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The membrane bound metalloprotease meprin β is important for collagen fibril assembly

in connective tissue formation and for the detachment of the intestinal mucus layer

for proper barrier function. Recent proteomic studies revealed dozens of putative new

substrates of meprin β, including the amyloid precursor protein (APP). It was shown that

APP is cleaved by meprin β in distinct ways, either at the β-secretase site resulting

in increased levels of Aβ peptides, or at the N-terminus releasing 11 kDa, and 20

kDa peptide fragments. The latter event was discussed to be rather neuroprotective,

whereas the ectodomain shedding of APP by meprin β reminiscent to BACE-1 is in

line with the amyloid hypothesis of Alzheimer’s disease, promoting neurodegeneration.

The N-terminal 11 kDa and 20 kDa peptide fragments represent physiological cleavage

products, since they are found in human brains under different diseased or non-diseased

states, whereas these fragments are completely missing in brains of meprin β knock-out

animals. Meprin β is not only a sheddase of adhesion molecules, such as APP, but

was additionally demonstrated to cleave within the prodomain of ADAM10. Activated

ADAM10, the α-secretase of APP, is then able to shed meprin β from the cell surface

thereby abolishing the β-secretase activity. All together meprin β seems to be a novel

player in APP processing events, even influencing other enzymes involved in APP

cleavage.
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INTRODUCTION

To date, more than 35,000 research articles dealing with the amyloid precursor protein (APP) are
annotated in Pubmed (13.10.2016) and most of these papers are related to Alzheimer’s disease.
Nevertheless, APP is still an enigma in terms of its physiological and pathophysiological functions.

APP is a multi-domain glycosylated type 1 transmembrane protein. Earlier studies reported
that the ectodomains of APP family proteins have zinc- (Bush et al., 1993) and copper binding-
properties (Simons et al., 2002) and that APP is able to reduce bound Cu2+ to Cu+ (Multhaup
et al., 1996). Moreover, APP has been proposed to bind extracellular matrix proteins like heparin
and collagen (Small et al., 1994), and to have a receptor-like function (Beher et al., 1996). In
this context, it became more and more challenging, whether APP can form cellular cis-dimers
(Scheuermann et al., 2001), reminiscent of classical receptor dimerization described for the EGF
receptor (Schlessinger, 2002). However, there is accumulating evidence from biochemical and
structural data that APP can form homodimers (Scheuermann et al., 2001; Kaden et al., 2009; Isbert
et al., 2012) as well as heterodimers with its homologs APLP1 and APLP2 (Soba et al., 2005).
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To date, at least three domains have been reported to promote
APP dimerization: first the E1 domain containing the N-terminal
Growth factor like domain (GFLD) and Copper binding domain
(CuBD) (Soba et al., 2005). The second dimerization interface is
represented by the E2 domain (amino acids 365–699), the largest
subdomain of the APP ectodomain, containing the carbohydrate-
and the juxtamembrane region. Crystallographic and X-ray
structure modeling revealed that the E2 region can reversibly
dimerize in an antiparallel orientation in solution (Wang and
Ha, 2004) and it has been reported that binding of extracellular
matrix components, such as heparin, to this domain may also
regulate dimerization (Gralle et al., 2006). However, in contrast
to Wang and colleagues a study by Dulubova and colleagues
could not confirm that the E2 domain does dimerize in solution
(Dulubova et al., 2004). A third dimerization interface is located
at the extracellular juxtamembrane/transmembrane (JM/TM)
boundary, where APP contains three consecutive glycine-xxx-
glycine (GxxxG) motifs (Munter et al., 2007; Gorman et al., 2008;
Kienlen-Campard et al., 2008) one embedded within the Aβ

sequence.
Interestingly, detection of APP dimerization in vivo showed

a possibility that the efficient processing of APP by α- and β-
secretases (see below) may depend on its oligomerization state
that results in cooperative effects for these allosteric enzymes
(Schmidt et al., 2012).

Although the German psychiatrist Alois Alzheimer was the
first to demonstrate a relationship between specific cognitive
changes, neurological lesions in the human brain, and clinical
history (Alzheimer, 1907), much later the amyloid cascade
hypothesis attributed these observations to the presence of the
cleavage products of APP in the brain (Hardy and Selkoe, 2002).
Alzheimer reported the results of an autopsy on a 55-year-
old woman named Auguste Deter and noted the presence of
two distinct pathological lesions in Deters brain, which now
define Alzheimer’s disease (AD): first, the neurofibrillary tangles
(NFTs), which accumulate intraneuronal (later shown to be
composed of paired helical filaments (PHFs) containing the
microtubule-associated protein tau; Goedert et al., 1988, 1989);
second, extracellular amyloid deposits in the form of diffuse
or neuritic senile plaques (Price et al., 1997). Senile plaques
accumulate extracellular and were isolated and purified in 1984
by Glenner and Wong, who showed that it was a ∼4 kDa
peptide (Aβ), primarily 40 or 42 amino acids in length, which
they speculated was cleaved from a larger precursor (Glenner
and Wong, 1984). Subsequently, it has been demonstrated that
this peptide fragment originated from a larger precursor protein,
named the amyloid-β precursor protein (AβPP, or APP as used
here) and was characterized from the analysis of a full-length
cDNA encoding a translational product of 695 residues (Kang
et al., 1987).

CONVENTIONAL APP PROCESSING

Multiple enzymes have been shown to process APP during
its lifetime. The non amyloidogenic pathway, in which APP
is cleaved within the sequence of the amyloid peptide by a

generally named enzyme group called α-secretase, precludes
the formation of the full-length Aβ which is found in the
amyloid core of senile plaques (Zheng and Koo, 2006). One
other pathway leads to the production of Aβ peptides from
its precursor after the initial cleavage by a generally named
enzyme group called β-secretase (Hussain et al., 1999; Sinha et al.,
1999; Vassar et al., 1999; Yan et al., 1999). The first β–secretase
identified was then named β-site APP-cleaving enzyme (BACE-
1). BACE-1 is a type I membrane-bound aspartyl protease located
in the endosomal/lysosomal compartment (Sinha et al., 1999;
Vassar et al., 1999). Cleavage of APP by BACE-1 (Vassar, 2002)
occurs between methionine 596 and aspartate 597 of APP695
(Figure 1), producing two fragments, the secreted N-terminal
ectodomain sAPPβ and a 10 kDa, 99-amino-acid-long fragment
C99, encompassing the Aβ peptide and the remaining C-terminal
part. The optimal pH of BACE-1 activity is ∼4.5, suggesting that
the β-site cleavage of APP occurs preferentially in more acidic
compartments, such as in endosomes and lysosomes (Vassar
et al., 1999).

After α- or β-cleavage, the carboxyl terminal fragments (CTFs)
of APP, known as αCTF (C83) and βCTF (C99), respectively,
remain membrane-associated and are further cleaved by the γ-
secretase-complex (Edbauer et al., 2003). The γ-secretase is an
aspartyl protease complex (Wolfe et al., 1999), which unlike α-
and β-secretases, acts within the membrane and cleaves APP
at multiple sites (Zhao et al., 2004), releasing either, Aβ and
intracellular C-terminal domain fragments (ICDs) or p3 and
ICDs (Figure 1). This process is called regulated intramembrane
proteolysis (RIP) (Brown et al., 2000). However, while the two
predominant forms of Aβ and p3 terminate at valine 637 (Aβ40
and p3/40) and alanine 639 (Aβ42 and p3/42) (Haass et al.,
1992a), some isolated ICDs are shorter than expected and begin
at sites 9–10 amino acid downstream of those residues (Gu et al.,
2001).

BACE-1 is described to be themajor Aβ generating β-secretase
(Hussain et al., 1999; Sinha et al., 1999; Vassar et al., 1999;
Yan et al., 1999; Lin et al., 2000). This was convincingly shown
when a genetic knock-out of the protease in mice abolished Aβ

generation almost completely (Luo et al., 2001; Roberds et al.,
2001; Dominguez et al., 2005). In accordance to that, BACE-1
was found to be upregulated in brains of sporadic AD patients
(Fukumoto et al., 2002). However, there is strong evidence that
certain amounts of Aβ are generated independently of BACE-
1. This was supported, when using potent BACE-1 inhibitors
in vitro and in vivo (Asai et al., 2006; Nishitomi et al., 2006;
Hussain et al., 2007; Stanton et al., 2007; Sankaranarayanan et al.,
2008). Interestingly, some studies showed that by inhibition of
Aβ1-x generating β-secretase activity, alternative N-terminally
truncated Aβ peptides increase (Haass et al., 1995; Schrader-
Fischer and Paganetti, 1996; Takeda et al., 2004; Schieb et al.,
2010; Mattsson et al., 2012). Analysis of Aβ species in BACE-1
knock-out mice likewise revealed that the generation of Aβ1-x
peptides was completely abolished while N-terminally truncated
Aβ variants could still be generated (Nishitomi et al., 2006).
These N-terminally truncated Aβ peptides are also found in
the cerebrospinal fluid, brain tissue, and human blood plasma
(Wiltfang et al., 2001; Lewczuk et al., 2004; Takeda et al., 2004;
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FIGURE 1 | Proteolytic processing of APP by Meprin β. APP is cleaved by meprin β in two distinct ways. On the one hand non-amyloidogenic N-APP fragments

are produced, and on the other hand, meprin β acts as a β-secretase, inducing Aβ2-x generation. Remarkably, APPswe completely abolishes Aβ2-x release. The AD

protective mutant APPA673T is also much less cleaved by meprin β.

Güntert et al., 2006; Lewis et al., 2006; Maler et al., 2007;
Murayama et al., 2007). Later it was demonstrated that BACE-1
invariably generates two Aβ variants beginning with the aspartate
in p1 or p11, therefore other proteases might account for the
production of N-terminally truncated peptides (Citron et al.,
1995; Vassar et al., 1999). Indeed, heterogeneity of alternative
β-secretase cleavage events has been described (Golde et al.,
1992; Haass et al., 1992b; Seubert et al., 1992; Busciglio et al.,
1993) leading to alternative Aβ peptides other than Aβ1/11-x
(Vigo-Pelfrey et al., 1993; Asami-Odaka et al., 1995; Wang et al.,
1996), which could also be found in amyloid plaques in vivo
(Masters et al., 1985; Güntert et al., 2006). It is not clear whether
N-terminally truncated Aβ species are generated via cleavage
of APP by yet unknown proteases or via truncation of Aβ1-x
after its γ-secretase mediated release, e.g., by aminopeptidase A
(Sevalle et al., 2009). In contrast to further subsequent cleavage
of already released Aβ peptides, Cathepsin B (Hook et al., 2005,
2014; Kindy et al., 2012), S and L (Schechter and Ziv, 2011)
have been discussed to be directly involved in Aβ generation,
acting as alternative β-secretases. The enzymatic cleavage events
of cathepsins on APP are not fully understood since some groups
showed that cathepsins are rather involved in Aβ degradation
lowering total Aβ burden (Mueller-Steiner et al., 2006; Letronne
et al., 2016).

The amyloid peptides Aβ2-40/42 cannot be assigned to
BACE-1 activity and are most likely generated due to an
alternative β-secretase cleaving APP between 672Asp/673Ala
(Wiltfang et al., 2001; Schieb et al., 2010, 2011). Aβ2-x might
act as a precursor and can likewise be processed to Aβ3-x by
the alanyl-aminopeptidase activity of aminopeptidase N (Hosoda
et al., 1998). This is supposed to occur even under physiological
conditions due to activity of cortical aminopeptidase N (Kuda
et al., 1997; Wiltfang et al., 2001). It was also discussed that
N-terminally truncated Aβ peptides arise when Aβ is degraded
by a variety of Aβ degrading enzymes e.g., myelin basic
protein, neprilysin, and angiotensin-converting enzyme (Saido
and Leissring, 2012). But until recently no proof about the
exact mechanisms leading to N-terminally truncated Aβ variants
could be given, which changed by the identification of the
metalloprotease meprin β as an alternative β-secretase described
below.

ALTERNATIVE APP PROCESSING

In the last years, more and more focus has been put on modified
N-terminally truncated Aβ variants. Increased levels of Aβ2-
42 were detected in AD brains (Wiltfang et al., 2001). This
is in line with results showing decreased levels of Aβ2-42 in
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CSF of AD patients (Bibl et al., 2012). Since BACE-1 is not
capable in directly generating this peptide, a suggested model
for the emergence of N-terminal truncation is the subsequent
cleavage of the N-terminus of BACE generated Aβ1-x by either
Aβ degrading enzymes like insulin-degrading enzymes (IDE)
or neprilysin or the aminopeptidase A (APA) (Arai et al.,
1999; Wiltfang et al., 2001; Wang et al., 2006). A candidate
directly generating N-terminally truncated Aβ independent
of BACE-1 is the metalloprotease meprin β. Meprin β is a
multi-domain type I transmembrane protein, member of the
astacin family of zinc-endopeptidases that is predominantly
present as a dimer at the cell surface (Arolas et al., 2012;
Figure 2). In 2011 meprin β was introduced as an alternative
enzyme involved in APP processing (Jefferson et al., 2011).
In 2012, N-terminally truncated Aβ2-40 peptides generated
by meprin β (Figure 1), dependent on subsequent cleavage of
the γ-secretase, but independent of BACE-1, were detected
in supernatants of overexpressing cells (Bien et al., 2012).
Interestingly, increased mRNA levels of meprin β were measured
in AD brain homogenates supporting a potential role for
this enzyme in neurodegeneration. Various posttranslational
modifications of Aβ peptides have been described ranging
from oxidation (Hou et al., 2002; Palmblad et al., 2002) to
phosphorylation (Kumar et al., 2011, 2012), nitration (Kummer
et al., 2011), glycosylation (Halim et al., 2011) or pyroglutamation
of Glu3 of Aβ3-40 (Russo et al., 2002; Wittnam et al., 2012).
These modifications have been shown to have an effect on
the properties of the peptide. The oxidation at Met35 for
example impedes the formation of protofibrils and fibrils from
monomers (Hou et al., 2002). Nitration and pyroglutamation
both increase the aggregation of Aβ (Schilling et al., 2004;
Kummer et al., 2011). Meprin β was demonstrated to cleave APP
at p3 position in a peptide derived in vitro assay (Bien et al.,
2012), which would eventually lead to the release of Aβ3-40
peptides, containing an N-terminal pyroglumate modification.
This cleavage site for meprin β, however, was so far only
found in peptide cleavage assays and not in coexpression
experiments with full length APP in cellular systems (Bien et al.,
2012).

Several mutations within the APP sequence have been shown
to have an impact on β-secretase cleavage by BACE-1. The
recently described APP mutation A673T that has been shown
to protect against AD as well as against cognitive decline in
the elderly independent of AD was analyzed (Jonsson et al.,
2012). The mutation is located at p2 of Aβ (Aβ-A/T) and
has been shown to reduce BACE-1 mediated Aβ generation
by 40% using synthetic peptides as substrates. Moreover, a
significantly decreased Aβ production in human APP A673T-
overexpressing primary neurons has been observed (Benilova
et al., 2014; Maloney et al., 2014). Additionally, a decreased
aggregation propensity of Aβ-A/T could be measured, which
is showing the complexity of the protective effects of the
substitution. As meprin β was shown to be involved in APP
processing close to the BACE-1 cleavage site Schoenherr and
colleagues investigated the effect of the APP A673T mutation
on meprin β activity (Schönherr et al., 2016). The authors
revealed a significant decrease of ∼70% in the Aβ2-40/1-40 ratio

compared to wildtype APP sequence in meprin β transfected
cells and in a peptide cleavage assay using the APP A673T
constructs. The decreased cleavage of APP by meprin β

in the presence of the A673T substitution can nicely be
explained by the cleavage preference of meprin β revealed
by proteomics (Becker-Pauly et al., 2011). Here, a preference
of alanine over threonine in P1’ position was observed. As
the activity of meprin β on APP processing varies with
mutations around the original BACE-1 cleavage site Schoenherr
and colleagues investigated whether the Swedish mutation of
APP (K670N/M671L; APPswe) may affect meprin β cleavage
activity. Surprisingly, Aβ2-x variants were completely missing
in cells overexpressing meprin β and APP bearing the Swedish
double mutation K670N/M671L (APPswe) which is located in
close vicinity of the β-secretase cleavage site (Figure 1). This
clearly shows a significant influence of amino acid substitutions
around the β-secretase cleavage site for meprin β mediated Aβ

generation.
Although BACE-1 is clearly the most prominent enzyme

responsible for the generation of Aβ1-40 and Aβ1-42 peptides
from the APP wildtype or APPswe sequences, meprin β may
be responsible for generating small amounts of N-terminal
truncated Aβ2-40 and Aβ2-42 peptides. N-terminal truncated Aβ

peptides are almost exclusively generated by meprin β from the
complete APP wildtype sequences or from APP carrying familiar
Alzheimer disease mutations at the γ–secretase cleavage site but
bearing the wildtype sequence around the β-cleavage site.

AD MOUSE MODELS

To analyze AD in an in vivo situation, different mouse models
were already generated in the 1990’s. However, these mouse
models always show potential weaknesses which have to be
considered before translating the results obtained from the
mouse studies into the human situation. The major drawback is
that cleavage of endogenous murine APP via the amyloidogenic
pathway was never observed to lead to an AD-like phenotype.
Hence, overexpression of different human APP forms in mice
was and still is the most promising way to establish appropriate
animal models. There are common models to study Aβ plaque
pathology that all bear the APP Swedishmutation, such as 5xFAD
mice, carrying mutations in the APP and PSEN1 genes [APP
K670N/M671L (Swedish), APP I716V (Florida), APP V717I
(London), PSEN1 M146L, and PSEN1 L286V; (Oakley et al.,
2006)], J20 mice, carrying mutations only in the APP gene
[K670N/M671L (Swedish) and the APP V717F (Indiana; Mucke
et al., 2000)], or the 3xTg mice, carrying mutations in the APP,
PSEN1, and the MAPT genes [K670N/M671L (Swedish), MAPT
P301L, and PSEN1M146V; (Oddo et al., 2003)]. These models all
manifest an amyloid pathology although varying between animal
models as well as differential learning and memory deficits. Thus,
they appear to be appropriate models to mimic AD phenotypes at
first sight. Notably, the human sequence of the Swedish familiar
Alzheimer disease mutation (APPswe) is used in almost all AD
animal models as it serves as a better substrate for BACE-1,
thereby increasing production of total Aβ and specifically 1-X
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FIGURE 2 | Structural features of meprin β and APP interaction. (A) Model of dimeric membrane bound meprin β (white and brownish) based on the crystal

structure of the ectodomain (PDB 4GWN) in complex with part of the APP (red/magenta). (B) As in (A) but turned by 90◦ to the right. (C) Close up of the active site

cleft of meprin β as shown in (A). Positively charged amino acid residues important for the cleavage specificity are highlighted in blue. Part of the APP that builds the

Aβ peptide is displayed as surface model. Glycans in meprin β are depicted as stick models.

Aβ peptides (Citron et al., 1992; Cai et al., 1993). However, in
light of the result put forward by Schoenherr and colleagues Aβ2-
42 peptides which have been detected in brains of AD patients
will not be generated in these mouse models. Therefore, it is
likely that the actual effect of meprin β has been overlocked
in many studies focusing on APP processing. This issue must
be considered when analyzing the results from the ongoing
clinical trials, using BACE-1 inhibitors for the treatment of AD
patients.

MEPRIN β AND APP BEYOND AD

As mentioned above in it has been shown that meprin β

additionally cleaves APP apart from the Aβ sequence resulting
in N-terminal APP fragments (NTF) (Jefferson et al., 2011).
These fragments were also detected in human brain homogenates

suggesting that this interaction not only occurs in overexpressing
cell systems, but probably also under endogenous levels in
the human brain. The in vivo relevance for this proteolytic
event was further supported by analyzing brain lysates from
meprin β deficient mice where this particular N-APP cleavage
was abolished (Jefferson et al., 2011). Interestingly, Tessier-
Lavigne and colleagues showed that an N-terminal APP fragment
found in AD patients binds the death receptor 6 (DR6) thereby
inducing neurodegeneration (Nikolaev et al., 2009). Thus, it was
speculated whether meprin β might be the responsible protease
in this regard. However, purification and characterization of the
meprin β generated N-APP fragments showed neither negative
nor positive influence on neuronal cell viability (Jefferson
et al., 2011). Therefore, it is likely that APP cleavage by
meprin β in the N-terminal region has rather protective
function.
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PHYSIOLOGICAL FUNCTIONS OF
MEPRIN β

Meprin β is strongly expressed in the intestinal epithelium and
in kidney proximal tubular cells, and to minor levels in several
other tissues, e.g., in skin, certain immune cells, and the brain
(Broder et al., 2013). Besides many potential substrates analyzed
in vitro only few in vivo functions of meprin β have been
reported so far. In the intestine, where meprin β is found at the
apical site of epithelial cells, the protease is responsible for the
detachment of the mucus by cleaving mucin 2, an important
step for proper barrier function (Schütte et al., 2014). Along
the same line, meprin β cleaves type 1 pili of adherent-invasive
E. coli, thereby preventing colonization of these bacteria in
the ileal mucosa of Crohn’s disease patients (Vazeille et al.,
2011). Several other studies provide evidence for an important
immunological function of meprin β (Banerjee and Bond, 2008;
Bylander et al., 2008; Banerjee et al., 2009, 2011; Yura et al., 2009;
Broder and Becker-Pauly, 2013; Zhang et al., 2015). As known
for other members of the astacin family, namely BMP-1 (bone
morphogenetic protein 1) and tolloids, meprin β is involved in
the maturation of procollagens I and III (Kronenberg et al., 2010;
Broder et al., 2013; Prox et al., 2015). Collagen, themost abundant
protein in human body, is a crucial factor for the integrity of
connective tissue, tendon, and bone. To prevent fibril assembly
already in intracellular compartments, collagens contain C- and
N-terminal prodomains that need to be removed proteolytically
by extracellular proteases. Meprin β is such an enzyme, and
Mep1b−/− mice show severe impairments of the connective
tissue in skin characterized by reduced tensile strength and
decreased collagen deposition (Broder et al., 2013). On the other
hand, under pathological conditions, overexpression of meprin
β is associated with fibrotic diseases, such as keloids of the
skin (Kronenberg et al., 2010) and pulmonary hypertension
(PH) (Biasin et al., 2014). PH is a severe fibrotic condition of
the lung with very bad prognosis for the patients that die 2–
3 years after diagnosis. In genetic screens of lung tissues from
patients and a mouse model of PH meprin β was found amongst
the most up-regulated genes (Biasin et al., 2014). Here, AP-
1 transcription factor complex was identified as an inducer of
Mep1bmRNA expression. Whether meprin β is only involved in
the progression of fibrosis by collagenmaturation and deposition,
or if the protease also contributes to the onset of the disease as a
pro-inflammatory enzyme has to be further investigated.

REGULATION OF MEPRIN β

As meprin β associated pathologies, such as fibrosis, cancer, and
AD, are mostly based on increased expression and activity of
the protease, information about the regulation of the enzyme is
important.

ACTIVATION

Meprin β is expressed as an inactive zymogen and requires
proteolytic removal of its propeptide to gain full enzymatic

activity. Several tryptic serine proteases have been identified as
activators of latent meprin β, amongst them kallikreins (KLKs)
4, 5, and 8, as well as pancreatic trypsin (Ohler et al., 2010). The
latter is supposed to be the physiological activator in the intestine,
thereby contributing to the mucus-cleaving activity of meprin β

(Schütte et al., 2014), whereas KLKs may rather be important
in skin and mesenchymal tissues (Ohler et al., 2010). Based on
the crystal structure of the ectodomain of human meprin β it
became evident that the activation site at amino acid position
Arg61 is in very close proximity to the cell surface (Arolas
et al., 2012). Therefore, it was doubtful whether the previously
described soluble tryptic activators, which were identified in in
vitro assays using recombinant soluble promeprin β, are capable
of activating the membrane bound meprin β. Indeed, not even
trypsin was able to cleave off the propeptide of full length meprin
β, which led to the assumption that possible candidates are
most likely membrane bound serine proteases. In this regard,
matriptase-2 (MT-2), a type 2 transmembrane protein, was found
to fully activate meprin β at the cell surface (Jäckle et al.,
2015). Consequently, MT-2 mediated activation of meprin β

resulted in increased APP shedding and subsequently decreased
sAPPα levels. If this proteolytic interaction may have impact
on neurodegenerative disorders has to be shown. Surprisingly,
however, in a different study MT-2 was found to directly cleave
neuronal APP695, but was effectively inhibited by the Kunitz
protease inhibitor (KPI) domain present in other APP isoforms
(APP751 and APP770) from the periphery (Beckmann et al.,
2016). Of note, the additional domains in APP751 (KPI) and
APP770 (KPI/OX2) do not lead to altered proteolytic processing
by meprin β (Jefferson et al., 2011). This demonstrates how
complex the proteolytic processing of APP can be and how
important it is to elucidate the time-dependent and site-specific
cleavage events with regard to the different proteases, such as
ADAM10, BACE-1, meprin β, or MT-2.

INHIBITION

The tissue inhibitors of metalloproteinases (TIMPs) are effective
regulators of the catalytic activity of matrix metalloproteases
(MMPs) and ADAMs (Yamamoto et al., 2015). TIMPs, however,
do not inhibit meprin β, and so far only one rather unspecific
endogenous inhibitor was identified, namely fetuin-A (Kruse
et al., 2004; Hedrich et al., 2010). Interestingly, calciumwas found
to inhibit the proteolytic activity of meprin β by binding to a
cluster of negatively charged amino acids in close proximity to
the active site, thereby inducing conformational changes (Arnold
et al., 2015). However, the inhibition constant of calcium for
meprin β is about 11 mM, which resembles the concentration
in the endoplasmic reticulum and not at the cell surface. The
amino acid residues forming the calcium binding site in meprin
β contribute to correct folding of the protease. Mutations within
the calcium binding site resulted in protein that stacks to the ER
and is not properly secreted (Arnold et al., 2015). The calcium
concentration needed for the inhibition of meprin β is rather not
relevant for extracellular inhibition, at least under physiological
conditions. Thus, regulation of meprin β’s activity must occur
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on a different level. One possibility is the ectodomain shedding
of meprin β by ADAM10 or ADAM17 (Jefferson et al., 2013).
Very importantly, only membrane bound meprin β is capable of
generating aggregation prone Aβ2-x peptides and not the shed
solubilized protease (Bien et al., 2012). Therefore, ADAM10 does
not only prevent Aβ release by cleaving APP at the α-secretase
site, but additionally by the shedding of meprin β and thereby
preventing its activity toward the β-secretase site.

LOCALIZATION

As mentioned above, shedding of APP by meprin β occurs
predominantly at the cell surface and thus competes with
ADAM10 for the substrate (Schönherr et al., 2016). Recent
studies demonstrated that ADAM10 localization and maturation
is influenced by tetraspanins (TSPANs), building microdomains
of protein clusters at the cell surface (Prox et al., 2012). In a yeast-
two-hybrid approach TSPAN8 was identified as an interaction
partner of meprin β, which was further proven by split-RFP and
luciferase complementation assays (Schmidt et al., 2016). It was
further demonstrated that APP together with meprin β is located
in TSPAN8 enriched microdomains. However, overexpression of

TSPAN8 had no obvious influence on meprin β activity and APP
cleavage. Nevertheless, orchestration of proteases and substrates
at the cell surface by regulatory factors has to be further studied
to fully understand the complex proteolytic processing of APP by
different enzymes.

Concluding, the protease meprin β appears as an important
candidate for further studies on APP processing and Aβ

generation and may have a contributing role to the physiological
and pathophysiological function of APP itself.
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