure 1b). Three-
channel connection length of the wall: The vertex of the three lobes was located and connected with 
a straight line. Three measurements were performed per implant to obtain the length of the wall. 
Thirty values were obtained per group; these values are expressed in microns. The mean and 
standard deviation were registered (Figure 1b). 

Four-channel connection angle: The internal boxes of the connection were evaluated by 
measuring the angle that formed between each box’s walls. Four angles were obtained per implant; 
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measurements were calculated. Four-channel connection length of the wall: The distance between the 
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2.5. Statistical Analysis 

For the variables IT, connection depth, and linear distance (the length of the walls for all groups), 
an analysis of variance (ANOVA) with Tukey’s post hoc test were used to determine differences 
between groups. For the angle measurements, the median and the interquartile range were 
calculated, and non-parametric Kruskal–Wallis statistical analyses were performed to determine if 
the median values were different before and after insertion. Statistical significance was set at p < 0.05. 

3. Results 

The operator calibration showed an intraclass coefficient of 0.95 (less than 0.3 mm of difference) 
and was considered highly reliable. No single narrow implant fractured during the insertion process. 

3.1. Qualitative Findings 

All of the analyzed IC designs suffered surface alterations after insertion in dense bone. 
However, each group expressed different patterns of deformation. 
  

Figure 1. (a) Variables evaluated in Group A (Internal hexagon). The angles formed between the
sides of the hexagon were located and measured. The length of the hexagon sides was also measured
to determine changes at the internal connections (IC) geometry. (b) Variables evaluated in Group B
(Internal Three-Channeled). The lobe angle was located with the vertex at the most convex portion of
the channel and the sides at the base of the channel walls. The length of the wall was estimated by
connecting the vertex of each channel to create a triangle. Each side of the triangle was considered for the
evaluations. (c) Variables evaluated in Group C (Internal Four-Channeled). The anti-rotational features
are small boxes protruding from the IC walls to the center of the implant connection. The internal
angles of the boxes were measured. The length of the inner wall of each box was measured.

Three-channel connection angle: The angles formed between the vertex of the lobe (channel)
and its side walls were recorded. The median and interquartile range of the measurements of three
angles per implant were registered; thus, 30 measurements were obtained in this group. (Figure 1b).
Three-channel connection length of the wall: The vertex of the three lobes was located and connected
with a straight line. Three measurements were performed per implant to obtain the length of the wall.
Thirty values were obtained per group; these values are expressed in microns. The mean and standard
deviation were registered (Figure 1b).

Four-channel connection angle: The internal boxes of the connection were evaluated by measuring
the angle that formed between each box’s walls. Four angles were obtained per implant; thus,
40 measurements were obtained in this group. The median and interquartile range of the angle
measurements were calculated. Four-channel connection length of the wall: The distance between the
innermost walls of the boxes, facing the center of the connection space, was measured and is expressed
in microns. Four measurements were obtained per implant; thus, 40 measurements were obtained
within this group. The mean and standard deviation were registered (Figure 1c).

2.5. Statistical Analysis

For the variables IT, connection depth, and linear distance (the length of the walls for all groups),
an analysis of variance (ANOVA) with Tukey’s post hoc test were used to determine differences
between groups. For the angle measurements, the median and the interquartile range were calculated,
and non-parametric Kruskal–Wallis statistical analyses were performed to determine if the median
values were different before and after insertion. Statistical significance was set at p < 0.05.

3. Results

The operator calibration showed an intraclass coefficient of 0.95 (less than 0.3 mm of difference)
and was considered highly reliable. No single narrow implant fractured during the insertion process.

3.1. Qualitative Findings

All of the analyzed IC designs suffered surface alterations after insertion in dense bone. However,
each group expressed different patterns of deformation.
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3.1.1. Group A (IC Hexagon)

The internal walls showed titanium delamination and scratches. Titanium particle debri was
observed at the external edges of the connection and at the base of the connection. In addition,
the implant platform showed scratches, and the edges of the hexagon walls showed blunting in some
areas. The hexagon angles appeared to be wider (Figure 2).
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Figure 2. Upper left image shows a coronal view of Group A (Internal hexagon) Upper right image
shows a coronal view of the same group with some scratches and widening of the vertex angles.
Lower left image shows scratches at the internal cone and areas of deformation indicated by the red
arrows. Lower right image is showing surface damage and titanium particles at the edges of the
connection walls released during the implant insertion.

3.1.2. Group B (Three-Channel)

The platform of the implant showed scratches and loss of the color code that is used to identify
the implant’s diameter. The walls of this IC showed scratches and compressive deformation at the
edges of the channel’s base. Titanium particles were observed in different areas (Figure 3).

3.1.3. Group C (Four-Channel)

The walls showed scratches, blunting, and deformation at the edges of the anti-rotational boxes.
Furthermore, titanium particle accumulation was observed at the base of the boxes, and some scratches
were observed at the internal cone (Figure 4).
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Figure 4. Upper left image shows a Group C (Internal Four-Channeled) narrow implant. The anti-
rotational internal boxes, with their lateral walls forming a straight angle with the implant walls. 
Upper right image shows the deformation of the channel walls. These were deformed after insertion; 
the sides of the small boxes suffered plastic deformation and were flattened. Lower left image shows 
red arrows demonstrating titanium particles and deformation of all four channel elements. Lower 
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Figure 3. Upper left image shows a coronal view of Group B (Internal Three-Channeled). Upper right
image shows a coronal view after implant insertion, the color-coded area is missing in some areas,
and deformation of the channel wall is evident. Lower left image shows a close view of Group B
after the insertion. The internal geometry is altered, deformation of the internal walls of the channel
indicated by red arrows. Lower right image shows titanium particles at the implant platform and
implant walls.
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Figure 4. Upper left image shows a Group C (Internal Four-Channeled) narrow implant.
The anti-rotational internal boxes, with their lateral walls forming a straight angle with the implant
walls. Upper right image shows the deformation of the channel walls. These were deformed after
insertion; the sides of the small boxes suffered plastic deformation and were flattened. Lower left
image shows red arrows demonstrating titanium particles and deformation of all four channel elements.
Lower right image shows the box walls completely deformed, the edges of the wall contained titanium
particles. In addition, some scratches are observed.
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3.2. Quantitative Findings

3.2.1. IT values

The highest insertion torque values were obtained for Group A (37.5 ± 1.5 Ncm), followed by
Group C (35.0 ± 2 Ncm) and Group B (33.5 ± 1.5 Ncm) (p < 0.05).

3.2.2. Connection Depth

Group B showed the largest connection depth (6.81 mm ± 0.13 mm), followed by Group C
(6.67 mm ± 0.09 mm) and Group A (5.79 mm ± 0.1 mm). Group A was found to possess the shortest of
the connections (by ±1 mm). There were no changes in the IC’s depth after the implant’s insertion in
any of the groups (Figure 5).
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Figure 5. Length of the implant connection. Two points were located at each side of the implant
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The blue lines are showing the internal profile of each connection, which is different in each of them.
Group B has the longest connection depth.

3.3. Geometry Changes

3.3.1. Group A (IC Hexagon)

Vertex angle: After the implant’s insertion, the vertex angle increased from a median angle of
119.29 to a median angle of 120.755. The Kruskal–Wallis test showed no significant difference between
medians before and after insertion.

Length of the wall: There were minimal changes in the length of the walls after the implant’s
insertion. The initial mean length was 1005.52 µm ± 2.11 µm; after insertion, the mean length was
1005.77 µm ± 7.4 µm. The ANOVA test showed a difference of 25.2 µm after insertion, and the Tukey’s
test showed no statistically significant differences between means (p = 0.9658).
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3.3.2. Group B (IC Three-Channel)

Internal Lobe angle: After the implant’s insertion, the median value of the internal lobe angle
increased from 95.25 to 97.975. The Kruskal–Wallis test showed no significant differences before and
after insertion.

Length of the wall: After the implant’s insertion, there were minor variations in the length of
the walls. The initial mean length was 2646.90 µm ± 4.21 µm; after insertion, the mean length was
2624.14 µm ± 27.6 µm. The ANOVA test showed a difference of 20.077 µm after insertion, and the
Tukey’s post hoc test showed no statistically significant differences when comparing the length of the
wall before and after insertion (p = 0.3878).

3.3.3. Group C (IC Four-Channel)

Internal box wall angle: The walls of the boxes of the IC were deformed after insertion. The median
value of the angle before insertion was 92.025; after insertion, the median angle increased to 142.233.
The Kruskal–Wallis test showed a significant difference between the median of the internal box angle
before insertion and the median of the internal box angle after insertion.

Inner wall box length: After insertion, all of the inner walls were shortened. The initial mean
length was 655.89 µm± 4.21 µm; after insertion, the mean length was 469.68 µm± 27.6 µm. The ANOVA
test showed a difference of 186.21 µm, and the Tukey’s post hoc test showed a statistically significant
difference between groups (p = 0.0006) (Tables 2 and 3).

Table 2. Angular Deformations of Internal Connections. Statistical comparison for the three groups
before and after implant insertion. p values are assigned for each comparison within groups (before
and after implant insertion). Significance was set as p < 0.05.

Angular Deformation Sample Size Mean Q1 Median Q3 p-Value

GROUP A
Vertex Angle Before 60 119.261 119.109 119.29 119.673

0.087Vertex Angle After 60 120.822 120.077 120.755 121.042

GROUP B
Channel Angle Before 30 95.254 95.056 95.21 95.369

0.092Channel Angle After 30 96.829 95.68 96.48 97.83

GROUP C
Channel Angle Before 40 91.575 77.727 93.103 93.339

0.021Channel Angle After 40 142.325 101.763 144.368 148.281

Table 3. Wall Length Deformations of Internal Connections. Statistical comparison for the three groups
before and after implant insertion. p values are assigned for each comparison within groups. All the
groups experimented changes at the wall length. The changes were significant at group C. Significance
was set as p-value < 0.05.

Variable Sample
Size Mean Difference

Before vs. After
Test

Statistic p-Value

GROUP A
Hexagon Wall Length

Before 60 1005.77 µm
−0.25 0.08683 0.9511After 60 1005.52 µm

GROUP B
Three-Channeled Wall Length

Before 30 2646.90 µm
−22.76 2.49081 0.08351After 30 2624.14 µm

GROUP C
Four-Channeled Wall Length

Before 40 655.89 µm
−186.2140 36.18923 0.00006After 40 469.68 µm

4. Discussion

This experimental study aimed to evaluate if narrow dental implants with different IC geometries
suffered deformation after their insertion into Type II artificial bone. The insertion torque, the magnitude
of the deformations, and the characteristics of the deformations were evaluated. The last-generation
digital microscope allowed for the non-destructive 3D evaluation of the implant index and a
non-distorted representation of potential changes in the implant index. In addition, the variation
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that may arise from one sample to another was excluded because the system was calibrated to a
NIST-traceable standard. The drilling protocol recommended by each manufacturer for Type II
bone was strictly followed. Thus, a comparable simulated clinical situation was achieved for all the
experimental groups. Insertion torque values were obtained for each group to identify whether there
was a relation between the degree of damage and the insertion torque values. The IT values obtained in
the present work were all less than 37 Ncm. Group A achieved higher IT values, which were potentially
produced by two factors: the thread design and substantial discrepancies between the final drill and
the implant geometry compared to the other implant groups.

The IT values required to insert the implants into Type II bone were sufficient to produce visible
wear and titanium particle delamination on all of the evaluated IC designs. Besides this, the implant
index changed in all the implants. These results are in agreement with Kwon et al., 2009 [21],
who evaluated changes in the rotational freedom of an implant connection after the application of
insertion torque with different values (45 Ncm and 100 Ncm). The authors observed increased rotational
freedom with 45 Ncm; however, they did not evaluate the amount of deformation. In contrast, in the
studies performed by Teixeira et al., 2015 [10] and Nary Filho et al., 2015 [25], the authors observed
standard implant deformation after the application of higher torques. Indeed, Teixeira et al., 2015 [10]
performed torsion tests on external hexagon, internal hexagon, and Morse taper connections using
torque values of 80 Ncm and 120 Ncm. They observed that both torque values produced deformation
of the connections; the deformation was higher in the external connection implants and lower in the
implants with the Morse taper connection. Nary Filho et al., 2015 [25] evaluated the rotational failure
of Morse cone and external hexagon connections. The authors found rotational failure with torque
values starting from 2.69 Nm (269 Ncm). These differences could be produced based on the diameter
of the implants used in these experiments (>4.0 mm) [10,14], and their different composition (Ti–Al–V
alloy) which possesses higher elasticity moduli [26].

In the present work, the evaluation of the IC characteristics after the implant’s insertion into
Type II bone showed titanium particle delamination and accumulation of titanium particles in different
areas inside all of the connections. Although the weight/percentage of titanium particles released
from the IC during the implant’s insertion was not quantified in this study, this finding was made
in all of the groups independent of the IT value required for the implant’s insertion. These results
support previous systematic reviews that mention implant insertion as one of the causes of the release
of titanium particles in implant dentistry [27,28]. We hypothesize that these particles originate from
the IC (based on the surface changes and deformations). However, they may also originate from the
implant driver, the implant mounting (the components of the interface that are subject to torsional
forces) and from residues from the artificial bone used in this experiment.

The angles of the connections were evaluated to understand if the IT forces could bend or deform
the implant index of narrow implants when inserted into Type II bone. The results of the present work
demonstrate that the IT required to insert the implants produced a slight deformation of the vertex angles
of the hexagon and tri-channel connections. Besides this, the four-channel connections demonstrated
the highest deformation and a flattening of the internal box angles. Apparently, in narrow-diameter
implants, a higher probability of failure could be expected, as described by Watanabe et al., 2015 [29],
who showed that narrow-diameter implants (3.3 mm and 3.8 mm in diameter) possess a lower fracture
torque and yield strength than wider-diameter implants (4.3 mm and 6 mm in diameter).

Two of the experimental groups in the present study used an implant driver for the insertion of
the implants (Group A and Group B), and the other group (Group C) used a pre-mounted implant. It is
believed that the implant mounting protects the implant index when high IT values are produced during
the implant’s insertion. Thus, the forces are transferred to the mounting, causing its deformation/failure
but maintaining the integrity of the implant index [21,30]. However, even the members of Group C,
where the implants were inserted using the mounting, suffered deformation of the implant index.
We hypothesize that the tested narrow implants suffer deformation at the IC with IT values between
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33 Ncm and 37 Ncm. A pre-mounting system can be used to reduce the damage transferred to the IC,
but cannot be used to avoid damage altogether.

The length of the connection’s walls was evaluated to identify whether the insertion of the
implants in Type II bone might produce a large amount of deformation in the IC geometries. None of
the evaluated groups showed significant changes in the length of the walls. This means that all of the
forces applied during the implant’s insertion were transferred as deformations to the anti-rotational
elements but not to the external walls of the implant’s body. This can be explained based on the IT
values that were within the elastic modulus of the evaluated implants [31].

The present study possesses some limitations. First, only three internal connection designs were
tested, which might exclude other current internal connections used for narrow implants. Second, wider
implant diameters with the same connection design may present a different behavior, and therefore,
other implant diameters with the same connections should be evaluated. Third, the connection
geometries of the evaluated groups were different; therefore, different specific landmarks were
evaluated for each group. Thus, the presented deformations show the behavior within each group,
but comparisons between the groups cannot be performed. Therefore, to improve the extrapolation
of data, the same geometries should be compared. Lastly, chemical evaluation should be included
to confirm the elemental composition of the fragments and particles observed inside the implant
connections to eliminate the risk of data misinterpretation.

The results of the present investigation should be considered for the implants and connections
evaluated only. It is probable that dental implants manufactured with titanium alloys and other
connection designs present different behaviors. Therefore, further evaluation is recommended to
confirm the findings of the present work with different implant connections, implant diameters,
and alternative implant materials and titanium alloys.

The strengths of the present work lie in the calibration of the operator, the strict experimental
protocol utilized, which increases the reliability of the obtained data, the non-destructive technology
utilized for the evaluation of the IC geometry and deformation, and the selection of a few experimental
variables that allow for the use of a robust statistical comparison.

This initial deformation of the IC produced during the implant’s insertion might be responsible
for an increase in micro-gap/misfit dimensions, micro movement, screw loosening, and titanium
particle release.

5. Conclusions

Narrow-diameter implants with 3.3 mm and 3.5 mm diameter and different internal connection
designs (hexagon, three-channeled, and four-channeled) will suffer different levels of deformation
and will experience surface damage and titanium particle release when inserted into Type II (dense)
bone. The clinical relevance of the present work is that correct implant handling and proper implant
bed preparation are essential to a reduction in deformation and the release of titanium particles in the
implant index during the insertion of narrow implants in Type II bone.
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