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The targeted nuclease clustered, regularly interspaced short 
palindromic repeats/CRISPR-associated proteins (CRISPR/Cas) 
system has recently emerged as a prominent gene manipula-
tion method. Because of its ease in programming targeted 
DNA/protein binding through RNA in a vast range of organ-
isms, this prokaryotic defense system is a versatile tool with 
many applications in the research field as well as high po-
tential in agricultural and clinical improvements. This review 
will present a brief history that led to its discovery and adap-
tation. We also present some of its restrictions, and modifi-
cations that have been performed to overcome such restric-
tions, focusing specifically on the most common CRISPR/Cas9 
mediated non-homologous end joint repair. [BMB Reports 2020; 
53(7): 341-348]

INTRODUCTION

Discovered as an immune system against viral infection in 
domain bacteria and archaea, clustered regularly interspaced 
short palindromic repeats (CRISPR) system has quickly become 
a crucial tool in biological research. Long before it became the 
focus of debate because of its use to generate gene-edited 
babies (1), scientists recognized CRISPR system as an efficient, 
accurate and programmable nuclease system capable to induce 
double strand breaks (DSBs) in various organisms, therefore 
with a high potential as a versatile tool for scientific studies as 
well as a powerful tool for medicinal and agricultural improve-
ment. Already, there are abundant data on the potential of 
CRISPR system for application in crop improvement (2) as an 
alternative to genetically modified organisms (GMO) (3). More-
over, clinical trials to cure cancer patients by using CRISPR 
edited T cells are ongoing in the United States (ClinicalTrials. 

gov registry number: NCT03399448) and China (registry number: 
NCT03545815).

GENE EDITING PRIOR TO CRISPR/Cas9 SYSTEM

From restriction enzyme technique (Fig. 1A), the ability to 
manipulate genomic DNA in living cells had a pivotal role in 
the history of biological research. In the 1980s, directed mu-
tation technique via homologous recombination revolutionized 
the field by allowing directed mutation in mammalian cells 
(4). Homologous recombination is performed by introducing 
trans-acting DNA material, usually containing a selection 
marker, by flanking homologous sequence matching target 
genomic DNA (Fig. 1B). This technology led to pivotal 
discoveries at that time. As an example, directed gene deletion 
by homologous recombination of mice stem cells allowed 
subsequent generation of transgenic mouse bearing deletion in 
genes of interest (5). However, this technique efficiency was 
characteristically low (6). Thus, further researches focused on 
overcoming those limitations, for example by using negative 
selection markers such as thymidine kinase or diphtheria toxin 
fragment A. However, efficiency increase remained modest 
[reviewed in (7)]. In the 1990s, Rouet, et al. discovered that 
I-SceI, a Saccharomyces cerevisiae derived endonuclease, can 
introduce a DSB in mammalian cells (8). This leaded to the 
discovery of homing endonucleases that can be used to induce 
lateral transfer of an intervening sequence via DSB (Fig. 1C) 
(9). One of the major limitations with these homing endo-
nucleases was that their recognition sites are relatively longer 
than most restriction enzymes (14-40 bp), limiting the number 
of suitable targets, prompting researches aiming to diversify 
homing enzymes recognition sites (10-12).

In 1992, Fok I, another nuclease from Flavobacterium 
okeanokoites came to focus as its active domain and binding 
domain was identified (13). Interestingly, Fok I active domain 
requires homodimerization for activation, that is a pair of 
DNA-protein binding to flanking site to trigger its nuclease 
activity. Conversely, zinc finger motifs were known as short 
motifs in regulatory proteins that only need a three bases 
recognition site to bind the DNA (14). Thus, fusion of zinc 
finger DNA binding domain to Fok I nuclease domain (15, 16) 
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Fig. 1. Representative cartoon of the evo-
lution of the directed mutation technique 
from enzyme restriction (A), homologous 
recombination (B), homing endonuclease 
(C), ZFN/TALEN (D) and the CRISPR/Cas9 
system (E).

allowed development of chimeric enzymes, or zinc finger 
nucleases (ZFNs), that can induce targeted DSB as a pair (17). 
Gene manipulation of the ZFNs domain allowed targeted gene 
editing in a broad range of organisms, opening novel experi-
mental and therapeutic possibilities (18). Later in 2009, tran-
scription activator-like effector (TALE) proteins from the plant 
pathogenic bacteria Xanthomonas was shown to have two hyper-
variable amino acid residues that can recognize a single base 
pair (19), leading to the development of a chimeric protein 
with TALE binding domain and Fok I nuclease domain, or 
TALEN (Fig. 1D) (20). While the development of the ZNFs and 
TALENs allowed targeted gene manipulation in living cells, 
because of theirs mandatory cloning and protein modification 
steps needed to program target loci, the use of these techni-
ques were still restricted. In contrast, the newly emerging 
CRISPR/Cas9 technology uses a short guide RNA to direct its 
endonuclease activity, that is more convenient to manipulate 
(Fig. 1E).

DISCOVERY AND ELUCIDATION OF THE CRISPR/CAS 
SYSTEM

CRISPR system is originally an RNA-mediated defense system 
in bacteria and archaea (21). While first discovered in Escherichia 
(E.) coli in the 1980s (22), the term CRISPR was later coined as 
its repeat motif was identified among other prokaryotes (23). 
CRISPR motif contains several nearly palindromic 30 bp 
repeats interspaced by ∼36 bp non-repetitive spacers, with 
Cas genes nearby (24). In 2005, three independent reports 
showed that CRISPR various spacers are present in various 
prokaryotes strains, including among others, Streptococcus, 
Sulfololus, Eschericia and Listesria genus, and that those 
spacers are from mobile genetic elements such as viruses and 
phages, implying that CRISPR motifs are part of a major pro-

karyotic defense mechanism toward foreign genetic elements 
(25-27).

In 2007, Barrangou, et al. reported that CRISPR spacers 
provide prokaryotes resistance against corresponding phage by 
mechanisms involving neighbor Cas genes (28). Following this 
key experiment, researchers quickly started to elucidate the 
mechanism of CRISPR/Cas system. In a CRISPR/Cas system 
inserted in E. coli, it was shown that a complex of five Cas 
proteins is required for maturation of a 61 bp CRISPR RNA 
(crRNA) that comprise a spacer flanked by two repeat 
sequences (29). This led to an early hypothesis that crRNA 
may form a secondary structure (30). One of the first spe-
culations was that these small RNAs act by similar mechanism 
to the well-studied small RNA interfering system, that is by 
RNA-RNA interaction between spacer and target RNA leading 
to foreign RNA degradation (25). However, modifying the 
intron sequence within the target sequence abolished the 
CRISPR/Cas defense system, thus demonstrating that the target 
of crRNA is not mRNA but DNA (31). In the same year, it was 
shown that the repeats that are adjacent to spacers are critical 
for the S. thermophilus defense mechanism (32, 33) and that 
Cas9, a S. thermophilus Cas protein, cleaved the foreign DNA 
at exactly the same position relative to these repeats that were 
later named Protospacer Adjacent Motif (PAM) (34). Various 
eukaryotes have specific PAM sequences that are recognized 
by specific Cas genes. Further investigations were focused on 
S. pyogenes Cas 9 (spCas9) based CRISPR/Cas9 system, as it 
requires a relatively short 5’-NGG PAM sequence for its activity.

Parallel to these studies, another focus of this field was to 
elucidate the mechanism underlying crRNA maturation, as 
many organisms with a working CRISPR/Cas9 system lacked 
essential Cas proteins thought to be essential for crRNA 
maturation in previous studies. Trans-activating CRISPR RNA 
(tracrRNA) were first identified as the third most abundant 
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Fig. 2. Graph depicting the number of the CRISPR/Cas9 related pub-
lications yearly by MeSH (Medical Subject Headings) 1980 to March, 
2020.

class of transcripts in the S. pyogenes. As their name suggests, 
these small RNAs transcribed from locus adjacent to the 
CRISPR, and more importantly, were shown to be essential for 
crRNA maturation (35), and later on, for Cas9 nuclease acti-
vity. Thus, tracrRNAs were recognized as essential components 
of this system (36, 37).

EMERGENCE OF CRISPR/Cas9 AS A GENOME EDITING 
TOOL

In 2011, as all the crucial components of the CRISPR/Cas9 
systems were identified, Siksnys’ lab successfully reconstructed 
a working CRISPR/Cas9 system in E. coli from S. thermophilus, 
demonstrating for the first time that the CRISPR is transferable 
between organisms (38). Subsequently in 2012, two independent 
groups demonstrated the potential of the CRISPR/Cas9 system 
as a biological tool. Siksnys and his colleagues showed that in 
vitro, purified his-tagged Cas9 and custom designed spacers 
can introduce a DSB at a locus that is 3 bases away from PAM 
site (39). Conversely, Charpentier and her colleagues showed 
that the cut site is programmable, using a S. pyogenes Cas9 
expressed in E. coli with in vitro transcribed crRNA and 
tracrRNA, and also a fused single-guide RNA (sgRNA), which 
is now widely used in gene editing. sgRNA is a crRNA and 
tracrRNA hybrid RNA that comprises a stem loops structure, 
repeat versus anti-repeat duplex, a S. pyogenes specific PAM 
site (5’-NGG-3’) directly adjacent to 20 bp complementary to 
the target sequence (36). Both groups recognized the potential 
of their results, stating the potential use of this system as an 
RNA programmable DNA editing technique. Further studies 
showed that the CRISPR can be adapted in vivo for eukaryotes, 
notably human cells (40-43). Shortly after its potential as a 
genome editing tool was presented, the CRISPR/Cas9 system 
was widely adopted by the scientific community because of its 
ease in programming, yet high specificity to perform gene 
editing at target sites, with more than 15,000 papers publi-
shed, and more than 4,500 in 2019 (Fig. 2).

CRISPR/CAS9 OFF-TARGET EFFECT

While the CRISPR/Cas9 system is quickly becoming the tool of 
choice to perform targeted mutation, there are still limitations 
to address. One of these was raised and assessed early from 
the groups that developed the CRISPR technology (44-47). 
Off-target, that is nuclease activity at sites other than the 
programmed sites, can occur in the CRISPR/Cas9 system [the 
widely used CRISPR system, Class 2 type II from the S. pyogenes 
(48)] if the sgRNA binding allows mismatches. Cleavage occurs 
after the third nucleotide from the PAM within the corres-
ponding target sequence (49). It was shown that sgRNA mis-
match can be tolerated up to five base pairs, depending on the 
sgRNA and Cas9 amount used (45). Moreover, it was demon-
strated by chromatin immunoprecipitation-sequencing (ChIP-seq) 
that binding sites of the deactivated Cas9 (dCas9)/sgRNA 

complex are less stringent after the fifth base adjacent to the 
PAM site, resulting in multiple off-target bindings (50, 51), 
preferably in the open chromatin region (52). However, while 
the dCas9/sgRNA allows non-specific binding, it was suggested 
that the guide RNA and the target PAM distal site sequence 
interaction is necessary for the Cas9 cleavage activity (53), 
thus decreasing the occurrence of off-targets in vivo compared 
to the occurrence of binding identified by the ChIP-seq. 
Indeed, relative to the large number of off-target dCas9 binding 
loci, only few or no insertion-deletions mutation (InDels) were 
observed at these off-target sites (49, 51).

IMPROVEMENT TO REDUCE OFF-TARGET

Researchers investigated various paths toward improving the 
Cas9 on-target efficiency. A straightforward method was to 
optimize Cas9 and gRNA amount and proportion (45), or 
directly deliver the Cas9 protein and sgRNA as ribonucleo-
protein into cells (54). Additionally, while studies of the Cas9 
variants from other organisms than the S. pyogenes have mostly 
contributed to broaden the scope of CRISPR technology appli-
cation by diversifying available the PAM motifs (55), some of 
those variants may be also be used to optimize target specifi-
city (56). While the consensus is that the probability to discover 
new subtypes more efficient than the known Cas9 is low, 
deeper understanding of Cas proteins variants and discovery of 
related proteins may contribute to technical enhancements 
(57). For example, Cas12a, formally known as Cpf1 (58), is 
annotated as a class 2 type V CRISPR system (59, 60). It 
requires only a single crRNA to introduce a staggered DSB, 
thus requires a simpler guide RNA and can be used to control 
insert orientation by its staggered DSB. CRISPR/Cpf1 has been 
used to generate targeted knock-out mice without any 
off-target effects observed, suggesting that it has potential as a 
DNA editing tool with efficiency that is at least comparable to 
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Table1. List of Cas9 variants developed to enhance specificity of sgRNA targeting

Name Modification Note

Cas9n or D10A Cas9 nickase D10A Developed by targeted mutation to induce rare DSB from nucleotide nickase (38), its 
paired D10A usage has reduced off-target and increased efficiency (62)

SpCas9-HF N497A, R661A, 
Q695A, Q926A

Alteration of amino acid at gDNA interacting domain increase specificity (57) based 
on structural data from Cas9/gDNA complex crystallization (59)

espCas9(1.0)/(1.1) K810A/K848A, 
K1003A, R1060A

Modification of amino acid at interacting with noncomplementary DNA strand based 
on structural data from Cas9/gDNA complex crystallization (61)

HypaCas9 N692A, M694A, 
Q695A, H698A

Alteration in REC3 domain, identified by single-molecule Förster resonance energy 
transfer experiments (68)

HifiCas9 R691A Identified by unbiased bacterial screening method (69)
evoCas9 M495V, Y515N, 

K526E, R661Q
Yeast based screening of random mutation in the REC3 domain (70)

SniperCas9 F5395, M763I, K890N Directed evolution in a E. coli system to screen for accurate and efficient nuclease (71)
xCas9-3.6 E108G, S217A, 

A262T, S409I, 
E480K, E543D, 
M694I, E1219V

Phage assisted evolution to screen for Cas9 variants to diversify PAM sites. Those 
variants are also more specific to target sites (72)

xCas9-3.7 A262T, R324L, S409I, 
E480K, E543D, 
M694I, E1219V

the Cas9 system (61). Some of the Cas9 variants even shows to 
have increased specificity of targeting site, among other 
improvements such as PAM diversification and increase of 
efficiency (Table 1). However, it should be noted that off-target 
should still be carefully considered, as a recent study using 
reporter activation assay to investigate editing efficiency shows 
that both CRISPR/Cas9 and CRISPR/Cpf1 tolerate off-target 
mismatch mutation, especially in PAM-distal region of investi-
gated target (63).

Recently, new techniques using dCas9 variants fused to 
proteins are emerging as promising tools in gene editing. For 
example, base editing is a technique that uses dCas9 fused to a 
nucleobase deaminase enzyme or a DNA glycosylase able to 
convert a single base pair in targeted site, enabling precise 
point mutation (64). Prime editing, or search-and-replace genome 
editing is a technique that uses a dCas9 fused to a reverse 
transcriptase domain and a modified gRNA to insert a designed 
sequence within target site, therefore enabling precise sequence 
insertion without donor DNA (65). While they do not induce 
DSBs, these editing techniques are also prone to the same 
off-target issue as CRISPR/Cas9 system. Indeed, it was shown 
that base editing occurs at off-target sites in a frequency 
ranging from 0.07% to 100% in 38-58% genes in human cell 
(66). Interestingly, it was shown that improvement in base 
editing on-target efficiency can be achieved by optimizing the 
base editing domain rather than the dCas9 domain (67).

Finally, optimization can be achieved by sgRNA configura-
tion. The five base pairs at proximity of the PAM region of the 
sgRNA are known as ‘seed regions’ more stringent in guiding 
the Cas9 complex to its target (51). While distal sequences 
from the PAM region are necessary to the Cas9 activity (53), 

those ‘seed regions’ context are crucial in determining the 
binding specificity. For example, U-rich seeds sequence increases 
specificity (51, 68) while high GCs content decreases Cas9 
activity (68, 69). G is more favorable and C is less favorable as 
the base directly after the PAM. In contrast, at the fifth base 
from the PAM site, C is more preferred. From the 9th to 10th 
distal sequence from the PAM, A is favorable. At the 18th base 
from PAM, C is less favorable (51, 68, 70, 71). Those criteria 
can be used to design a target site for the gene of interest with 
minimum putative off-targets.

OFF-TARGET DETECTION 

In order to use CRISPR/Cas9 system as a therapeutic tool, 
common agreement is that the risk of off-target should be 
assayed in a case specific manner. The impact of off-target 
mutation in patients will differ greatly based on the genes and 
tissues affected, as factors such as differential expression be-
tween tissues and pathological effect of genes differ greatly 
(72). Thus, to enable practical application, another focus was 
the development of tools that facilitate analysis of the off- 
targets using whole-genome sequencing (WGS) with improve-
ment in cost and efficiency. To this end, several methods were 
developed including BLESS/BLISS which label and detect 
breaks in situ (73), Guide-Seq which incorporates oligo within 
DSBs as priming targets (74), Digenome-seq that perform WGS 
in nuclease digested sample to detect random modification 
(75), qDSB-Seq which compare DSBs ‘spike’ between two 
samples upon random DSBs (76) and recently DISCOVER-seq 
which track Cas9 binding site using Cas9-ChIP and WGS (77). 
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ON-TARGET GENE SILENCING BY CRISPR/Cas9 

Another putative side effect of the targeted CRISPR/Cas9 
system is on-target mis-regulation. The underlying mechanism 
of gene mutation by CRISPR/Cas9 systems is that Cas9 induces 
DSB in the genome that triggers repair pathways via the 
non-homologous joint end repair (NHEJ) or the less frequent 
homology directed repair (HDR) that occurs if a homologous 
template is nearby (78). In eukaryote, DSBs occur relatively 
frequently because of reactive oxygen species, radiation, 
replication error or mechanical stress. Thus, proteins that are 
involved NHEJ are intrinsically active (79). Repair by NHEJ 
usually results in imperfect repairs with insertion or deletion 
mutations (InDels), leading to a frameshift mutation that con-
sequently results to a premature termination codon (PTC) with-
in coding region. PTC triggers cell inherent nonsense-mediated 
mRNA decay (NMD) mechanism leading to complete knock 
out of the targeted gene by mRNA degradation within seconds 
(80, 81). On-target CRISPR/Cas9 mediated gene silencing is 
usually achieved by this mechanism.

ON-TARGET MISREGULATION AND IMPROVEMENT

However, a recent investigation showed that ∼50% of the cell 
lines from previous studies did not result in targeted gene 
knock out, but rather caused the production of truncated 
functional proteins. To reduce on-target mis-regulation, the 
authors recommended selecting target sites avoiding the internal 
ribosomal re-entry site, as InDels in those sites may result in 
the production of pseudo-mRNA. Also, exon splicing enhan-
cers site should be avoided as target site as their deletion may 
result in exon skipping, thus generating truncated proteins 
rather than knock out (82). While other studies applied this 
exon skipping capability to introduce alteration in the targeted 
genes (83-86), the consensus is that in addition to the off-target 
mutations, these on-target mis-regulations should be carefully 
evaluated before application (84, 86).

CONCLUSION

For now, CRISPR/Cas9 system is known as the most convenient 
method to program target sites for mutation among developed 
techniques. Thus, CRISPR/Cas9 system is quickly becoming a 
prominent tool for basic research as well as for clinical and 
agricultural purposes. In this review, we discussed a few of the 
many studies that led to its development. Its basic principle is 
that it induce a targeted DBS in the genome that can go 
through two inherent mechanisms, NHEJ that ligate the break 
without a homologous template and HDR that use a homo-
logous template, therefore that is less error-prone but has 
lower efficiency compared to NHEJ. Thus, NHEJ remains the 
most commonly used pathway despite its putative on/off-target 
side effect. Recent improvements have been initiated to increase 
the specificity of the Cas9 targeted DSB as well as to develop 

techniques to detect off-target at large scale, crucial to evalu-
ating its safety for clinical and agricultural applications. While 
off-target mutation can be detected using large-scale analyses, 
on-target mis-regulation can only be assessed after mutation in 
a case specific manner. This shows that the CRISPR/Cas9 pos-
sible side-effects should be carefully assayed before applica-
tion, and there is room for improving this highly effective tar-
geted mutation technique.
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