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Abstract

Structural symmetry in homooligomeric proteins has intrigued many researchers over the past several decades. However,
the implication of protein symmetry is still not well understood. In this study, we performed molecular dynamics (MD)
simulations of two forms of trp RNA binding attenuation protein (TRAP), the wild-type 11-mer and an engineered 12-mer,
having two different levels of circular symmetry. The results of the simulations showed that the inter-subunit fluctuations in
the 11-mer TRAP were significantly smaller than the fluctuations in the 12-mer TRAP while the internal fluctuations were
larger in the 11-mer than in the 12-mer. These differences in thermal fluctuations were interpreted by normal mode analysis
and group theory. For the 12-mer TRAP, the wave nodes of the normal modes existed at the flexible interface between the
subunits, while the 11-mer TRAP had its nodes within the subunits. The principal components derived from the MD
simulations showed similar mode structures. These results demonstrated that the structural symmetry was an important
determinant of protein dynamics in circularly symmetric homooligomeric proteins.
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Introduction

Homooligomeric proteins have large interface areas between

the subunits resulting in stable complexes [1–4]. Because the

molecular functions of homooligomers often require their

complete oligomeric forms, the overall structure of a homo-

oligomer may help understand its molecular function [5,6].

It is known that the complex structure of a homooligomer often

assumes a symmetric structure [7], with the subunits arranged in

either a ‘close-packed’ (or dihedral) form or a ‘ring’ form [8]. The

close-packed form has n/2-fold rotational symmetry around one

rotational axis (designated as Dn where n is the number of subunits;

axis 1 in Figure 1B) and 2-fold rotational symmetry around the

other rotational axes (axes 2–4 in Figure 1B) perpendicular to the

first rotational axis. Oligomers with this form contain an even

number of subunits. In a statistical analysis of the Protein Data

Bank (PDB) [9] (see Materials and Methods), we found that

homooligomers composed of even numbers of subunits are

dominant (Figure 1C) because of the abundance of the close-

packed oligomers. In the close-packed form, the subunit interfaces

are arranged in a face-to-face manner, and every structural feature

or interaction is repeated twice. It was pointed out by Monod et al.

[10] that the effect of a single mutation in complexes with the

close-packed form may be much greater than in complexes

without dihedral symmetry. This effect may allow such complexes

to evolve more readily by the efficient generation of favorable

interactions, and this prediction has been supported by recent

docking-simulation studies [11–13].

In contrast, less attention has been paid to the minor population

of ring oligomers having simple n-fold rotational symmetry

(designated Cn; Figure 1A). In our statistical analysis of the PDB,

we found that such ring complexes may contain even or odd

numbers of subunits, and there is no bias toward even numbers

(Figure 1D). Ring-shaped oligomers have a wide variety of

symmetry. Prime numbers of subunits give the ‘‘lowest’’ symmetry,

and highly composite numbers having many divisors (such as 6

and 12) give the ‘‘highest’’ symmetry. A question then arises

whether there is a biological or physical reason for rings to evolve

with a prime number or highly composite number of subunits.

To answer this question, we studied trp RNA binding

attenuation protein (TRAP) as an illustrative case. TRAP is a

ring-form homooligomer for which crystal structures are

available of 11-mer (prime number) and 12-mer (highly

composite number) forms (Figure 2A and B). TRAP is found

in various species of Bacillus, and plays a central role in the

regulation of transcription and translation of the trp operon

[14]. The monomers of TRAP form a ring-form homo 11-mer

with a minor component of 12-mer depending on the solution

conditions [16–17]. Each subunit of TRAP is composed of

seven-stranded anti-parallel b-sheets and a bound tryptophan

molecule. Recently, Tame et al. solved the crystal structure of

12-mer TRAP, which was produced artificially by joining the

subunits of B. stearothermophilus TRAP in tandem with linkers of

alanine residues [18,19] (Figure 2B). The crystal structure of 12-

mer TRAP shows exactly the same hydrogen bonding pattern

and buried surface as those of the wild-type 11-mer TRAP. All-

atom root mean square displacement (RMSD) between the
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monomer of the 11-mer and that of 12-mer was only 0.26 Å

(Figure 2C and D). Despite their structural similarity, however,

12-mer TRAP is significantly less stable, as shown from the

population of 12-mer in solution [15–17].

In this study, we tried to address the influence of the differences

in symmetry on the dynamics of the oligomers. The 12-mer

structure was modeled with subunits carrying no peptide linkers to

stabilize the 12-mer form. We performed 100 ns fully-atomistic

MD simulations with an explicit water environment for both forms

of TRAPs as well as normal mode analysis using an elastic network

model (ENM) [20,21]. The normal mode analysis with group

theory allows a clear description of symmetry in the thermal

vibration. Based on the results of the normal mode analysis, we

looked into the details of the fluctuations observed in the

trajectories of the MD simulations.

Results

Vibrational Modes of TRAP with Perfect Rotational
Symmetry: Normal Mode Analysis

To characterize the vibrational fluctuations of the 11-mer and

12-mer TRAPs, we first present the group theoretical description

of rotational symmetry for the two TRAPs [22–25]. Group theory

states that a normal mode of a Cn group can be viewed as a

stationary wave formed by superimposing two waves propagating

around the ring in opposite directions [26] (see Materials and

Methods for details). Figure 3 shows the schematic pictures of the

normal modes of the C11 and C12 groups derived from their

character tables (Tables 1 and 2; these tables are given in the

complex representation). For the Cn group, the mode correspond-

ing to the real irreducible representation T ’p (p~1,2, . . .) has a

wave number 2p p{1ð Þ=n with 2 p{1ð Þ wave nodes on the ring.

The nodes of a stationary wave have maximum deformations and

minimum displacements while the anti-nodes have minimum

deformations and maximum displacements. The complex and the

real representations have the relation, fT ’1~T1,T ’2~
T2zT11,T ’3 = T3zT10, . . . ,T ’6~T6zT7g for the 11-mer and

fT ’1~T1,T ’2~T2zT12,T ’3 = T3zT11, . . . ,T ’6~T6zT8,T ’7~T7g
for the 12-mer. The two TRAPs share the same kinds of

irreducible representations T ’p (p~1,2, . . . ,6) except for T ’7 which

appears only in 12-mer TRAP.

Figure 4 shows the mode structures of the lowest-frequency

normal modes for 11-mer and 12-mer TRAPs, derived from the

normal mode analysis using the ENM with the perfectly Cn

symmetric systems (see Materials and Methods). The eigenmode

structures indicate out-of-plane motions parallel to the symmetry

axis (hereafter we will call it the z-axis). If the system could be

approximated by an elastic continuum model, the motions are

more and more restrained as the wave number increases. Thus, it

would be expected that the lowest frequency mode belongs to the

T ’1 representation having no wave node, as found in the tobacco

mosaic virus protein disk [26]. However, the normal mode analysis

yielded the lowest-frequency mode of the two TRAPs belonging to

the T ’3 representation characterized by 4 wave nodes. In order to

further investigate the differences from the elastic continuum

model, we characterized the seven lowest-frequency modes. The

frequency and the representation of the seven lowest-frequency

modes are 0.259 (T ’3), 0.259 (T ’3), 0.341 (T ’3), 0.341 (T ’3), 0.462 (T ’1),

0.553 (T ’4) and 0.553 (T ’4) for the 11-mer, and 0.246 (T ’3), 0.246

(T ’3), 0.313 (T ’3), 0.313 (T ’3), 0.452 (T ’1), 0.535 (T ’4) and 0.535 (T ’4)

for the 12-mer (the frequency calculated by the ENM has an

arbitrary unit). Here, the first and second modes, the third and

fourth, and the sixth and seventh modes are degenerate pairs with

shifted phases, respectively. The fifth mode looks like a uniform

breathing mode which may have the lowest-frequency in the case

of the elastic continuum model. The discrepancies from the elastic

continuum model were also observed in the contributions of mode

types to the total variance (Figure S1). In the elastic continuum

model, the normal modes were classified into T ’p, where a large

value of p has a larger frequency, and in turn a smaller variance.

However, in the case of TRAP, the normal modes classified into

T ’p with various values of p had similar contributions to the total

variance. This mode structure may be closely related to the shape

of the normal modes on the symmetric structure of TRAP.

Figure 4 also suggests positional correlation between the wave

nodes and the positions of the subunit interfaces. To quantify this

correlation, we defined the following correlation function after

Nishikawa and Go [27] and Yu and Leitner [28,29]:

Ck Dað Þ~
P

i

P
j nki

: R {Dað Þnkj

� �
d a r0

i

� �� �
d Da{a r0

j

� �h i

P
i

P
j d a r0

i

� �� �
d Da{a r0

j

� �h i , ð1Þ

Figure 1. Ring and close-packed forms. (A) A schematic represen-
tation of a ring shaped oligomer. Subunits are arranged symmetrically (Cn

symmetry) around the rotational axis (axis 1). Color gradation indicates the
top and bottom of the subunit. (B) Schematic representation of a close-
packed oligomer. The oligomer composed of n subunits has n/2-fold
rotational symmetry around the axis 1, and 2-fold rotational symmetry
around each of axes 2–4. (C) The number of homooligomers (see Materials
and Methods in detail). (D) The number of ring-shaped oligomers.
doi:10.1371/journal.pone.0050011.g001
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where nki~eki=Deki D with eki being the eigenvector of the normal

mode k for the Ca atom i, R {Dað Þ is a matrix which rotates a

vector through {Da around the z-axis, and a r0
j

� �
is the angular

position of atom j around the z-axis with the center of mass of

subunit A chosen as a~0. In this formula, the d function has the

allowance of 64u, or d xð Þ~1 for DxDƒ40 and d xð Þ~0 for DxDw40.
This function describes the motional correlation between the Ca
atoms close to the center of mass of subunit A and those located at

a^Da in the ring. Figure 5A and B show the values of Ck að Þ for

the seven lowest-frequency normal modes of the 11-mer and the

12-mer, respectively. It was found in the 12-mer (Figure 5B) that

the angles of Ck að Þ&0; in other words, the wave nodes almost

perfectly matched the position of the subunit interfaces (indicated

by the broken lines) in modes 1 (T ’3), 3 (T ’3), 6 (T ’4), and 7 (T ’4). This

is because the number of nodes in T ’3 and T ’4, 4 and 6,

respectively, are the divisors of the composite number, 12. This

matching was not found in the modes 2 and 4 (the degenerated

pairs of modes 1 and 2, respectively) due to the phase shift. Mode 5

is the uniform breathing T ’1 mode with no wave node. The

observation that the wave nodes occur at the subunit interface may

Figure 2. Crystal structures of the 11-mer and 12-mer TRAP. (A) Crystal structure of 11-mer TRAP (PDB code: 1C9S). Subunits and bound
tryptophans are shown in ribbon and sphere, respectively. (B) Crystal structure of 12-mer TRAP (PDB code: 2EXS). (C) Superimposed structures of
subunits A and B of the 11-mer and the 12-mer, shown by main-chain trace and the stick model for some side-chains. Hydrogen bonds between
tryptophan and the subunit are indicated with the yellow dashed lines. (D) Hydrophobic pockets of subunit B for the 11-mer (left) and 12-mer TRAP
(right). Surfaces are colored according to the hydrophobic contribution calculated by VASCo [48]. All the figures were prepared using PyMOL.
doi:10.1371/journal.pone.0050011.g002

Figure 3. Normal modes of a ring-shaped object. Normal modes
of a circularly symmetric object are viewed along the symmetry axis in
the form of stationary waves on the ring. The individual mode of T ’p
has 2 p{1ð Þ wave nodes on the ring. The red curves describe the
displacements along the modes. The T ’7 mode is found only in the 12-
mer.
doi:10.1371/journal.pone.0050011.g003
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imply that the low frequency modes utilize the most weakly

interacting regions, or the subunit interface, as the wave nodes.

However, in the 11-mer (Figure 5A), the number of matches

between the wave nodes and the subunit interfaces was about half

of the number in the 12-mer. This is because the prime number of

the subunits, 11, does not have an integer divisor equal to the

number of wave nodes, 2 p{1ð Þ, and thus some of the nodes are

inevitably situated at the rigid core regions inside of the subunit.

These observations suggest that the discrepancies with the

elastic continuum model appeared in the frequency and variance

of the normal modes may originate from the inhomogeneity in the

TRAP ring shown above, or from large deformations occurring at

the subunit interfaces which are softer than the subunit cores. A

normal mode having a large number of wave nodes (a large value

of p) may move a number of subunit interfaces simultaneously to

give a large deformation. However, according to the elastic

continuum model, many nodes in a normal mode should increase

the frequency, and decrease the variance. These two opposite

effects may balance to give nearly constant variances independent

of the value of p.

Vibrational Modes of TRAP with Pseudo Rotational
Symmetry: Molecular Dynamics Simulation

The normal mode analysis described above was based on

perfectly symmetric systems. To investigate how the scenario

found in the normal mode analysis works in realistic pseudo-

symmetric systems perturbed by thermal fluctuations, we con-

ducted two sets of 100 ns fully-atomistic MD simulations including

explicit solvents for 11-mer and 12-mer TRAPs, respectively.

To illustrate the large collective motions recorded in the MD

trajectories, we carried out a principal component analysis (PCA),

with the time window of 100 ns. This simulation length covers the

slowest motions in the molecules, that is, 100 ns is roughly the

same time-scale as one oscillation period of the first (largest-

amplitude) principal mode for the 11-mer and the 12-mer. The

structures of the first principal modes for the 11-mer and the 12-

mer are illustrated in Figure 6A and B, respectively. For the 12-

mer, we observed that the first principal mode identified by the

PCA correlates with the superposition of the first and second

normal modes (since the PCA is based only on the variances of

data set and does not use phase information, principal modes tend

to capture the superpositions of degenerated normal modes). The

correlation coefficients between the first principal mode and the

Table 1. Character table of 11-mer TRAP.

E R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

T1 1 1 1 1 1 1 1 1 1 1 1

T2 1 v v2 v3 v4 v5 v6 v7 v8 v9 v10

T3 1 v2 v4 v6 v8 v10 v12 v14 v16 v18 v20

T4 1 v3 v6 v9 v12 v15 v18 v21 v24 v27 v30

… … … … … … … … … … … …

T10 1 v9 v18 v27 v36 v45 v54 v63 v72 v81 v90

T11 1 v10 v20 v30 v40 v50 v60 v70 v80 v90 v100

Character table in the complex irreducible representation for the C11 group. R represents the rotation of 2p=11 around the symmetry axis, and v~ exp 2pi=11ð Þ. These

complex irreducible representations Tp

� 	
are transformed to the real, physically meaningful irreducible representations as

T ’1~T1,T ’2~T2zT11,T ’3~T3zT10, . . . ,T ’6~T6zT7f g.
doi:10.1371/journal.pone.0050011.t001

Table 2. Character table of 12-mer TRAP.

E R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

T1 1 1 1 1 1 1 1 1 1 1 1 1

T2 1 v v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

T3 1 v2 v4 v6 v8 v10 v12 v14 v16 v18 v20 v22

T4 1 v3 v6 v9 v12 v15 v18 v21 v24 v27 v30 v33

… … … … … … … … … … … … …

T7 1 v6 v12 v18 v24 v30 v36 v42 v48 v54 v60 v66

… … … … … … … … … … … … …

T11 1 v10 v20 v30 v40 v50 v60 v70 v80 v90 v100 v110

T12 1 v11 v22 v33 v44 v55 v66 v77 v88 v99 v110 v121

Character table in the complex irreducible representation for the C12 group. R represents the rotation of 2p=12 around the symmetry axis, and v~ exp 2pi=12ð Þ. These

complex irreducible representations Tp

� 	
are transformed to the real, physically meaningful irreducible representations as

T ’1~T1,T ’2~T2zT12,T ’3~T3zT11, . . . ,T ’6~T6zT8,T ’7~T7f g.
doi:10.1371/journal.pone.0050011.t002
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first and second normal modes were 0.34 and 0.60, respectively.

This principal mode is also characterized by four wave nodes and

the out-of-plane displacements along the z-axis. The simulation

therefore strongly reflects the behavior observed in the normal

mode analysis. For the 11-mer TRAP, however, the first mode was

significantly different from the low-frequency normal modes. The

first principal mode has large displacements in the BC loops

(residues 25–32, facing the solvent) of several subunits, and loses

Figure 4. The lowest-frequency normal modes of TRAP. Top and side views of the lowest-frequency normal mode for (A) 11-mer TRAP and (B)
12-mer TRAP. The gray arrows indicate the displacements along the modes. The structures of the TRAPs are colored according to the correlation
function Ck Dað Þ (see text and Figure 5).
doi:10.1371/journal.pone.0050011.g004

Figure 5. Correlations of the normal modes. Correlation function Ck Dað Þ of the displacements of two atoms separated by an angle Da
calculated for the normal modes of (A) 11-mer TRAP and (B) 12-mer TRAP. The vertical broken lines indicate the location of the subunit interfaces. The
plots are for the normal modes of the 1st (red), 2nd (green), 3rd (blue), 4th (yellow), 5th (cyan), 6th (magenta), and 7th (black) from top to bottom.
The pairs of normal modes, the 1st and 2nd, the 3rd and 4th, and the 6th and 7th, are 2-fold degenerate. The 5th mode is a uniform breathing mode
corresponding to the T ’1 subspace.
doi:10.1371/journal.pone.0050011.g005
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large collective motions. In fact, none of the seven lowest-

frequency normal modes shows significant correlation with this

principal mode. The correlation coefficients between the 20

largest-amplitude principal modes and the 20 lowest-frequency

normal modes are plotted in Figure S2. Although the one-to-one

correspondences between the normal modes and principal modes

are blurred due to the degeneracies of the normal modes, we

observed correlations along the diagonal line which are weaker for

the 11-mer (Figure S2A) than the 12-mer (Figure S2B).

In Figure 7A and B, the values of the correlation function

Ck að Þ, defined in Equation 1, are plotted for the seven largest-

amplitude principal modes of the 11-mer and the 12-mer,

respectively. As found from the normal mode analysis, the pattern

of correlation in the T ’3 representation was also observed in both

TRAPs, and tends to place the wave nodes at the subunit

interfaces. However, the correlation is smaller than that found for

the normal modes, particularly in the case of the 11-mer TRAP.

Cooperativity of the atomic displacements around the ring can be

measured by the root-mean-square (RMS) of the correlation

function Ck að Þ, SC2
kT

1=2 ~
Ð 2p

0
C2

kdDa=2p
� �1=2

. The RMS

values clearly showed weaker correlation for the 11-mer (Table

S1). The 11-mer had no principal modes whose RMS value

exceeded 0.5, but four normal modes that did. The 12-mer had

three principal modes with RMS values greater than 0.5, and six

normal modes showing this level of cooperativity. The weaker

cooperativity in the principal modes is due to the weakened

symmetry under thermal fluctuations in the MD simulations.

The differences in the mode structures should affect the

amplitude of the fluctuations of the subunits in the two TRAPs.

To examine this, the RMS intra-subunit fluctuations of the Ca
atoms, SDr2

i T
� �1=2

(Dri is the displacement of the Ca atom i from

the average position), are plotted by residue in Figure 8. In this

calculation, we removed the rotation and translation of a subunit

by superimposing each subunit onto its average structure. As

suggested by the structures of the first principal modes in Figure 6,

these internal fluctuations are larger in the 11-mer TRAP than in

the 12-mer. The largest differences are seen in the BC loop

(residues 25–32) and the DE loop (residues 47–52). The large

fluctuations in the loop regions of the 11-mer were also observed

by NMR measurement [30] and a previous simulation study [31].

It was found from the MD snapshots of the 11-mer that the bound

tryptophan ligand was not tightly held by its hydrogen bonds to

residues on these loops. Such large loop motions were not

observed in the 12-mer where the ligand molecules appeared to be

firmly bound throughout the simulation. It is intriguing to find two

crystal structures which are so similar, yet whose dynamics are so

different. Considering the mismatch between the number of the

subunits and the number of wave nodes in the 11-mer, it suggests

that the fluctuations of the loops are coupled with the deformations

around the wave nodes located at the subunit cores.

Figure 9 shows the covariance matrix for the z-components of

the mass centers of the subunits,SDci
zDcj

zT, which contribute the

Figure 6. The largest-amplitude principal modes of TRAP. Top and side views of the largest-amplitude principal mode for (A) 11-mer TRAP
and (B) 12-mer TRAP. The gray arrows indicate the displacements along the mode. The structures of the TRAPs are colored according to the
correlation function Ck Dað Þ (see text and Figure 7).
doi:10.1371/journal.pone.0050011.g006
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most to the global deformations of the ring. The variances of the

12-mer (the diagonal part of Figure 9B) are larger than those of the

11-mer (Figure 9A). In both matrices, one can see positive or

negative correlation between every fourth subunit, i, i+3, i+6, and

i+9. The correlation between i and i+3 is negative, and between i

and i+6 is positive. This pattern is characteristic in the T ’3 modes.

In fact, essentially the same pattern was obtained using only the

lowest-frequency normal modes of T ’3. This pattern is clearer for

the 12-mer than for the 11-mer since the number of subunits

moving cooperatively (three) is commensurable with 12, but not

with 11. Movements of the entire subunit in the xy-plane showed

only a small difference between the two TRAPs, and their

correlation pattern was found to originate from the minor T ’2
mode, not from the T ’3 (data not shown).

The above observations on the fluctuations were further

confirmed by the decomposition of the sum of the fluctuations

of the Ca atoms within a single subunit,
P

i[subunit

SDr2
i T, into the

internal and the external (i.e., translational and rotational)

contributions. The internal contribution was calculated after the

Figure 7. Correlations of the principal modes. Correlation function Ck Dað Þ of the displacements of two atoms separated by an angle Da
calculated for the principal modes of (A) 11-mer TRAP and (B) 12-mer TRAP. The vertical broken lines indicate the location of the subunit interfaces.
The plots are for the principal modes of the 1st (red), 2nd (green), 3rd (blue), 4th (yellow), 5th (cyan), 6th (magenta), and 7th (black) from top to
bottom.
doi:10.1371/journal.pone.0050011.g007

Figure 8. Intra-subunit fluctuations of TRAP. (A) RMS intra-subunit fluctuations of Ca atoms SDr2
i T

� �1=2
are plotted by residue for 11-mer TRAP

(blue) and 12-mer TRAP (red), which are averaged over the subunits. The amplitudes of fluctuations are depicted on the structures: (B) 11-mer TRAP
and (C) 12-mer TRAP. The main-chain traces are colored according to the amplitudes of the fluctuations.
doi:10.1371/journal.pone.0050011.g008
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superposition of each subunit onto its average structure, and the

translational contribution was calculated by the variance of the

center of mass of the subunit. The contribution of rotation was

estimated by subtracting the internal and translational contribu-

tions from the total fluctuation. Figure 10 shows the result of the

decomposition along the z-axis for the two TRAPs. The 12-mer

has larger external (entire subunit) fluctuations than the 11-mer,

while the internal (intra-subunit) fluctuation is larger in the 11-mer

than in the 12-mer. The 12-mer places the wave nodes at the

subunit interfaces, giving the inter-subunit motions resulting in the

overall ring motions. On the other hand, the 11-mer must have

wave nodes situated within the subunit core regions causing large

internal deformations particularly in the loop regions.

Discussion

The vibrational dynamics of the two TRAPs, the wild-type 11-

mer and the engineered 12-mer, were investigated by focusing on

their differences in rotational symmetry. First, the normal mode

analysis of the perfectly symmetric TRAP system with the group

theoretical approach showed that the normal modes on the ring

can be viewed as a stationary wave characterized by 2 p{1ð Þ wave

nodes, and that the low frequency normal modes tended to select

relatively soft regions, the subunit interfaces, as the wave nodes.

Because 2 p{1ð Þ is commensurable with 12 but not with 11, the

wave nodes were located at the subunit interfaces in the 12-mer,

but were frequently situated at the rigid core region of the subunits

in the 11-mer. This observation was utilized to study the

thermally-fluctuating pseudo-symmetric systems through fully-

atomistic MD simulations. In the MD snapshots, we observed

similar vibrational motions as in the normal modes. In particular,

large subunit interfacial deformations in the 12-mer caused larger

displacements of entire subunits (external fluctuation), while in the

11-mer, wave modes located at the subunit cores caused larger

intra-subunit deformations (internal fluctuation).

Generalization of these observations leads to a hypothesis that

ring-form proteins of higher symmetry, with a highly composite

number of subunits, undergo relatively large global deformations

of the ring, and conversely that ring-form proteins with a prime

number of subunits show large intra-subunit fluctuations. Each

ring type may be particularly suited for different purposes where

flexibility or rigidity is advantageous.

In terms of a static view of the stability of ring proteins,

symmetry itself may not be a determinant of the stability. The

smaller population of the 12-mer TRAP compared with the 11-

mer is primarily attributed to subtle differences in the inter-subunit

interactions. Antson et al. [32] recently found that B. halodurans

TRAP exclusively forms a 12-mer ring. The crystal structure of the

12-mer B. halodurans TRAP showed the C-terminal residues with a

conformation different from those of the 11-mer TRAP of B.

subtilis or B. stearothermophilus, which forms different interactions

with the adjacent subunit allowing an increase in the diameter of

the ring [32]. However, the present study shows that symmetry

significantly influences dynamics, and should be another impor-

Figure 9. Inter-subunit correlations of TRAP. The covariance matrices of the z-axis component of the mass centers of the subunits are shown for
(A) 11-mer TRAP and (B) 12-mer TRAP, respectively.
doi:10.1371/journal.pone.0050011.g009

Figure 10. Decomposition of the subunit fluctuations into intra
and external fluctuations. Intra and external (translational and
rotational) subunit fluctuations in the z-axis are shown for the two
TRAPs. The internal fluctuation was calculated after the superposition of
each subunit onto its average structure, and the translational
fluctuation was calculated by the variance of the center of mass of
the subunit. The fluctuation of the rotation was estimated by
subtracting the internal and translational contributions from the sum
of the fluctuations without superimposing the subunit.
doi:10.1371/journal.pone.0050011.g010
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tant factor for not only stability but also biological function (for

example, ligand binding) of ring proteins, especially for large ring

structures like the present case of C11 and C12.

Materials and Methods

Dataset for Homooligomeric Proteins
We collected 1,440 complex structures of homooligomers from

the PDB, determined by X-ray crystallography, and composed of

at least five subunits according to PQS [33] and PISA [34]. The

structures were clustered by BLASTCLUST [35] with 40%

sequence identity and 80% length coverage. The structure with

the highest resolution was selected as the representative from each

cluster. Consequently, 495 structures were obtained in this way for

analysis.

Identification of Ring Structures
Ring structures were identified if the mass centers of subunits

were located on the plane whose normal coincided with the

symmetry axis of Cn (Figure 1A). In practice, an oligomeric

structure was judged as a candidate of having a ring structure

when the third principal component calculated from the Ca
coordinates was less than 2.0 Å. We obtained 106 candidates by

this automatic procedure, and after visual inspection, 90 structures

were identified as having ring structures. We did not include

oligomers containing homodimers as the unit of the symmetry to

examine effects solely due to circular symmetry.

Elastic Network Model (ENM) and Normal Mode Analysis
of TRAP

The potential energy of the ENM was defined as the sum of

Hookean pairwise energy functions [20,21],

V~ K=2ð Þ
P

Dr0
i,j

DƒRc
Dri,j D{Dr0

i,j D
� �2

, where ri,j~ri{rj denotes

the vector connecting atoms i and j, r0
i,j is the vector of the

reference structure (see below), and Rc is the cut-off distance. The

strength of the potential, K, is an arbitrary constant assumed to be

independent of the atom type. The normal modes were obtained

by the diagonalization of the (mass-weighted) Hessian matrix H
under the harmonic approximation of the potential energy,

V& K=2ð ÞqtHq, where q is the (mass-weighted) Cartesian

coordinates of the atoms, and the superscript t denotes transpo-

sition. The covariance matrix C of the fluctuations of the

Cartesian coordinates was obtained by C~kBTH{1, where kB

is the Boltzmann constant and T is temperature.

In the normal mode analysis, to eliminate the influences of

crystal packing and to obtain a structure with perfect rotational

symmetry, we calculated a reference structure r0
i,j by energy

minimization using the symmetry operator in the IMAGE facility

of CHARMM (version c35b1) [36]. The PDB structures used in

the analysis were the 11-mer wild-type TRAP from B. stearothermo-

philus (PDB code: 1C9S chain A [37]) and the engineered 12-mer

TRAP (PDB code: 2EXS chain B [18]). These chains were used as

the subunits of the two TRAP models. To make the chain length

the same for both TRAPs, we used only the coordinates of residues

7–72, and ignored residues 1–6, 73–76, and the linker peptides in

the 12-mer. In the minimization, the CHARMM 22 force field

[38] with CMAP corrections [39] was used. A distance-dependent

dielectric constant was applied to account for solvent screening.

After the 100 steps of steepest descent minimization, the

coordinates of Ca atoms in the minimized structures were used

as the reference structures of the ENM. The Ca RMSD between

the subunits of the 11-mer and 12-mer structures was 0.741 Å.

The normal mode analysis of the ENM was performed using the

symmetry basis of a Cartesian coordinate space (see below). The

cut-off distance of Rc = 12 Å, and K = 1.0 kcal mol21 Å22 were

chosen. Changing the cut-off distance to of Rc = 10 Å did not alter

the result.

Group Theory and Symmetry Coordinates
In the normal mode analysis, the symmetry of TRAP was taken

into consideration based on the group theoretical approach [22–

25] which has been used in the normal mode analysis of symmetric

assemblies [26,40,41]. This approach represents the Hessian

matrix on the basis of the symmetry coordinates. Group theory

states that the symmetry coordinates are constructed with the

irreducible representation of the symmetry group constituting a

unique set of subspaces corresponding to the symmetry operations

(rotations in the present example) [24,25]. The irreducible

representations and the corresponding character tables of the

cyclic groups C11 and C12 are given in Tables 1 and 2. For the

cyclic group Cn with n-fold symmetry, the basis of the complex

subspace ep (p~1, . . . ,n) corresponding to the irreducible repre-

sentation Tp has the form [26,41]:

q
p
k~ uk,v p{1ð Þ�Ruk,v2 p{1ð Þ�R2uk, . . . ,v n{1ð Þ p{1ð Þ�Rn{1uk

� �
:ð2Þ

Where uk comprises an orthonormal basis for the conformation

space of a single subunit uk; k~1, . . . ,3Nsubunitf g (Nsubunit is the

number of Ca atoms in a subunit), R represents the rotation of

2p=n around the symmetry axis, v~ exp 2pi=nð Þ, and the

asterisk denotes the complex conjugate.

Since the irreducible representation Tp is complex, the complex

subspaces ep and its complex conjugate e�p must be combined to

give a physically meaningful symmetry subspace of double the

dimension [26]. In the case of C11, since

q1�
k ~q1

k,q2�
k ~q11

k ,q3�
k ~q10

k , . . . ,q6�
k ~q7

k, the real physically mean-

ingful irreducible representations T ’p
� 	

are

fT ’1~T1,T ’2~T2zT11, T ’3~T3zT10, . . . ,T ’6~T6zT7g. The

first subspace, T ’1, contains 3Nsubunit degrees of freedom, including

the global translation and rotation, while the other subspaces,

T ’2, . . . ,T ’6f g, contains 6Nsubunit degrees of freedom (T ’2 includes

the translations and rotations) and doubly degenerate normal

modes. For C12, they are fT ’1~T1,T ’2~T2zT12,
T ’3 = T3zT11, . . . ,T ’6~T6zT8,T ’7~T7g. Simonson and Perahia

[26] showed that a normal mode with frequency f in the subspace

T ’p of the Cn group produces a displacement of the subunit m of the

form:

cos 2pftð ÞRm{1
X

k

Ak cos m{1ð Þ p{1ð Þa½

zBk sin m{1ð Þ p{1ð Þa�uk,

ð3Þ

where a~2p=n , and Ak and Bk are constants. Equation 3 means

that each normal mode of the Cn group can be viewed as a

stationary wave formed by superimposition of two waves

propagating around the ring in opposite directions. The individual

mode of T ’p has a wave number 2p p{1ð Þ=n with 2 p{1ð Þ wave

nodes on the ring. Schematic pictures of the T ’p modes are

illustrated in Figure 3.
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MD Simulations
The all-atom MD simulations were performed by using IBM

BlueGene/L and the RIKEN Integrated Cluster of Clusters

(RICC) facility. The completely symmetric structure obtained

from the normal mode analysis was used as the initial structure for

each TRAP. First, the structure was solvated in TIP3P water

models [42] by using Solvate plugin of VMD [43] with at least 15

Å padding in each direction from the protein. We constructed a

periodic box of 1116111664 Å3 (73,729 atoms) for the 11-mer

and 1136113665 Å3 (77,958 atoms) for the 12-mer. Then, the

solvent molecules and the hydrogen atoms in the protein were

relaxed by a 2,000 step minimization with the backbone atoms

restrained at the initial structure. After the relaxation, the system

was gradually heated up from 0 K to 328 K (close to the growth

temperature of B. stearothermophilus) in 250 ps MD simulation under

the NVT ensemble. After the heating process, 100 ps simulation

was performed under the NPT ensemble at 1 atm. In this stage,

the backbone restraints were gradually weakened to zero. Then,

the system was equilibrated in 500 ps simulation without any

restraints at 328 K and 1 atm. Finally, a 100 ns production run

was conducted. All the simulations were performed twice with

different initial velocity conditions for each TRAP to yield two sets

of 100 ns MD trajectories for each TRAP. They were qualitatively

the same. All the results presented here were for one of the two.

The simulations were performed using NAMD [44] with the

CHARMM22 force field [38] and the CMAP corrections [39].

The particle-mesh Ewald method [45] was used to treat long-

range electrostatic interactions with a direct-space cutoff of 12 Å.

For temperature and pressure controls, the Langevin thermostat

and barostat were used [46,47].

Supporting Information

Figure S1 Contributions of the T ’p modes to the total
variance. The contributions of the normal modes to the total

variance are classified according to their corresponding irreducible

representations T ’p. As shown in the figure, the T ’2{T ’6 modes

have similar contributions in the 11-mer and 12-mer TRAPs. The

subspace spanned by the T ’1 and T ’7 modes have a half number of

degrees of freedom compared with the other modes, and thus have

a half scale of the other subspaces.

(TIF)

Figure S2 Correlation between the normal modes and
the principal modes. Correlation matrices between the normal

modes and the principal modes are shown for (A) 11-mer TRAP

and (B) 12-mer TRAP, respectively.

(TIF)

Table S1 RMS value of correlation function. Ck Dað Þ.
RMS values of correlation function of the Ca atom displacements

by the normal modes and the principal modes are shown for 11-

mer and 12-mer TRAPs.

(PDF)
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