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Abstract: The online system state initialization and simultaneous spatial-temporal calibration are
critical for monocular Visual-Inertial Odometry (VIO) since these parameters are either not well
provided or even unknown. Although impressive performance has been achieved, most of the
existing methods are designed for filter-based VIOs. For the optimization-based VIOs, there is
not much online spatial-temporal calibration method in the literature. In this paper, we propose
an optimization-based online initialization and spatial-temporal calibration method for VIO. The
method does not need any prior knowledge about spatial and temporal configurations. It estimates
the initial states of metric-scale, velocity, gravity, Inertial Measurement Unit (IMU) biases, and
calibrates the coordinate transformation and time offsets between the camera and IMU sensors. The
work routine of the method is as follows. First, it uses a time offset model and two short-term motion
interpolation algorithms to align and interpolate the camera and IMU measurement data. Then, the
aligned and interpolated results are sent to an incremental estimator to estimate the initial states
and the spatial–temporal parameters. After that, a bundle adjustment is additionally included to
improve the accuracy of the estimated results. Experiments using both synthetic and public datasets
are performed to examine the performance of the proposed method. The results show that both the
initial states and the spatial-temporal parameters can be well estimated. The method outperforms
other contemporary methods used for comparison.

Keywords: online initialization; spatial-temporal calibration; incremental estimation; monocular
visual-inertial odometry

1. Introduction

Monocular Visual-Inertial Odometry (VIO) is an important topic in the robotics and
the computer vision community. Its goal is to estimate the incremental motion and recon-
struct scene structure by fusing measurements collected from a camera and an Inertial
Measurement Unit (IMU). Previously, VIO has been successfully used in applications like
unmanned aerial robots [1,2], autonomous or semi-autonomous driving [3,4], 3D recon-
struction [5,6], and augmented reality [7,8]. The performance of monocular VIOs heavily
relies on the accuracy of the initial states (including metric-scale, velocity, gravity, gy-
roscope bias, and accelerometer bias) and the spatial-temporal parameters between the
camera and IMU. Thus, developing convenient and efficient methods to exactly acquire
the values of these parameters is highly demanded. First, an online initialization process is
needed to estimate the initial states for bootstrapping the fusion process, since otherwise,
the metric-scale of camera measurements is ambiguous, which may cause the optimization
sink into a local minimal solution. Second, the spatial-temporal parameters must be both
calibrated. In particular, the temporal parameters are used to align different sensor data.
The timestamps of the sensor data are taken either from an internal clock in the sensor or
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from the Operating System (OS) that receives the sensor data. Due to the unsynchronized
clocks, transmission delays, sensor response, and OS overhead, latency exists between
the actual sampling instant of the sensor data and the timestamp of the captured data;
thus, the captured data (i.e., the measurement data) from the camera and IMU are usu-
ally misaligned. An example of temporal misalignment in the sensor data is shown in
Figure 1. If the spatial-temporal parameters are not considered or incorrectly calibrated,
the performance of mapping and navigation would be significantly impaired.
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Figure 1. An example of temporal misalignment in the sensor data. The upper plot represents the
sensor sampling instants. The lower plot shows instants for attaching timestamps. The timestamped
data are essentially the sensor measurements obtained by users. The meanings of the notations
are as follows. timu

d and tcam
d are, respectively, the latency of Inertial Measurement Unit (IMU) and

camera. td = timu
d − tcam

d is the time offset between the stamped IMU and camera data. These two
timestamped data can be aligned by shifting the camera data with td offset or shifting the IMU data
with −td offset.

There have been several publications studying the initialization and calibration prob-
lems. The early ones [9–13] used offline methods to obtain the spatial-temporal parameters.
They required a professional user to carefully move the sensor suite in front of a stationary
visual calibration target, which is troublesome in usual deployment and dangerous in cases
of emergency. To overcome the disadvantages, several online methods were developed.
The online methods assumed that the measurements from a camera and an IMU were
well synchronized (e.g., [14–19]), or the extrinsic spatial parameter was known in advance
(e.g., [20–22]), or both conditions were satisfied (e.g., [23–28]). In the case where both the
measurements from different sensors are asynchronous and the extrinsic spatial parameter
between different sensors is unknown, most of the existing methods [29–34] are designed
for filter-based VIOs since they are usually built on the Multi-State Constraint Kalman Filter
(MSCKF [35]) framework. They perform the state propagation/prediction by integrating
IMU measurements and perform the state update/correction by using visual measure-
ments. However, for the optimization-based VIOs, which use Bundle Adjustment (BA) to
minimize the IMU preintegration errors and feature/photometric reprojection errors and
thus have higher accuracy than filter-based ones, there is not much online simultaneous
spatial-temporal calibration work in the literature.

Motivated by the situation, we in this paper propose an online initialization and
calibration method for optimization-based VIO considering spatial-temporal constraints.
The method simultaneously estimates the initial states and calibrates the spatial-temporal
parameters during the system bootstrapping. It does not need professional knowledge
and tedious offline preparations, thus enabling us to build “power-on-and-go” robots
that can operate autonomously and instantaneously. The proposed method is carried out
sequentially in three steps. First, our method introduces a time offset model and proposes
two short-term sensor motion interpolation algorithms for aligning the asynchronous
camera and IMU measurements, based on an assumption that the sensor suite moves in
constant angular and linear velocities between consecutive frames with short-term intervals.
The two sensor motion interpolation algorithms, i.e., the camera motion interpolation and
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the IMU motion interpolation, respectively, interpolate the camera pose and IMU pose at
arbitrary intermediate times inside each short-term interval. By further considering the
unknown metric-scale of camera pose in the camera motion interpolation algorithm, the
transformation relationship between the camera and IMU at any timestamp is formulated
as a function of the temporal parameter. Second, an incremental estimator considering
the temporal misalignment between different sensor data is introduced to estimate the
initial states and the spatial-temporal parameters. The incremental estimator is performed
repeatedly each time a new keyframe is detected. It first estimates the extrinsic rotation,
time offset, and gyroscope bias by minimizing the rotation difference between the camera
and IMU. Then, it estimates metric-scale, gravity, and spatial translation by ignoring
accelerometer bias. Finally, it refines these values and further estimates the accelerometer
bias by taking the gravitational magnitude into account. Third, a bundle adjustment is used
to improve the accuracy of the initialization and fuse the visual and inertial measurements.
By minimizing both the IMU preintegration error and the feature reprojection error, it
can globally or locally optimize the IMU states (including position, rotation, velocity, and
biases), the spatial-temporal parameters, and the reconstructed map.

The main contributions of this article are in algorithmic implements:

• We propose an online method for bootstrapping the optimization-based monocular
VIO system, which can simultaneously estimate the initial states and calibrate the
spatial and temporal parameters between the camera and IMU sensors.

• The time offset is modeled, and two short-term motion interpolation algorithms
considering both the temporal parameter and the unknown metric-scale are proposed
to interpolate the camera and IMU pose at an arbitrary intermediate time, which
enable us to align the camera poses and IMU poses.

• A three-step incremental estimator is introduced to estimate the initial states and the
spatial-temporal parameters using the aligned poses.

• A tightly-coupled nonlinear optimization algorithm is additionally included to im-
prove the accuracy of the estimated results.

In the experimental section, quantitative analysis and comparison using synthetic
sequences, public datasets, and real visual-inertial sensors are performed to examine
the proposed method. The results show the efficacy and efficiency in estimating both
the initial states and extrinsic spatial-temporal parameters. For intuitive understanding,
an example of the estimated maps before and after applying the proposed method is shown in
Figure 2. The map estimated by a pure monocular visual odometry (VO) front-end during
initialization is shown in Figure 2a. It is subject to a problem of ambiguous scale. The metric-
scale can be recovered by applying the proposed incremental estimator, and a real-sized
map is found, as shown in Figure 2b. After initialization, the subsequent measurements
are processed by the visual-inertial bundle adjustment. The result is a stitched map shown
in Figure 2c. The top-view of the estimated trajectory compared with the ground-truth and
our previous work [36] that considered spatial constraint only is shown in Figure 2d, which
indicates that the trajectory estimated by simultaneously considering spatial-temporal
constraints is more accurate.

The remaining part of this paper is organized as follows: Section 2 reviews the related
work. Section 3 presents the time offset model, the short-term sensor motion interpolation
algorithms, and the transformation equations developed based on the model and interpola-
tions. Section 4 introduces the preliminary knowledge about the IMU measurement model
and the IMU preintegration and presents the incremental estimation of the initial states
and the extrinsic spatial-temporal parameters. Section 5 presents the bundle adjustment.
Experiments and analyses are performed in Section 6. Conclusions and future work are
described in Section 7.
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Figure 2. An example of the estimated maps before and after applying the proposed method. The data
are from the V2_01 sequence of the EuRoC dataset [37] with a time offset of 45 ms. (a) The map
estimated by monocular VO. It is subjected to ambiguous scales. (b) The map after initialization. The
metric-scale was recovered. (c) The map constructed by the proposed method on the whole sequence.
(d) A top-view of the estimated trajectory (blue curve) compared with the ground-truth (black curve)
and our previous work [36] (green curve, which calibrates the extrinsic spatial parameter only).
Best viewed in color.

2. Related Work

According to the working routine, previous VIO calibration methods can be divided
into offline and online methods. Offline methods have a long history. For example,
Mirzaei et al. [38] performed an observability analysis for rigid transformation between
the camera and IMU. They showed that under certain motion, the rigid transformation is
not fully observable. Furgale et al. [9,10] developed an open-source camera/IMU calibration
toolbox named Kalibr (https://github.com/ethz-asl/kalibr, accessed on 14 February 2021),
to perform the temporal and spatial calibration for a visual-inertial sensor in an offline
manner. By using a continuous-time basis function representation [39] of the sensor trajec-
tory, Rehder et al. [12,13] extended the toolbox to calibrate both the extrinsic and intrinsic
parameters of multiple IMUs.The drawback of offline calibration is the need for additional
calibration steps and assistive devices. In addition, a recalibration must be performed every
time the configuration of a sensor suite is changed. To avoid inconvenience, researchers
switched to online methods.

Online methods estimate the extrinsic parameters at the arrival of each new sensor
measurements. It invalidates the need for assistive devices and, at the same time, maintains
high accuracy, thereby making the odometry more robust and easier to use. According
to the unknown parameters, the online method for monocular VIOs can be divided into
online spatial calibration, online temporal calibration, and simultaneous online spatial-
temporal calibration.

For online spatial calibration, Kelly et al. [15] proposed a self-calibration method based
on the unscented Kalman filter. The method showed that the full observability of spa-
tial parameters required the sensor suite to undergo both the rotation and acceleration
on at least two IMU axes. Li et al. [16,17] estimated the spatial parameters along with a

https://github.com/ethz-asl/kalibr
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sliding window of sensor poses using an extended Kalman filter algorithm. It achieved
consistent estimation by ensuring the correct observability properties of its linearized
system model. Yang and Shen [18] calibrated the spatial parameters and the initial states
(except for IMU biases) with an optimization-based linear estimator. In their extended
batch-based monocular VINS (termed VINS-Mono) [40], the IMU biases are included in a
sliding window nonlinear estimator. Schneider et al. [41] introduced information-theoretic
metrics to assess the information content of trajectory segments, thus allowing them to
select the most informative parts from a dataset for extrinsic spatial calibration purposes.
Huang et al. [19] proposed an estimator to incrementally solve several linear equations to
estimate the spatial parameters between an IMU and two cameras.

For online temporal calibration, Kelly et al. [20] formulated the calibration problem as
a registration task. Their method leveraged a variant of iterative closet point algorithm,
termed TD-ICP, to gradually match the three-dimensional orientation curves of camera
and IMU. Mair et al. [42] presented and compared two approaches, i.e., cross-correlation
and phase congruence, to temporally align the camera and the gyroscope, which showed
that the cross-correlation based approach was more suitable for short delay. Ling et al. [21]
presented a time-varying model for temporal calibration. This approach can handle the
rolling-shutter effects and imperfect sensor synchronization in a nonlinear optimization
algorithm. Qin et al. [22] extended [40] to include estimating the time offset between the cam-
era and IMU by interpolating the location of image features. The method treated the time
offset as a vision factor and calibrated it online along with features and sensor poses in an
optimization-based VIO framework. Liu et al. [34] proposed an online temporal calibration
method that was integrated into the filter-based VIO framework (S-MSCKF [43]). To ensure
the consistency between the IMU measurement constraint and the visual measurement
constraint, the authors established a modified feature projection model considering time
offset and introduced an interpolation-based algorithm for inferring the 2D observations of
features on a virtual image.

Although various sophisticated online approaches for either spatial calibration or
temporal calibration have been proposed, drawbacks remain. Online spatial calibration
methods [15–19] require the measurements from different sensors to be strictly synchro-
nized, while online temporal calibration methods [20–22] assume the relative transforma-
tions between different sensors are prerequisites. In cases of low-cost and self-assembled
devices, accurate factory calibration and hardware synchronization are not available.
Such devices inspire the study of simultaneous online spatial-temporal calibration. For ex-
ample, Li et al. [29,30] treated the time offset as an additional state variable to be estimated
along with IMU pose, velocity, biases, feature positions, and extrinsic spatial parameters.
To compute the feature residual, the authors performed the propagation using the IMU
measurements up to the estimated time offset. Li’s works also showed that the time offset
was locally identifiable, except in a small number of degenerate cases like constant-velocity
motion. Zuo et al. [31] developed a Lidar-inertial-camera odometry that could refine the
spatial-temporal parameters online along with sensor pose estimation. Yang et al. [32]
analyzed the observability of spatial-temporal parameters and showed that they were
both observable if the sensor platform underwent fully random motion. The authors
also identified four degenerate motions that were harmful to the calibration accuracy.
Eckenhoff et al. [33] used interpolation on the SO(3) manifold to represent anytime IMU
poses and successfully performed the spatial-temporal calibration for a multi-camera sys-
tem. The short-term motion interpolation used in our paper is inspired by [33]. We extend
it to interpolate the to-scale camera poses and thus can represent anytime camera poses
and express the IMU pose by transforming the camera pose at the true time. We estimate
the initial states and extrinsic parameters using the true time IMU-camera pose relations.

Although impressive performance has been achieved in the above-mentioned si-
multaneous online spatial-temporal calibration methods, most of them are designed for
filter-based VIOs. For optimization-based VIOs, there is not much online spatial-temporal
calibration method in the literature. Motivated by this situation, we, in this paper, propose
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an incremental estimator that simultaneously considers the spatial-temporal constraints
and develops optimization-based algorithms. Our method can solve the calibration prob-
lem when both the spatial and temporal parameters are unknown. To the best of our
knowledge, similar methods are less seen in modern literature. The only publication that
has a similar conception is Feng’s method [44], which estimated the extrinsic rotation
and time offset by minimizing the quaternion rotation difference between the camera and
IMU. The method used a loosely coupled approach described in [45] to recover the initial
states and used a nonlinear optimization algorithm to minimize sensor noises. Differ-
ent from Feng’s method, our focus is the time offset among the sensors. We model the
time offset and use the temporal constraints to interpolate the poses of the camera and
IMU. The systematic accuracy and robustness are improved by taking the time offset into
account. Compared with [22,30,34], our method directly performs the motion interpolation
on the camera poses and IMU poses for compensating the time offset. By considering
the time offset and the unknown metric-scale factor in the camera motion interpolation
algorithm, it benefits us to inherit the incremental estimation routine introduced in our
previous work [36]. Owing to the interpolation on camera poses, the proposed incremental
estimator can be easily applied to the popular pure visual SLAM/Odometry frameworks
(e.g., LSD-SLAM [46], ORB-SLAM [47–49], DSO [50], SVO [51,52]) to conduct visual-inertial
systems since the input of our estimator is merely the IMU measurements and the keyframe
poses. These frameworks can provide accurate up-to-scale camera pose and serve as the
VO front-end for our incremental estimator.

3. Short-Term Sensor Motion Interpolation

This section introduces the short-term sensor motion interpolation algorithm. First,
the time offset model used to align the camera and IMU data are presented. Then, two motion
interpolation algorithms are introduced to, respectively, interpolate the camera and IMU
poses. After that, the transformation relationship between the camera and IMU is derived
by using the interpolated poses.

The meanings of the various symbols used in this section are as follows. (·)w denotes
the states expressed in the world reference frame {w}. It coincides with the camera
coordinate system of the first keyframe. Tw

ci
= [Rw

ci
|s · pw

ci
] is the pose of the camera frame

{ci} expressed in {w} at time ti, where Rw
ci
∈ SO(3) and pw

ci
∈ R3 are, respectively, the

camera rotation and position. s is the metric-scale used to present the scale ambiguity in
the camera position. Tw

bi
= [Rw

bi
|pw

bi
] is the pose of the IMU body frame {bi} expressed in

{w} at time ti. Tb
c = [Rb

c |pb
c ] is the relative transformation between the camera and IMU,

i.e., the extrinsic spatial parameter that should be calibrated. For convenience, the inverse
representations, e.g., Tc

b = [Rc
b|p

c
b] = [Rb

c
T | − Rb

c
T · pb

c ], are also used in some equations.
The time offset between the camera and IMU measurements is denoted as td. The relative
transformation Tb

c and time offset td are fixed but unknown.

3.1. Time Offset Model

As previously shown in Figure 1, the camera and IMU in a monocular VIO sensor suite,
respectively, provide discrete samplings in a constant frequency. Due to the unsynchronized
clocks, transmission delays, sensor response, and operating system overhead, there exists
a latency that makes the measured (i.e., timestamped) data misalign with the sampling
instants. Consider the camera and the IMU measurements sampled at the same instant t,
their timestamps tcam

s and timu
s can be modeled as:

tcam
s = t + tcam

d , timu
s = t + timu

d , (1)

where tcam
d and timu

d are, respectively, the latencies of camera and IMU. The time offset td
thus equals to:

td
.
= timu

d − tcam
d = timu

s − tcam
s . (2)
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Equations (1) and (2) indicate that the camera and IMU data can be aligned by shifting
the camera data with td offset or shifting the IMU data with −td offset, namely:

Tw
bi
= Tw

ci,td
· Tc

b, (3)

Tw
ci
= Tw

bi,−td
· Tb

c . (4)

Here, Tw
ci,td

= [Rw
ci ,td
|s ·pw

ci ,td
] is the camera pose at time ti + td. Tw

bi,−td
= [Rw

bi ,−td
|pw

bi ,−td
]

is the IMU pose at time ti − td. Equation (3) indicates that an IMU pose at time ti is
corresponded to the camera pose at time ti + td. Equation (4) indicates that a camera pose
at time ti corresponds to the IMU pose at time ti − td. The transformation relationships
between the camera and IMU coordinate frames when considering the time offset are
illustrated in Figure 3.

IMU Integration

 w
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bT

w
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i

w

cT

b

cT

c

bT

shift dt

shift dt−

up-to-scale camera pose

e
G

 ,i db t−

 ,i dc t

,i d

w

b t−T

,i d
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c tT

Figure 3. Transformation relationships between the camera and IMU coordinate frames when
considering the time offset. The camera and IMU poses can be aligned by shifting the camera pose
with td offset or shifting the IMU pose with −td offset. The world reference frame {w} coincides with
the first keyframe’s coordinate system of the monocular visual odometry front-end. Ge is the gravity
expressed in the earth inertial reference frame {e}.

3.2. Sensor Motion Interpolation
3.2.1. Camera Motion Interpolation

In this work, the camera is assumed to move in constant angular and linear veloci-
ties in a short period; therefore, the camera pose at an arbitrary time can be interpolated
using its nearest camera poses. Consider two up-to-scale camera poses Tw

ci
and Tw

cj
esti-

mated at timestamp ti and tj; the camera angular velocity ωci and linear velocity ṽci at ti
are approximately

ωci ≈ Log(Rw
ci

TRw
cj
)/(tj − ti),

ṽci ≈ (pw
cj
− pw

ci
)/(tj − ti),

(5)

where Log(·) is the “vectorized” version of logarithm map that transforms a rotation matrix
R 6= I to a vector φ, with φ = Log(R) = ln(R)∨ and (·)∨ is the vee operator that maps a
skew-symmetric matrix in R3×3 to a vector in R3. Its reverse process is called a hat operator
(·)∧ that maps a vector in R3 to a skew-symmetric matrix. A property of skew-symmetric
matrices that will be used is as follows: given two vectors a, b ∈ R3, the cross-product can
be expressed as a× b = a∧ · b = −b∧ · a. Note that the velocity term ṽci in the equation
is computed using the up-to-scale camera positions. The metric-scale factor is taken into
account in the derivation of spatial relationships between camera and IMU (see Equation (9)).
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Using Equation (5), the camera rotation and position at time ti + td can be interpolated
as follows:

Rw
ci ,td
≈ Rw

ci
Exp(ωci td),

pw
ci ,td
≈ pw

ci
+ ṽci td.

(6)

3.2.2. IMU Motion Interpolation

Similarly, assuming the IMU moves in constant angular and linear velocities in a short
period, the rotation and position at time ti − td can be interpolated as:

Rw
bi ,−td

≈ Rw
bi

Exp(−ω̄bi
td),

pw
bi ,−td

≈ pw
bi
− vw

bi
td,

(7)

where ω̄bi
and vw

bi
are, respectively, the angular and linear velocities of the IMU at ti.

3.3. Spatial Relationships between Camera and IMU

By considering the time offset td and the metric-scale s, the rotation and position of
the IMU at timestamp ti can be derived from a camera pose according to Equation (3)
as follows:

Rw
bi
= Rw

ci ,td
Rc

b ≈ Rw
ci

Exp(ωci td)R
c
b, (8)

pw
bi
= Rw

ci ,td
pc

b + s · pw
ci ,td

≈ Rw
ci

Exp(ωci td)p
c
b + s · (pw

ci
+ ṽci td).

(9)

Similarly, the camera pose at timestamp ti can be derived from an IMU pose according
to Equation (4), as follows:

Rw
ci
= Rw

bi ,−td
Rb

c ≈ Rw
bi

Exp(−ω̄bi
td)R

b
c , (10)

pw
ci
= Rw

bi ,−td
pb

c + pw
bi ,−td

≈ Rw
bi

Exp(−ω̄bi
td)p

b
c + pw

bi
− vw

bi
td.

(11)

In the following sections, Equations (8) and (9) are leveraged in the incremental
estimator. Equations (10) and (11) are used for the bundle adjustment. Note that since the
metric-scale can be recovered by performing the incremental estimator and the camera
position term pw

ci
in (11) is transformed from the IMU pose, the metric-scale term is removed.

4. Online Initialization and Extrinsic Spatial-Temporal Calibration

This section details how to combine the motion interpolation algorithms introduced
in Section 3 and the estimator introduced in our previous work [36] to estimate the initial
states and the spatial-temporal parameters.

For the reader’s convenience, we first briefly introduce the IMU preintegration theory in
Section 4.1. Then, the incremental estimator for online initialization is derived in Section 4.2.
The incremental update of time offset, velocity estimation, termination condition, and
implementation note are discussed in Section 4.3.

4.1. IMU Preintegration

The idea of preintegrated IMU measurements was first proposed by Lupton et al. [53].
Its essence is to combine many inertial measurements between two keyframes into a single
relative motion constraint. Lupton et al. used Euler angles to represent the IMU rotation.
The representation was later extended by Forster et al. [54] using a manifold in SO(3) to
avoid singularity. In this paper, we follow the IMU measurement model and the kinematic
model of the system motion given in [54]. In the following, we denote the IMU body
frame as {b} and the world reference frame as {w}, and the gravitational acceleration
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in {w} as gw. The gyroscope outputs ωb and accelerometer outputs ab are, respectively,
subject to white sensor noises ηg and ηa (normally assumed as Gaussian noise), and slow
time-varying gyroscope bias bg and accelerometer bias ba.

Given a series of IMU measurements from time i to time j (j > i) and ignoring the
sensor noises, the changes of IMU rotation Rw

b , velocity vw
b , and position pw

b between the
two time instants can be computed by:

Rw
bj
= Rw

bi
∆R̄ijExp

(
Jg

∆R̄ij
δbgi

)
,

vw
bj
= vw

bi
+gw∆tij+Rw

bi

(
∆v̄ij+ Jg

∆v̄ij
δbgi+ Ja

∆v̄ij
δbai

)
,

pw
bj
= pw

bi
+vw

bi
∆tij+

1
2

gw∆t2
ij

+ Rw
bi

(
∆p̄ij+Jg

∆p̄ij
δbgi+Ja

∆p̄ij
δbai

)
,

(12)

where ∆t is the IMU sampling interval, and ∆tij
.
= ∑

j−1
k=i ∆t. Exp(·) is the “vectorized”

version of exponential map that transforms a vector φ ∈ R3 to a rotation matrix R ∈ SO(3),
with R = Exp(φ) = exp(φ∧). In the equation, the Jacobians Jg

(·) and Ja
(·) indicate how the

measurements change with respect to the bias estimation. ∆R̄ij, ∆v̄ij, and ∆p̄ij are the
preintegrated terms during the time period (i, j). They can be computed directly using the
IMU measurements as follows:

∆R̄ij =
j−1

∏
k=i

Exp
((

ωbk
− b̄gi

)
∆t
)
,

∆v̄ij =
j−1

∑
k=i

∆R̄ik
(
abk
− b̄ai

)
∆t,

∆p̄ij =
j−1

∑
k=i

(
∆v̄ik∆t +

1
2

∆R̄ik
(
abk
− b̄ai

)
∆t2
)

.

(13)

Here, the biases are assumed to remain the same during the time period (i, j). They can
be represented as bgi+1 = . . . = bgj ≈ b̄gi + δbgi , and bai+1 = . . . = baj ≈ b̄ai + δbai . b̄gi and
b̄ai are the biases at time i. δbgi and δbai are compensation terms used to compensate for the
time-varying parts. In the following, the preintegrated terms will be used for incremental
estimation and constructing the IMU preintegration error term of nonlinear functions.

4.2. Incremental Estimation

In the incremental estimator, both the spatial and temporal parameters between the
camera and IMU, as well as the initial states of metric-scale, gravity, and IMU biases,
are simultaneously estimated. The basic idea is to solve the equality constraints between
the up-to-scale camera poses with the integrated IMU poses. First, we run the sensor
suite for a few seconds with at least two-axis rotation plus some random translation. Sev-
eral keyframes are collected in the process. After that, we perform the incremental estimator
repeatedly across consecutive keyframes until the values to be estimated converge.

The incremental estimator is indeed developed from the three-step process proposed
in our previous work [36]. In [36], the extrinsic spatial parameters and initial values were
online-estimated under the assumption that the camera and IMU measurements were well
aligned. Therefore, in the first step, it used an iterative strategy to individually estimate
the gyroscope bias and the extrinsic rotation matrix. In each iteration, the last estimated
extrinsic rotation matrix was utilized to estimate a gyroscope bias. Then the preintegrated
rotations were rectified by applying the estimated gyroscope bias. After that, a linear
over-determined equation was developed to calculate a new extrinsic rotation matrix.
The iterative estimation was performed until the extrinsic parameters converged. In the
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other two steps, the up-to-scale camera poses were directly used to conduct the position
relationship. Unlike the previous work, the measurement misalignment case is taken
into account in the current work. In comparison, the incorporation of time offset is not
simple addition. It requires changes in all aspects, which makes the steps very different
from our published work. IN particular, when asynchrony appears between sensors, it is
difficult to distinguish the temporal parameter and the extrinsic rotation matrix, and one
cannot individually estimate the gyroscope bias, the temporal parameter, and the extrinsic
rotation matrix through an iterative manner. To overcome the difficulty, the camera motion
interpolation algorithm is utilized to compensate for the time offset. In the first step of the
incremental estimator, the interpolated camera rotations (i.e., the Equation (8)) are adopted;
thus the temporal parameter, the extrinsic rotation matrix, and the gyroscope bias can be
estimated together by solving an optimization function that minimizes the relative rotation
difference between the IMU rotation and the interpolated camera rotation. In the other
two steps, we further apply the interpolated camera positions considering the unknown
metric-scale factor (i.e., the Equation (9)) to calibrate the extrinsic translation parameters
and other initial states from coarse to fine.

4.2.1. Estimating Gyroscope Bias, and Calibrating Extrinsic Rotation and Time Offset

In the incremental estimation, the gyroscope bias is assumed to have a constant value
as it changes slowly over time. The rotation relationships of two consecutive keyframes at
timestamp i and i + 1 can be described as:

Rw
bi
= Rw

ci ,td
Rc

b, Rw
bi+1

= Rw
ci+1,td

Rc
b, (14)

where Rw
bi

and Rw
bi+1

are the IMU rotations that are derived by transforming the interpolated
camera rotations. By substituting the first equation of (12) into (14) and using the notation
i + 1 to replace the notation j, the difference between the preintegrated rotation and the
transformed value is:

eroti,i+1 = Log
((

∆R̄i,i+1Exp
(

Jg
∆R̄i,i+1

δbg

))T
Rb

c

·Exp(−ωci td)R
ci
wRw

ci+1
Exp

(
ωci+1 td

)
Rc

b

)
,

(15)

where Rc
b and Rci

w are, respectively, the inverse of Rb
c and Rw

ci
.

With N collected keyframes, the gyroscope bias compensation δb∗g, extrinsic rotation

Rb
c
∗

and time offset t∗d can be estimated by minimizing the rotation difference for all
keyframes as follows:

δb∗g, Rc
b
∗, t∗d = arg min

δbg ,Rc
b ,td

N−1

∑
i=1
‖eroti,i+1‖

2
Σ∆R

, (16)

where Σ∆R is the information matrices associated with the preintegrated rotation. The Equa-
tion (16) is a nonlinear least-squares problem on Lie algebra. It can be solved by using the it-
erative methods, like the Gauss–Newton method or the Levenberg–Marquardt method [55].
In the first estimation, since we do not have any prior knowledge about the time offset
and extrinsic rotation, the initial seeds for td and δbg are set to zero, and Rc

b is set to an
identity matrix. After that, the results obtained in the last estimation are used as initial
seeds. Note that when Equation (16) is solved, the preintegrated terms described in (13) are
re-computed by using the new estimated gyroscope bias, which facilitates the following
steps. The Jacobians of eroti,i+1 needed by the iterative method are derived in Appendix A.4.
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4.2.2. Approximating Scale, Gravity, and Extrinsic Translation

Once the extrinsic rotation Rb
c
∗

and time offset t∗d have been found by Equation (16),
the metric-scale s, gravity vector gw, and extrinsic translation pc

b can be approximately
estimated by combining Equations (8), (9), and (12).

First, by substituting (8) and (9) into the third equation of (12), the position relationship
between two consecutive keyframes i and i + 1 can be obtained:

s · pw
ci+1,td

= s · pw
ci ,td

+ vw
bi

∆ti,i+1 +
1
2

gw∆t2
i,i+1

+ Rw
ci ,td

Rc
b
∗∆p̄i,i+1 + (Rw

ci ,td
−Rw

ci+1,td
) · pc

b,
(17)

where Rc
b
∗ is the result of (16). The items Ja

∆p̄ and Ja
∆v̄ are temporarily set to zero since the

accelerometer bias is not considered for approximation. The accelerometer bias will be
estimated in the refinement process. Furthermore, by re-computing the preintegration
terms after the gyroscope bias estimation and assuming the gyroscope bias is constant, Jg

∆p̄

and Jg
∆v̄ can be set to zero. Note that there is a velocity term vw

bi
in the Equation (17). This

term is undetermined and will increase the complexity of the incremental estimation if it is
reserved. In the following, we introduce a trick to eliminate the velocity term.

Second, by considering three consecutive keyframes, we can obtain two relations in
the form of (17). Using these two relations and substituting the second equation of (12),
the velocity terms can be eliminated, as follows:

[
λ(i) β(i) ϕ(i)

] s
gw

pc
b

 = γ(i). (18)

When writing keyframes i, i + 1, i + 2 as 1, 2, 3, λ(i), β(i), ϕ(i), and γ(i) can be
expressed as:

λ(i) = (pw
c2,td
− pw

c1,td
)∆t23 − (pw

c3,td
− pw

c2,td
)∆t12,

β(i) =
1
2
(∆t12∆t2

23 + ∆t2
12∆t23)I3×3,

ϕ(i) = (Rw
c2,td
−Rw

c3,td
)∆t12− (Rw

c1,td
−Rw

c2,td
)∆t23,

γ(i) = Rw
c1,td

Rc
b
∗(∆p̄12∆t23− ∆v̄12∆t12∆t23)

−Rw
c2,td

Rc
b
∗∆p̄23∆t12.

(19)

With N keyframes, we can obtain N− 2 relations in the form of Equation (18). These re-
lations can be stacked into a linear over-determined system equation B3(N−2)×7 · x7×1 =
C3(N−2)×1 with weights for outlier handling [36]. This system equation can be solved using
Singular Value Decomposition (SVD) to get the approximate metric-scale s∗, gravity vector
gw∗, and extrinsic translation pc

b
∗. Note that since there are 3(N − 2) sub-equations and

a seven-dimension unknown vector in the system equation, at least five keyframes are
required to solve it.

Since the accelerometer bias is temporally set to zero in carrying out the computa-
tions, the estimated results in this step are approximated. They will be refined in the
following part by considering the magnitude of gravitational acceleration and taking the
accelerometer bias into account.

4.2.3. Estimating Accelerometer Bias, and Refining Scale, Gravity, and Extrinsic Translation

Next, we estimate the accelerometer bias and refine the scale, gravity, and translation.
We denote the earth inertial reference frame as {e} and compare it to the world reference
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frame {w}. Using the already estimated gw∗ in the approximation process, the rotation
between {e} and {w} can be obtained as:

Rw
e = Exp(~nα),

~n =
g̃e × g̃w

‖g̃e × g̃w‖ , α = atan2(‖g̃e × g̃w‖, g̃e · g̃w),

g̃w = gw∗/‖gw∗‖, g̃e = Ge/‖Ge‖, Ge = [0, 0, −G]T ,

(20)

where ~n and α are, respectively, the rotation axis and the rotation angle of Rw
e . Ge is

the gravity vector expressed in {e}. G is the magnitude of the gravitational acceleration
(normally G = 9.81 m/s2). This rotation can be optimized by appending a perturbation
δθ ∈ R3×1, as follows:

gw = Rw
e Exp(δθ) ·Ge≈Rw

e ·Ge −Rw
e ·Ge∧ · δθ, (21)

where the first-order approximation of exponential map (see Equation (A2) in Appendix A.1)
is applied. By substituting (21) into (17) and further considering the accelerometer bias,
we have:

s· pw
ci+1,td

= s· pw
ci ,td

+ vw
bi

∆ti,i+1−
1
2

Rw
e ·Ge∧ · δθ∆t2

i,i+1

+ Rw
ci ,td

Rc
b
∗(∆p̄i,i+1+ Ja

∆p̄i,i+1
δba)

+ (Rw
ci ,td
−Rw

ci+1,td
) · pc

b +
1
2

Rw
e ·Ge∆t2

i,i+1.

(22)

Similar to (18), the velocity term can be eliminated by considering three consecutive
keyframes and applying the second equation of (12), which results in:

[
λ(i) φ(i) ζ(i) ξ(i)

]
s

δθxy
δba
pc

b

 = ψ(i). (23)

Here, λ(i) remains the same as in (19), and φ(i), ζ(i), ξ(i), and ψ(i) are computed
as follows:

φ(i) =
[
−1

2
Rw

e ·Ge∧ ·(∆t12∆t2
23 + ∆t2

12∆t23)

]
(:,1:2)

,

ζ(i) = Rw
c1,td

Rc
b
∗
(

Ja
∆v̄12

∆t12∆t23 − Ja
∆p̄12

∆t23

)
+ Rw

c2,td
Rc

b
∗Ja

∆p̄23
∆t12,

ξ(i) = (Rw
c2,td
−Rw

c3,td
)∆t12 − (Rw

c1,td
−Rw

c2,td
)∆t23,

ψ(i) = Rw
c1,td

Rc
b
∗(∆p̄12∆t23 − ∆v̄12∆t12∆t23)

−Rw
c2,td

Rc
b
∗∆p̄23∆t12

− 1
2

Rw
e ·Ge(∆t12∆t2

23 + ∆t2
12∆t23),

(24)

where [·](:,1:2) means the first two columns of the matrix. With N keyframes, a linear
over-determined system equation D3(N−2)×9 · y9×1 = E3(N−2)×1 with weights for out-
lier handling can be established to solve s∗, δθ∗xy, δb∗a , and pc

b
∗. Since the accelerom-

eter bias is set to zero when integrating ∆R̄i,i+1, ∆v̄i,i+1, and ∆p̄i,i+1, the final result
is b∗a = 03×1 + δb∗a = δb∗a . The gravity is refined by appending the perturbation, i.e.,
gw∗ = Rw

e Exp(δθ∗) ·Ge. Note that since there are 3(N − 2) equations and a 9-dimension
unknown vector in the system equation, at least five keyframes are required to solve it.
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4.3. Updates, Termination, and Velocity Estimation

After each execution of the incremental estimator, the timestamps of subsequent visual
measurements are compensated by applying the estimated time offsets, i.e., tcam

s
′ = tcam

s + td.
The next estimation will be performed using newly obtained and compensated data.

The incremental estimation will be continuously performed until the estimates get
converged. The convergence is judged by using the criteria proposed by [19]. The velocities
of all keyframes are estimated uniformly after the parameters are converged. For the old
ones, their velocities are computed using the positional relationship of two consecutive
keyframes, as shown in (22). For the latest one, since its following keyframes are not
determined yet, the velocity propagation equation in (12) is used to calculate its velocity.
Once the velocities of all keyframes have been calculated, the scales of camera poses
and map points are updated, and the preintegration terms are recomputed to correct the
accelerometer bias. The incremental estimation is considered to have been completed after
the update and recomputation.

Note that the proposed method does not rely on any prior knowledge about the
sensor’s temporal misalignment. If the misalignment is too large, the old uncompensated
keyframes will have a bad influence on following executions. We solve this problem by
discarding the old keyframes. In particular, if the time offset estimated by (16) is larger than
the IMU sampling interval, the time offset will be updated and the system is relaunched.
The following approximation and refinement processes will not be performed in this case.

5. Visual-Inertial Bundle Adjustment

Note that in the incremental estimation, the gyroscope bias bg and the accelerometer
bias ba are assumed to remain constant. This assumption simplifies the process but
may slightly reduce the calibration accuracy. To overcome the shortcoming, a visual-
inertial bundle adjustment is performed to further correct the spatial-temporal parameters,
velocities, and IMU poses and biases. The bundle adjustment can be carried out both
globally and locally. When the incremental estimation is completed, global adjustment can
be used to refine the accuracy of initial states and extrinsic parameters. The local adjustment
is used to combine visual and inertial measurements for visual-inertial odometry.

The bundle adjustment is formulated as a nonlinear optimization problem. We con-
sider the following state vector for an ith keyframe as follows:

xi = [Rw
bi

, pw
bi

, vw
bi

, bgi , bai , pw
1 , pw

2 , . . . , pw
m], (25)

where pw
k ∈ R3 is the kth map point in the world reference frame observed by the ith

keyframe. The full state of a nonlinear optimization is defined as follows:

X = [xl , xl+1, . . . , xn, Rb
c , pb

c , td], (26)

where n and l are, respectively, the newest and oldest keyframe indices in an optimized
window with size L. The setting of l depends on the type of adjustment. For global
adjustment, l is set to 1. All states starting from the first keyframe are optimized, excluding
the position and rotation of the first keyframe as it is regarded as the global reference frame.
For local adjustment, l is set to n−L+ 1. The states of the keyframes contained in a local
window are accounted.

The nonlinear optimization minimizes both the feature reprojection errors and the
IMU preintegration errors, as follows:

X ∗ = arg min
X

n

∑
i=l

(
∑
k

Eproj(k, i) + Eimu(i− 1, i)

)
, (27)

where Eproj(k, i) is the feature reprojection error term for a given matched kth map point
observed by the ith keyframe. Eimu(i− 1, i) is the IMU preintegration error term that links
keyframe i and its previous keyframe i−1.
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5.1. Feature Reprojection Error

Considering a 3D map point pw
k observed by the ith keyframe and matched to a 2D

image feature, the map point can be transformed into a local camera coordinate frame
using Equations (10) and (11) as follows:

pci
k = Rc

bExp(ω̃bi
td)R

w
bi

T
(

pw
k − pw

bi
+ vw

bi
td

)
+ pc

b. (28)

Here, we approximate ω̄bi
by ignoring the white sensor noise. ω̄bi

can thus be written
as ω̄bi

≈ ω̃bi
= ωbi

− b̄gi − δbgi . Using Equation (28), the feature reprojection error term
can be defined as follows:

Eproj(k, i) = ρ

((
ui

k − π(pci
k )
)T

Σk

(
ui

k − π(pci
k )
))

, (29)

where π : R3 → Ω is the projection function of pinhole camera model [56]. It transforms a
3D point in the local camera coordinate frame into a 2D point on the image plane. ui

k ∈ R2

is the pixel location of the matched feature. Σk is the information matrix associated with the
feature detection. ρ is a Huber robust cost function. The states in Equation (29) include the
extrinsic spatial and temporal parameters, as well as the IMU pose, IMU velocity, and map
points. The Jacobians of reprojection error w.r.t. the states are derived in Appendix A.5.

5.2. IMU Preintegration Error

With a slight abuse of notation, we use i and j to denote two consecutive keyframes
for convenience. The IMU preintegration error term Eimu(i, j) is represented as:

Eimu(i, j) = ρ
(
[eT

R eT
v eT

p ]ΣI [eT
R eT

v eT
p ]

T
)
+ ρ
(

eT
b Σbeb

)
,

eR = Log
((

∆R̄ijExp(Jg
∆R̄ij

δbgi )
)TRw

bi

TRw
bj

)
,

ev = Rw
bi

T
(

vw
bj
− vw

bi
− gw∆tij

)
−
(

∆v̄ij + Jg
∆v̄ij

δbgi + Ja
∆v̄ij

δbai

)
,

ep = Rw
bi

T
(

pw
bj
− pw

bi
− vw

bi
∆tij −

1
2

gw∆t2
ij

)
−
(

∆p̄ij + Jg
∆p̄ij

δbgi + Ja
∆p̄ij

δbai

)
,

eb = δbj − δbi,

(30)

where δbj = [δbgj
T δbaj

T ]T . eR, ev, and ep are, respectively, the errors of the preintegrated
rotation, velocity, and position. eb is the bias difference between i and j time instants.
ΣI and Σb are, respectively, the information matrices of the preintegration and the bias
random walk.

6. Experiments Furthermore, Discussions

We implement the proposed method based on ORB-SLAM2 [47,48]. The Tracking
and Local Mapping threads of ORB-SLAM2 are used to process camera measurements and
output up-to-scale camera poses. The output poses, together with IMU measurements, are
sent to our incremental estimator for initialization and calibration. When the incremental
estimation is converged, global adjustment is performed to adjust the results and improve
accuracy. After that, local adjustment is used to fuse the subsequent camera and IMU
measurements to realize the ego-motion estimation and scene reconstruction. Since our
focus is on odometry, the Loop Closure thread of ORB-SLAM2 is disabled. All the compared
methods are also run without loop closure for a fair comparison. The optimized window



Sensors 2021, 21, 2673 15 of 34

size L is set to 20. The platform used in the experiments was an Intel CPU i7-4720HQ
(8 cores @2.60 GHz) laptop computer with 8GB RAM (Lenovo, Beijing, China).

Performances of the proposed method were evaluated using both synthetic sequences
and public real-world datasets. First, we carried out simulation experiments to analyze the
robustness performance of the incremental estimator against various IMU sensor noises.
The robustness was quantified using errors on the spatial-temporal parameters, gyroscope
bias, and accelerometer bias. All of them are defined as scalars for better observing the
difference between the estimated result and the ground-truth. The calibrated and the
ground-truth rotation matrices are represented in yaw-pitch-roll Euler angles. Then, we
studied the overall performance of both the incremental estimation and bundle adjust-
ment using real-world experiments. The absolute translational root mean squared error
(RMSE) [57] between the estimated trajectory and the ground-truth is used to analyze the
overall odometry performance.

6.1. Robustness Performance against Various IMU Noises

The robustness performance of the incremental estimator is analyzed using simulation
with varying IMU sensor noises and time offsets. We collected data by simulating an IMU
that moves along a sinusoidal circle motion. The IMU and camera trajectories are shown in
the left subplot of Figure 4. The IMU trajectory is colored in black. The radius of the circular
motion in the x-y plane is 3 m, and the amplitude of the vertical sinusoidal motion in the
z-axis is (0.5 + 0.01 · t) m with a frequency of 0.2 Hz. The simulated IMU moves last for
40 s; thus the total length of the IMU trajectory is 41.59 m. The up-to-scale camera trajectory
is colored in blue. Its poses are generated by transforming the IMU poses using predefined
camera-IMU extrinsic spatial parameters (The predefined camera-IMU extrinsic parameters
for simulation are set as: Rb

c = [180.0, 0.0, 0.0] deg for rotation and pb
c = [0.1, 0.04, 0.03] m

for translation), while suffering to a predefined metric-scale of 2.0. The translations of the
camera and IMU poses are also shown in the right subplots of Figure 4.

Figure 4. The left subplot shows the parametric IMU trajectory (black curve), up-to-scale camera
trajectory (blue curve), and map points (gray dots). The three right subplots are the translation of the
camera and IMU poses in x, y, z-axis, with a time offset of 0.1 s. The radius of the circular motion in
the x-y plane is 3 m. The amplitude of the vertical sinusoidal motion in the z-axis is (0.5 + 0.01 · t) m.
The frequency is 0.2 Hz. The metric-scale of camera poses is customized to 2.0. The green diamond
and red circle, respectively, represent the beginning and the end of the trajectory. The simulated
sensor moves for 40 s; thus, the total length of the trajectory is 41.59 m.

The IMU measurements were generated as follows. First, we prepared noise-free
IMU measurements by computing the analytical derivatives of the parametric trajectory.
Then, several synthetic noise-affected IMU measurements were generated by adding dif-
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ferent intensities of noises to the noise-free measurements. We particularly considered six
types of gyroscope-related and accelerometer-related noises, including the measurement
noises (σg, σa), the biases (bg, ba), and the bias “diffusion” random walk noises (σbg, σba).
For each type of noise, we designed eight different intensities by starting from a basic
zero-mean Gaussian noise model (The basic IMU sensor noises are Gaussian-based noises:
gyroscope and accelerometer continuous-time noise densities: σg = 0.00017 rad/(s

√
Hz),

σa = 0.002 m/(s2
√

Hz). Constant biases: bg = [−0.0023, 0.0249, 0.0817] rad/s, ba =
[−0.0236, 0.1210, 0.0748] m/s2. Bias “diffusion” random walk noise densities: σbg =

0.00002 rad/(s2
√

Hz), σba = 0.003 m/(s3
√

Hz). We highlight that these basic noises
are similar to the ground-truth values provided by EuRoC dataset [37], therefore they are
meaningful in practical application.) As a result, we get 48 (6 × 8) noise-affected IMU data
sequences. Each sequence is affected by one type of noise with particular intensity. Figure 5
exemplifies two synthetic noisy IMU measurements compared with their corresponding
noise-free values. The simulated sampling rates of the camera and IMU are 20 Hz and
200 Hz, respectively.
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Figure 5. Two examples of the comparison between the noise-free and the noise-affected IMU mea-
surements. The noise-free measurements are generated by computing the analytical derivatives of the
parametric trajectory shown in Figure 4. The left subplots compare the noise-free accelerometer mea-
surements with the noise-affected ones. The noise-affected measurements are generated by adding
Zero-mean Gaussian noises with densities of 8σa to the three axes of the noise-free accelerometer
measurements. The right subplots show a similar comparison for gyroscope measurements.

Figure 6 shows the camera-IMU spatial-temporal calibration errors in the presence of
various gyroscope and accelerometer noises. The horizontal axes of the subplots are the
intensities of sensor noises. The vertical axes are calibration errors. The solid curves and
dash-dot curves are, respectively, the results of the gyroscope-related and accelerometer-
related noises. The different colors show the results of different time offsets: red-0 ms,
green-50 ms, blue-100 ms. The results in Figure 6 are the median over 25 tests. Since the
proposed method does not rely on any prior knowledge, the spatial-temporal parameters
are initially set to 0 in the tests.

The results in Figure 6a–c,g–i show that both the calibration results of rotation and time
offset are satisfying. For example, all the rotation errors are smaller than 0.15◦. When the
gyroscope noise density and bias noise density are smaller than 7σg and 7σbg, the calibrated
time offsets are smaller than the simulated IMU sampling period (5 ms). The results also
show that the influence of changing accelerometer noises on the rotation and time offset
calibration is negligible. This is reasonable since only the gyroscope-related parameters are
involved in the first process of the incremental estimation (see Equation (15)).
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Figure 6. Spatial-temporal calibration errors in the presence of various gyroscope and accelerometer noises. The vertical axes
of (a–c), (d–f), and (g–i) subplots are, respectively, the calibration error of extrinsic camera-IMU rotation, translation, and
time offset. The horizontal axes of the subplots in the first column, the second column, and the third column are, respectively,
the intensities of measurement noise density, constant bias, and bias “diffusion” random walk noise density. For instance,
the labels “0” in all the horizontal axes represent the ideal noise-free measurements. The label “4” in the horizontal axis of
(a) means the measurement noise density is customized to 4σg (for evaluating the robustness on gyroscope measurement
noise, of which results are shown in solid curves) or 4σa (for evaluating the robustness on accelerometer measurement noise,
of which results are shown in dash-dot curves), while the other noises are customized to zeros. Best viewed in color.

Figure 6d–f compare the translation errors of calibration under different noises.
As shown in Figure 6d, the growth of the translation error is moderate with the increase of
noise densities of both gyroscope and accelerometer measurement. The error remains less
than 0.025 m even when the measurement noise density increases to 8σa and 8σg. The mod-
erate growth implies that the translational calibration is robust to IMU measurement noise.
The solid curves in Figure 6f show that the translational calibration is robust to gyroscope
bias noise. The curves in Figure 6e and the dash-dot curves in Figure 6f show that the
translational calibration may get worse when the constant biases or the accelerometer
bias noise density are large. However, the results are still satisfying, i.e., 0.025 m errors,
when the constant biases are smaller than 6bg and 4ba, and the accelerometer bias noise is
smaller than 3σba.

Figure 6 also shows that the calibration errors are not significantly influenced by chang-
ing time offsets, as the curves with the same type but different colors in each subplot do not
have significant differences. Detailed calibration errors of spatial-temporal parameters and
IMU biases in the presence of all different types of IMU noises with their first intensities
are provided in Table 1. The results also show that the errors are not much different w.r.t.
varying time offsets. The observation is further analyzed using real-world datasets.
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Table 1. Errors of extrinsic spatial-temporal parameters and IMU biases in the presence of all different
types of IMU noises.

Time Offset erot etrans etd ebg eba
(ms) (deg) (m) (ms) (rad/s) (m/s2)

0 0.010 0.014 1.170 0.836 × 10−4 0.853 × 10−2

50 0.015 0.011 1.303 1.026 × 10−4 0.941 × 10−2

100 0.021 0.012 1.503 1.024 × 10−4 1.012 × 10−2

6.2. Overall Performance of Both the Incremental Estimation and the Bundle Adjustment on
Public Dataset
6.2.1. Dataset

The overall performance of both the incremental estimation and the bundle adjust-
ment is evaluated using the real-world EuRoC dataset [37]. The dataset contains eleven
sequences. Five of them were recorded in a large machine hall (denoted as MH_01 to
MH_05), and the other six were recorded in a room using the Vicon motion capture sys-
tem (denoted as V1_01 to V1_03 and V2_01 to V2_03). By considering the illumination,
texture, motion velocity, and motion blur, the dataset is classified into easy, medium, and
difficult grades. The ground-truth gyroscope bias, accelerometer bias, spatial parameters
(The ground-truth extrinsic spatial parameters provided by the dataset were calibrated
by the Kalibr [9–12] toolbox, with [89.147953, 1.476930, 0.215286] deg in yaw, pitch, roll
directions for Rb

c , and [−0.021640, −0.064677, 0.009811] m in x, y, z directions for pb
c ), IMU

body velocities, and flying trajectories are given in the dataset. The original dataset does
not have time delays. We include them by further adding millisecond values to the image
timestamps. There is a fixed time offset between the IMU and camera measurements
after the addition. To verify the capability of on-the-fly initialization, the start time of the
time-shifted sequence is randomly selected in each test, so that the proposed and compared
methods can start without any prior information about when the platform begins to fly.

6.2.2. Robustness Performance Concerning Various Time Offsets

In this experiment, we compared the robustness performance of different methods
when concerning various time offsets. In particular, the predefined time offset ranges from
−100 to 100 ms with a step of 5 ms. The accuracy of calibrated extrinsic parameters and
the sensor ego-motion estimation of visual-inertial odometry were both evaluated using
the MH_03 sequence, which contains fast motion and significant illumination change.

As shown in Figure 7 where the median RMSEs of the estimated trajectories over
25 tests are presented, the time-shifted sequences are tested with VINS-Mono [40], our pre-
vious method [36], and the proposed method.

VINS-Mono (https://github.com/HKUST-Aerial-Robotics/VINS-Mono, accessed on
14 February 2021) is a popular open-source VIO system that can perform online spatial-
temporal calibration. It provides three configurations for spatial calibration, i.e., “with
extrinsic parameters”, “have initial extrinsic guess”, and “no extrinsic parameters”, as well as
one configuration for temporal calibration, i.e., “estimate time offset”. For the “no extrinsic
parameters” configuration, the public source code integrates a method called automatic
estimator initialization and online extrinsic spatial calibration [18]. For the “estimate time
offset” configuration, the code integrates a method developed in [22]. In our experiments,
VINS-Mono is launched in all these configurations for inspection. The purple curve in
Figure 7 is the results when VINS-Mono is launched under “no extrinsic parameters” and
“estimate time offset” configurations for fairly comparing with the proposed method. In
this case, the extrinsic spatial and temporal parameters can be continuously optimized by
the bundle adjustment as new measurements arrive. The green curve in the same figure
shows the result when VINS-Mono is launched under the single “no extrinsic parameters”
configuration while the temporal calibration ability is disabled. Note that all these methods
are launched without given any initial guess about extrinsic spatial or temporal parameters.

https://github.com/HKUST-Aerial-Robotics/VINS-Mono
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In the experiments, we find out that the results of “VINS-Mono (Tbc)” have significantly
large errors when the time offset surpasses 35 or −25 ms. These results are not plotted for
limiting the range of the y-axis. The performance of “VINS-Mono (Tbc, Td)” is much better
than “VINS-Mono (Tbc)” as the latter one does not calibrate the temporal parameters.
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Figure 7. Comparison of the trajectory accuracy under various time offsets using the MH_03 se-
quence. The x-axis denotes the various time offsets. The y-axis shows the absolute translational
root mean squared error (RMSE) of the estimated trajectory. The curves shown in the figure are,
respectively, “Proposed (Tbc, Td)”—Results of the proposed method, which can perform simultane-
ous spatial-temporal calibration; “Previous work (Tbc)”—Results of our previous work [36], which
only performs spatial calibration; “VINS-Mono (Tbc, Td)”—Results of VINS-Mono [40], which can
perform simultaneous spatial-temporal calibration; “VINS-Mono (Tbc)”—Results of VINS-Mono,
which only performs spatial calibration. Best viewed in color.

Our previous method can calibrate extrinsic spatial parameters online without consid-
ering the temporal parameters. The results of using our previous method are shown in the
yellow curve with a legend of “Previous work (Tbc)”. This shows that the previous work
can accurately estimate the sensor trajectory only when the time offset is within −10 to
35 ms. The trajectory accuracy of the previous work deteriorates remarkably when the time
offset increases. The average RMSE of the previous work is 0.146 m. The blue curve is the
result of the method proposed in this work. The trajectory accuracy of the proposed method
is better than our previous work, especially when the time offset surpasses 35 or −10 ms.
The proposed method also achieves much lower RMSE in all the time offsets compared
to the “VINS-Mono (Tbc, Td)” method. The trajectory estimated by the proposed method
exhibits consistent accuracy under different time offsets, with an average error of 0.035 m.
On the contrary, although “VINS-Mono (Tbc, Td)” has consistent accuracy when the time
offset is between −75 and 75 ms, its performance deteriorates remarkably when the time
offset increases. The reason is that the authors used image feature velocity for modeling
and compensating the temporal misalignment. The usage is under the assumption that in
a short period, an image feature moves at a constant velocity on the image plane. However,
when the time offset is large, this assumption could be violated. The feature velocity cannot
compensate well for large temporal misalignment.
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The statistical visualizations of the spatial-temporal calibration errors and trajectory ac-
curacy of our method under various time offsets are, respectively, shown in Figure 8a–d. The
results show that the calibration errors and trajectory accuracy do not have much difference
under various time offsets. The performance of extrinsic calibration and ego-motion estima-
tion of the proposed method is robust to asynchronous visual and inertial measurements.
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Figure 8. Statistical visualizations of the spatial-temporal calibration errors (a–c) and trajectory accuracy (d) under various
time offsets using the MH_03 sequence. The x-axes of the subplots show the various time offsets. The box plots are the
results of 25 tests using randomly selected start times.

6.2.3. Convergence Performance

The convergence performance of spatial-temporal calibration and initial value esti-
mation is studied using the V2_01 sequence with a 45 ms time offset. The time-varied
estimation results of the spatial-temporal parameters and the initial states are, respectively,
shown in Figures 9 and 10. Note that, as described in Section 4.3, if a new time offset
estimated by Equation (16) is larger than the IMU sampling interval, our system will be
relaunched. The sections before the vertical dash lines in the figures show a relaunching
action. These sections are denoted as “Est. Prior Td”. Since the approximation and refine-
ment processes are skipped in these sections, the result of translation and all results of the
initial states are not available.



Sensors 2021, 21, 2673 21 of 34

0 5 10 15 20 25
0.01

0.02

0.03

0.04

0.05

td
 [s

]

Time offset Est.
Global Adj. 23.5 24 24.5

0.0448

0.045

0 5 10 15 20 25

88

90

92

94

96
R

bc
 [d

eg
] Time offset Est.

Global Adj.
23.5 24 24.5

89

89.2

0 5 10 15 20 25
time [s]

0.05

0.1

0.15

0.2

P
bc

 [m
]

GT Approx.
Ref. Global Adj.

23.5 24 24.5

0.06
0.065

0.07

Online InitializationEst. Prior Td

Figure 9. Comparison of the calibrated spatial and temporal parameters using the V2_01 sequence.
The section labeled by “Est. Prior Td” denotes a stage where we update the time offset and relaunch
the system. Abbreviations: Est.—Estimated; Global Adj.—Global adjustment; GT—Ground-truth;
Approx.—Approximation; Ref.—Refinement. Best viewed in color.
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Figure 10. The scale, gyroscope bias (bias_gyro), accelerometer bias (bias_acc), gravity vector, processing
time expended by each execution, and keyframe number (KF num) using the V2_01 sequence.



Sensors 2021, 21, 2673 22 of 34

The “Online Initialization” sections after the vertical dash lines are the relaunched
results. The diagrams of the estimated time offset, extrinsic rotation, and gyroscope bias
show that these parameters can converge to stable values within a few seconds, and the
stable values are very close to the ground-truth. The proposed incremental estimator can
effectively estimate them. The diagrams of the translation and scale show that the refined
results (i.e., blue curves) are better than the approximated ones (i.e., black dash-dot curves).
The results are even better if the global adjustment is performed (i.e., green curves). These
indicate that the proposed incremental estimator can estimate the spatial-temporal parame-
ters from coarse-to-fine, and the bundle adjustment can effectively improve the estimation.

One thing to note is that the curves of accelerometer bias and gravity exhibit severe
oscillation in the first few seconds. This is because the platform did not have enough exci-
tation in the beginning. The values become estimable with the arrival of more keyframes.

6.2.4. Velocity Estimation

The estimated IMU body velocities are shown in Figure 11. Since the estimated results
and ground-truth are expressed in different coordinate systems, we transform the estimated
results to help readers better compare with the ground-truth. The estimated velocities
in the diagrams (i.e., blue dash-dot curves) are almost consistent with the ground-truth
(i.e., red curves), indicating that the velocities are well estimated by the proposed incre-
mental estimator. In the sections marked by pink boxes, the results of global adjustment are
even closer to the ground-truth, which indicates that the accuracy of velocity estimation can
be further improved by performing a global adjustment. The RMSE of the estimated veloci-
ties decreased from 0.093 m/s to 0.046 m/s by applying global adjustment. The consistency
between the estimated results and the ground-truth also shows that the metric-scale can
be correctly estimated, since otherwise, the magnitude of estimated velocity would differ
from the ground-truth.
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Figure 11. Comparison of the estimated IMU body velocities using the V2_01 sequence of the EuRoC
dataset. Red curve: Ground-truth velocity (GT); Blue dash-dot curve: The velocity estimated by
online initialization (Init.); Green curve: The velocity corrected by global adjustment (Global Adj.).
Best viewed in color.

6.2.5. Computational Complexity Analysis

In Figure 10, the keyframe number and the processing time expended by each ex-
ecution of the incremental estimator are plotted. It shows that the processing time is
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approximately linear to the number of keyframes, indicating that the proposed incremental
estimator has linear time complexity. To analyze the increased computation load on bundle
adjustment due to the calculation of spatial-temporal parameters, we perform the global
and local bundle adjustments with or without optimizing these parameters. The execution
times are shown in Table 2. The global adjustment takes about 10 s and the local adjustment
takes about 1.5 s for optimization. In detail, by further calculating the extrinsic spatial-
temporal parameters, the global adjustment takes an extra 2.709 s and the local adjustment
takes an extra 0.087 s. Note that since the two adjustments are middle-scale or large-scale
optimization problems as they optimize thousands of variables, they are usually executed
in separate threads in practice. In addition, the global adjustment is only performed one
time when the incremental estimation is completed, and the local adjustment is performed
only when a new keyframe is detected. Therefore, the extra time cost will not affect the
real-time pose tracking of visual-inertial odometry.

Table 2. Execution Times of Global and Local Adjustments With or Without Optimizing the Spatial-
Temporal Parameters 1.

Global Adj.
with Ext. Opt. (s)

Global Adj.
without Ext. Opt. (s)

Local Adj.
with Ext. Opt. (s)

Local Adj.
without Ext. Opt. (s)

11.834 9.125 1.514 1.427
1 All the results are the median over 25 tests on the V2_01 sequence. Abbreviations: Global Adj.—Global
adjustment; Local Adj.—Local adjustment; Ext. Opt. — Extrinsic Optimization; with Ext. Opt.—Adjustment
includes optimizing the extrinsic spatial-temporal parameters; without Ext. Opt.—Adjustment without optimizing
the extrinsic spatial-temporal parameters.

6.2.6. Accuracy on the Whole Dataset

We also studied the overall performance using the whole dataset. The various time
offsets are preset to 0 ms, 50 ms, and 100 ms for comparison. Each sequence is tested
25 times under each time offset. VINS-Mono is launched under “no extrinsic parameters”
and “estimate time offset” configurations. Feng’s method [44] is also compared. Table 3 shows
the estimation errors of the spatial-temporal parameters and the absolute translational
RMSE of the estimated trajectories. The average rotational and translational errors using
the parameters calibrated by our method are, respectively, 0.155◦ and 0.016 m, which are
better than VINS-Mono (0.276◦ and 0.022 m) and Feng’s method (0.559◦ and 0.018 m).
The average temporal error using the parameter calibrated by our method is 0.773 ms.
The value seems less accurate than VINS-Mono (0.133 ms). The reason is VINS-Mono
treats the time offset as a vision factor by interpolating the location of features on the
image plane, which exhibits better accuracy on temporal calibration than ours. Despite the
low accuracy in temporal calibration, the trajectory RMSEs of our method are smaller
than VINS-Mono and Feng’s method on most sequences, implying that it has a better
performance on sensor pose estimation. The dominance of our method owes to its better
accuracy in spatial calibration.

Table 4 shows the detailed errors of the estimated gyroscope biases, accelerometer
biases, and velocities. The mean, standard deviation, and the maximum values are the
statistical results over 75 tests (There are three types of predefined time offsets, and each se-
quence is tested 25 times at each time offset. Thus, a sequence has tested a total of 75 times.).
The results indicate that the IMU biases can be accurately estimated. The maximum errors
for gyroscope bias and accelerometer bias are, respectively, 0.00158 rad/s and 0.1219 m/s2.
The maximum error for velocity is 0.0861 m/s, which is less than a few centimeters per
second even for the difficult sequences, e.g., V1_03, V2_03, MH_04, and MH_05 sequence.

6.3. Real Sensor Experiments

The Intel RealSense Depth Camera D435i (https://www.intelrealsense.com/depth-
camera-d435i/, accessed on 14 February 2021) was used in the real sensor experiment.
This sensor contains a three-axis accelerometer with a sample rate of 250 Hz, a three-

https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
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axis gyroscope with the sample rates of 200 or 400 Hz, two global infrared cameras,
and one rolling shutter RGB camera. In this experiment, we used the accelerometer, the
gyroscope, and the left infrared camera. The infrared camera was launched at 15 Hz with a
resolution of 640× 480. Since the accelerometer and the gyroscope run at different rates, the
gyroscope was launched at 400 Hz and its measurements were down-sampled and linearly
interpolated to synchronize with the accelerometer. The synchronized accelerometer and
gyroscope data constitute the six-axis IMU measurements, with a rate of 250 Hz. According
to official documents, the inertial sensors and cameras can be triggered to synchronize.
However, we find that actually there is a noticeable time offset between IMU and camera
measurements, and its value is related to the exposure time of the camera.

To evaluate the robustness performance of the proposed method on real sensors, we
set nine different camera exposure times, from 5 to 80 ms. For each exposure time, five
sequences facing toward a checkerboard were collected for offline calibration, and ten
sequences in a living room were collected for testing the proposed method. In this exper-
iment, the state-of-art toolbox Kalibr [9,10] was adopted to offline-calibrate the extrinsic
spatial-temporal parameters. The offline-calibrated results are regarded as ground-truth
values and used to compare with the proposed method. The comparison of calibrated
time offsets under different exposure times is shown in Figure 12. It can be seen that, first,
the time offset is approximately linear to the exposure time, with a slope of about −0.5.
The time offset is about zero when the exposure time is set to 10 ms. This means that one
can obtain well-aligned IMU and camera measurements when setting the exposure time to
10 ms. However, as the exposure time increases, the estimated time offset becomes negative,
and its absolute value increases. The reason is that the middle of exposure time is recorded
as the timestamp of an image. Second, the time offsets calibrated by our method (i.e., green
curve) are close to those calibrated by Kalibr (i.e., red curve). Note that Kalibr is an offline
method, which consumes more time and computation resources than ours. The comparison
indicates that the proposed method is comparable to offline methods. The calibration errors
of extrinsic rotation and translation are also shown in Table 5. It can be noticed that all the
errors of rotation and translation are, respectively, smaller than 0.45 degrees and 0.017 m,
even though the exposure time increases. These results illustrate that the proposed method
can accurately calibrate the extrinsic spatial and temporal parameters, and it is robust to
various exposure times when applying to a real visual-inertial sensor.
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Figure 12. Calibrated time offsets under different exposure times of RealSense-D435i.
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Table 3. Spatial-Temporal Calibration Errors and Keyframe Trajectory Accuracy on the EuRoC Dataset 1.

VINS-Mono [40] Feng et al. [44] Ours

time offset erot etrans etd RMSE erot etrans etd RMSE erot etrans etd RMSE
(ms) (deg) (m) (ms) (m) (deg) (m) (ms) (m) (deg) (m) (ms) (m)

V1_01
0 0.285 0.018 0.291 0.071 0.583 0.022 0.150 0.073 0.099 0.008 0.001 0.047

50 0.286 0.019 0.284 0.075 0.588 0.023 0.210 0.073 0.136 0.008 0.836 0.043
100 0.235 0.019 0.220 0.103 0.577 0.022 0.150 0.077 0.247 0.033 0.244 0.064

V1_02
0 0.327 0.018 0.059 0.095 0.563 0.019 0.090 0.118 0.128 0.011 0.026 0.025

50 0.312 0.013 0.034 0.092 0.559 0.019 0.100 0.116 0.086 0.003 0.082 0.022
100 0.363 0.011 0.053 0.192 0.569 0.021 0.100 0.143 0.154 0.015 2.372 0.047

V1_03
0 0.220 0.012 0.095 0.141 0.507 0.013 0.330 0.118 0.165 0.012 0.340 0.012

50 0.180 0.014 0.005 0.153 0.508 0.016 0.330 0.121 0.276 0.018 3.194 0.046
100 0.229 0.016 0.008 0.192 0.513 0.014 0.390 0.093 0.194 0.023 2.695 0.053

V2_01
0 0.295 0.020 0.152 0.065 0.491 0.023 0.330 0.099 0.183 0.017 1.009 0.019

50 0.259 0.020 0.174 0.068 0.457 0.025 0.290 0.088 0.145 0.002 0.297 0.014
100 0.291 0.020 0.029 0.070 0.513 0.022 0.360 0.082 0.132 0.012 0.279 0.034

V2_02
0 0.353 0.012 0.123 0.134 0.553 0.020 0.090 0.099 0.065 0.010 0.016 0.028

50 0.344 0.012 0.135 0.120 0.558 0.020 0.090 0.089 0.116 0.010 0.174 0.041
100 0.329 0.012 0.031 0.140 0.558 0.020 0.090 0.100 0.220 0.014 1.751 0.059

V2_03
0 0.429 0.011 0.271 0.150 0.633 0.015 0.090 0.135 0.177 0.027 0.403 0.091

50 0.455 0.011 0.262 0.337 0.626 0.015 0.040 0.234 0.203 0.012 0.459 0.079
100 0.409 0.041 0.010 0.252 0.633 0.014 0.040 0.233 0.206 0.011 1.368 0.096

MH_01
0 0.168 0.021 0.068 0.134 0.501 0.018 0.160 0.080 0.203 0.009 1.842 0.022

50 0.184 0.021 0.014 0.152 0.505 0.015 0.120 0.119 0.143 0.011 0.125 0.054
100 0.168 0.023 0.155 0.158 0.481 0.014 0.120 0.111 0.082 0.019 0.107 0.027

MH_02
0 0.193 0.016 0.042 0.297 0.621 0.014 0.290 0.082 0.125 0.028 0.596 0.021

50 0.256 0.018 0.020 0.253 0.624 0.014 0.340 0.086 0.280 0.016 0.225 0.029
100 0.306 0.023 0.054 0.220 0.634 0.015 0.210 0.074 0.316 0.013 0.010 0.033

MH_03
0 0.323 0.024 0.184 0.165 0.619 0.022 0.010 0.161 0.251 0.024 2.158 0.030

50 0.325 0.025 0.168 0.224 0.627 0.024 0.050 0.133 0.034 0.011 2.357 0.038
100 0.340 0.022 0.054 0.488 0.607 0.020 0.090 0.173 0.338 0.031 0.948 0.046

MH_04
0 0.211 0.076 0.113 0.239 0.554 0.019 0.110 0.197 0.044 0.019 0.002 0.153

50 0.198 0.033 0.052 0.285 0.521 0.013 0.170 0.178 0.109 0.029 0.313 0.240
100 0.218 0.025 0.347 0.316 0.512 0.018 0.030 0.143 0.090 0.023 1.279 0.215

MH_05
0 0.187 0.029 0.237 0.184 0.605 0.013 0.090 0.162 0.107 0.016 0.472 0.204

50 0.201 0.029 0.211 0.248 0.509 0.010 0.200 0.207 0.118 0.012 0.437 0.254
100 0.236 0.028 0.101 0.296 0.552 0.017 0.170 0.205 0.104 0.026 0.616 0.214

1 All the results of our method and VINS-Mono are the median of 25 tests on each sequence of the EuRoC dataset using randomly selected
start times. Abbreviations: erot—error of the extrinsic rotation, etrans—error of the extrinsic translation, etd—error of the estimated time
offset. The values colored in red, green, blue, and bold black are, respectively, the best result of the extrinsic rotation, extrinsic translation,
time offset, and trajectory accuracy.
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Table 4. Errors of the Estimated Initial Values on the EuRoC Dataset 1.

Bias_Gyro (Rad/s)·10−3 Bias_acc (m/s2)·10−2 Velocity (m/s)·10−2

Mean StaDev Max Mean StaDev Max Mean StaDev Max

V1_01 0.56 0.09 0.66 4.19 0.77 4.30 3.33 1.26 5.97
V1_02 0.52 0.21 1.09 3.48 0.96 5.16 3.35 1.74 6.29
V1_03 1.26 0.10 1.44 6.90 1.18 10.33 5.76 1.08 7.42

V2_01 0.50 0.16 0.84 3.95 1.43 5.85 1.34 0.69 3.46
V2_02 1.16 0.25 1.58 7.17 2.32 12.19 2.01 1.07 8.04
V2_03 0.78 0.12 1.02 6.35 1.20 10.47 2.54 1.32 7.64

MH_01 0.70 0.26 1.30 4.34 1.46 6.19 3.05 1.47 6.72
MH_02 0.32 0.15 0.51 3.81 1.46 5.98 2.17 1.07 4.42
MH_03 0.60 0.18 0.83 3.04 0.85 4.99 4.72 2.23 6.47
MH_04 0.44 0.05 0.50 4.08 0.75 6.04 5.20 1.39 8.61
MH_05 0.33 0.07 0.44 4.57 1.27 7.44 4.27 2.04 8.03
1 Note that the time offset was set to 0 ms, 50 ms, and 100 ms. Each sequence was performed with a total of
75 tests (25 tests × 3 types of time offset). Abbreviations: bias_gyro—gyroscope bias, bias_acc—accelerometer
bias, staDev—standard deviation.

Table 5. Calibration Errors of Extrinsic Spatial Parameters under Different Exposure Times 1.

Exp. Time 5 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms

erot /deg 0.355 0.429 0.418 0.402 0.383 0.378 0.242 0.388 0.308
etrans /m 0.012 0.006 0.003 0.013 0.012 0.016 0.015 0.008 0.017
1 All the results are the median of ten sequences captured by RealSense-D435i. Abbreviations: erot—error of the
extrinsic rotation, etrans—error of the extrinsic translation.

7. Conclusions and Future Work

This paper presented an online initialization and spatial-temporal calibration method
for monocular visual-inertial odometry. The method used two short-term motion interpola-
tion and an incremental estimator for online initialization and spatial-temporal calibration,
and used bundle adjustment to fuse the camera and IMU measurements and adjust the
estimated system states. The method does not rely on any prior knowledge about the
spatial or temporal configuration. Thus, it is suitable for the specification-free and asyn-
chronous VIO sensors. The performance of the proposed method was evaluated using
both synthetic sequences and public datasets. The results showed that the initial states
and spatial-temporal parameters could be accurately estimated and converge in a short
time, and they could be well corrected by the introduced bundle adjustment. The proposed
method is concluded to have a competitive accuracy compared with the existing methods.

One shortcoming of this work is that the proposed method is particularly designed
for monocular VIOs. In practical applications, there are various types of odometers, like
stereo/duo visual-inertial odometry, Lidar-visual-inertial odometry, Encoder-visual-inertial
odometry, GPS-visual-inertial odometry, etc. In the future, we will extend the proposed
method by applying it to other types of odometers.
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Appendix A

Appendix A.1. Preliminaries

The background geometric concepts used in Section 4.2 and the remaining part of this
Appendix are as follows.

Appendix A.1.1. First-Order Approximation

The exponential map of a rotational vector φ ∈ so(3) is equivalent to a standard matrix
exponential (i.e., Rodrigues’ rotation formula):

exp(φ∧) = I +
sin(‖φ‖)
‖φ‖ φ∧ +

1− cos(‖φ‖)
‖φ‖2 (φ∧)2. (A1)

A first-order approximation of the exponential map is:

exp(φ∧) ≈ I + φ∧. (A2)

Appendix A.1.2. Adjoint Property

Given a Lie element φ̃ = Log(R̃) and a rotation R, the adjoint property is:

RR̃RT = exp(Rφ̃∧RT) = exp((Rφ̃)∧) = Exp(Rφ̃). (A3)

Appendix A.1.3. BCH Linear Approximation

The BCH (Baker–Campbell–Hausdorff [58]) linear approximation for φ1 and φ2 in the
Lie algebra of a Lie group is:

Log(Exp(φ1)Exp(φ2)) ≈
{

J−1
l (φ2)φ1 + φ2, ifφ1 issmall,

J−1
r (φ1)φ2 + φ1, ifφ2 issmall,

(A4)

where J−1
l (·) and J−1

r (·) are, respectively, the inverses of left-Jacobian matrix Jl(·) and right-
Jacobian matrix Jr(·). The additive operation of a small perturbation δφ on Lie algebra can
therefore be approximated as follows:

Exp(φ + δφ) ≈ Exp(Jl(φ)δφ)Exp(φ)

≈ Exp(φ)Exp(Jr(φ)δφ)
(A5)

Appendix A.2. Gauss–Newton Algorithm

The proposed bundle adjustment considering the time offset in (27) is essentially
a least-squares non-convex function, which can be rewritten as a differentiable object
function J(x). Our goal is to determine the optimum design parameter x̂, that minimizes
the objective function:

x̂ = arg min
x∈M

J(x), (A6)

where the variables belong to some manifoldM. A typical technique to minimize this
expression is Gauss–Newton method [55], which iteratively solves the Gauss–Newton
update equation on an operating point xop to find the value of δx, i.e., a “small" change
to xop, and then uses the δx to update xop. The method iterates until the change becomes
sufficiently small.

The Gauss–Newton update equation is defined as:

(HTW−1H)δx∗ = HTW−1e(xop) (A7)

with

H = −∂e(x)
∂x

∣∣∣∣
xop

, (A8)
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where W−1 is the block-tridiagonal information matrix. The jacobian of errors w.r.t variables
highly depends on the updating manner of the variables. In the following sections, we first
define the updating rules of variables, and then derive the Jacobians of different errors.

Appendix A.3. State Update

We define the small change δx as an element of the tangent space at xop. The update
equations of the system states are as follows:

Rw
bi
← Rw

bi
Exp(δφbi

), Rb
c ← Rb

cExp(δφb
c ),

pw
bi
← pw

bi
+ Rw

bi
δpbi

pb
c ← pb

c + Rb
c δpb

c ,

vw
bi
← vw

bi
+ δvbi

, pw
k← pw

k + δpw
k ,

δbgi ← δbgi + δ̃bgi , td ← td + δtd,

δbai ← δbai + δ̃bai .

(A9)

Based on these update equations, we derive the Jacobians w.r.t. the vectors δφbi
, δpbi

,
δvbi

, δ̃bgi , δ̃bai , δφb
c , δpb

c , δpw
k , and δtd.

Appendix A.4. Jacobians of Rotation Errors

The Jacobians of rotation error erot between consecutive keyframes i and j w.r.t. the
vectors δφb

c , δ̃bgi , and δtd are as follows.
By letting

φ′1 = Log((∆R̄ijExp(Jg
∆R̄ij

δbg))T),

φ′2 = Log(R′2) = Log(Exp(−ωci td)R
ci
wRw

cj
Exp(ωcj td)),

φ′3 = Log(∆R̄T
ijR

b
cR′2Rc

b), we have:

erot(Rb
cExp(δφb

c ))

(A3)
= Log(Exp(φ′1)Exp(Rb

cExp(δφb
c )φ
′
2))

(A2)
≈ Log(Exp(φ′1)Exp(Rb

c φ′2 + Rb
c δφb

c
∧

φ′2))

(A5)
≈ Log

(
Exp(φ′1)Exp(Rb

c φ′2)Exp
(

Jr(Rb
c φ′2)R

b
c δφb

c
∧

φ′2

))
= Log

(
Exp

(
erot(Rb

c)
)

Exp
(
−Jr(Rb

c φ′2)R
b
c φ′2
∧

δφb
c

))
(A4)
≈ erot(Rb

c)− J−1
r (erot(Rb

c))Jr(Rb
c φ′2)R

b
c φ′2
∧

δφb
c , (A10)
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erot(δbgi + δ̃bgi )

= Log
(

Exp
(
−Jg

∆R̄ij
·
(
δbgi + δ̃bgi

))
Exp

(
φ′3
))

(A5)
≈ Log

(
Exp
(
−J

bg
l Jg

∆R̄ij
δ̃bgi

)
Exp
(
−Jg

∆R̄ij
δbgi

)
Exp

(
φ′3
))

= Log
(

Exp
(
−J

bg
l Jg

∆R̄ij
δ̃bgi

)
Exp

(
erot(δbgi )

))
(A4)
≈ erot(δbgi )− J−1

l
(
erot(δbgi )

)
J

bg
l Jg

∆R̄ij
δ̃bgi . (A11)

Here, the shorthand J
bg
l

.
= Jl

(
−Jg

∆R̄ij
δbgi

)
is used in the deduction.

By letting R′′1 =

(
∆R̄ijExp

(
Jg

∆R̄ij
δbg

))T
Rb

c , R′′2 = Rci
wRw

cj
, and R′′3 = Rc

b, we have:

erot(td + δtd)

= Log
(

R′′1 Exp(−ωci (td+ δtd))R
′′
2 Exp(ωcj(td+ δtd))R

′′
3

)
(A5)
≈ Log

(
R′′1 Exp(−Ji

lωci δtd)Exp(−ωci td)R
′′
2

· Exp(ωcj td)Exp(Jj
rωcj δtd)R

′′
3

)
(A3)
= Log

(
Exp(−R′′1 Ji

lωci δtd)R
′′
1 Exp(−ωci td)R

′′
2

· Exp(ωcj td)R
′′
3 Exp(R′′3

TJj
rωcj δtd)

)
= Log

(
Exp(−R′′1 Ji

lωci δtd)Exp(erot(td))

· Exp(R′′3
TJj

rωcj δtd)
)

(A3)
= Log

(
Exp(erot(td))Exp(−Exp(erot(td))

TR′′1 Ji
lωci δtd)

· Exp(R′′3
TJj

rωcj δtd)
)

= Log(Exp(erot(td))Exp(D·δtd)Exp(E·δtd))

(A2)
≈ Log

(
Exp(erot(td))(I + (D + E)∧δtd)

)
(A2)
≈ Log(Exp(erot(td))Exp((D + E)δtd))

(A4)
≈ erot(td) + J−1

r (erot(td))(D + E)δtd. (A12)
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Here, Ji
l

.
= Jl(−ωci td), Jj

r
.
= Jr(ωcj td), D .

= −Exp(erot(td))
TR′′1 Ji

lωci , and E .
= R′′3

TJj
rωcj

are used in the deduction. In summary, the Jacobians of erot are:

∂erot

∂δφb
c
= −J−1

r (erot(Rb
c))Jr(Rb

c φ′2)R
b
c φ′2
∧

∂erot

∂δ̃bgi

= −J−1
l
(
erot(δbgi )

)
J

bg
l Jg

∆R̄ij
,

∂erot

∂δtd
= J−1

r (erot(td))(D + E).

Appendix A.5. Jacobians of Feature Residual Errors

We define the residual error between the reprojection of pw
k and the pixel location ui

k
of the matched feature as rCik = ui

k − π(pci
k ). Here, pci

k is the kth point observed at the ith
keyframe. It is expressed in the local camera frame. Since bai does not appear in rCik , the
Jacobian of rCik w.r.t. δ̃bai is zero. By representing pci

k using [X Y Z]T , the Jacobians of rCik
w.r.t. the system states are:

∂rCik

∂(·) =
∂rCik

∂pci
k

∂pci
k

∂(·) =− 1
Z

[
fx 0 − fx ·X/Z

0 fy − fy ·Y/Z

]
·

∂pci
k

∂(·) , (A13)

where fx and fy are the focal lengths of the camera. ∂rCik /∂pci
k is derived from the projection

function of a pinhole camera model.
Since pci

k is linear in vw
bi

and pw
k and the retraction is simply a vector sum, the Jacobians

of pci
k w.r.t. δvw

bi
, δpw

k are simplified as the matrix coefficients of vw
bi

and pw
k . We only need

to focus on the following remaining Jacobians:

pci
k (p

w
bi
+ Rw

bi
δpbi

)

= Rc
bExp(ω̃bi

td)R
w
bi

T
(

C−Rw
bi

δpbi

)
+ pc

b

= pci
k (p

w
bi
)−Rc

bExp(ω̃bi
td)δpbi

, (A14)

pci
k (R

w
bi

Exp(δφbi
))

= Rc
bExp(ω̃bi

td)Exp(−δφbi
)Rw

bi

TC + pc
b

(A2)
≈ Rc

bExp(ω̃bi
td)(I− δφbi

∧)Rw
bi

TC + pc
b

= pci
k (R

w
bi
) + Rc

bExp(ω̃bi
td)
(

Rw
bi

TC
)∧

δφbi
, (A15)

pci
k (p

b
c + Rb

c δpb
c)

= Rc
bExp(ω̃bi

td)R
w
bi

TC−Rb
c

T
(pb

c + Rb
c δpb

c)

= pci
k (p

b
c)− δpb

c , (A16)
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pci
k (R

b
cExp(δφb

c ))

= Exp(−δφb
c )R

c
bExp(ω̃bi

td)R
w
bi

TC + Exp(−δφb
c )p

c
b

(A2)
≈
(

I− (δφb
c )
∧
)

pci
k (R

b
c)

= pci
k (R

b
c) +

(
pci

k (R
b
c)
)∧

δφb
c , (A17)

pci
k (td + δtd)

= Rc
bExp(ω̃bi

td + ω̃bi
δtd)R

w
bi

T
(

C + vw
bi

δtd

)
+ pc

b

(A5)
≈

(A2)
Rc

bExp(ω̃bi
td)
(

I +
(
Jr(ω̃bi

td)ω̃bi
δtd
)∧)Rw

bi

T

·
(

C + vw
bi

δtd

)
+ pc

b

≈ pci
k (td) + Rc

bExp(ω̃bi
td)

·
(

Rw
bi

Tvw
bi
+
(
Jr(ω̃bi

td)·ω̃bi

)∧Rw
bi

TC
)

δtd, (A18)

pci
k (δbgi + δ̃bgi )

= Rc
bExp(ω̃bi

td − δ̃bgi td)R
w
bi

TC + pc
b

(A5)
≈

(A2)
Rc

bExp(ω̃bi
td)(I− (Jr(ω̃bi

td)δ̃bgi td)
∧)Rw

bi

TC + pc
b

= pci
k (δbgi ) + Rc

bExp(ω̃bi
td)
(

Rw
bi

TC
)∧

Jr(ω̃bi
td)δ̃bgi td. (A19)

Here, we used the shorthand C .
= pw

k − pw
bi
+ vw

bi
td for convenience. Jr(ω̃bi

td) is the right-
Jacobian matrix of ω̃bi

td. In summary, the Jacobians of pci
k are:

∂pci
k

∂δpbi

= −Rc
bExp(ω̃bi

td),
∂pci

k
∂δ̃bai

= 03×3,

∂pci
k

∂δvbi

= Rc
bExp(ω̃bi

td)R
w
bi

Ttd,
∂pci

k
∂δφb

c
=
(

pci
k (R

b
c)
)∧

,

∂pci
k

∂δφbi

= Rc
bExp(ω̃bi

td)
(

Rw
bi

TC
)∧

,
∂pci

k
∂δpb

c
= −I3×3,

∂pci
k

∂δpw
k
= Rc

bExp(ω̃bi
td)R

w
bi

T ,

∂pci
k

∂δ̃bgi

= Rc
bExp(ω̃bi

td)
(
Rw

bi

TC
)∧

Jr(ω̃bi
td)td,

∂pci
k

∂δtd
= Rc

bExp(ω̃bi
td)
(
Rw

bi

Tvw
bi
+
(
Jr(ω̃bi

td)·ω̃bi

)∧Rw
bi

TC
)
.
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