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Abstract: Alternative technologies for long-term preservation, quality assurance, and safety of meat
are continuously pursued by the food industry to satisfy the demands of modern consumers for
nutritious and healthy meat-based products. Naturally occurring phenolic compounds are considered
promising substances by the meat industry for their antioxidant and antimicrobial properties, while
consumers seem to embrace them for their claimed health benefits. Despite the numerous in vitro and
in situ studies demonstrating their beneficial effects against meat oxidation, spoilage, and foodborne
pathogens, wide application and commercialization has not been yet achieved. Major obstacles are still
the scarcity of legislative framework, the large variety of meat-based products and targeted pathogens,
the limited number of case-specific application protocols and the questionable universal efficiency of
the applied ones. The objectives of the present review are (i) to summarize the current knowledge
about the applications of naturally occurring phenols in meat and meat-based products, emphasizing
the mechanisms, determinants, and spectrum of their antioxidant and antimicrobial activity; (ii) to
present state-of-the-art technologies utilized for the application of phenolic compounds in meat
systems; and (iii) to discuss relevant regulation, limitations, perspectives, and future challenges for
their mass industrial use.

Keywords: natural phenolic compounds; antioxidant activity; antimicrobial activity; meat; meat-based
products; foodborne pathogens; spoilage

1. Introduction

During the last 70 years, an increased demand for foods of animal origin and especially meat
and meat products has been observed worldwide. This has resulted in the intensification of livestock
production and the development of globalized logistics and complex transboundary trade of meat
products. In addition, evolution of nutritional habits, changes in lifestyle, and other societal, religious,
and monetary factors have reshaped the meat industry and its future growth and direction. Despite
the continuous emergence of new food trends, meat and meat products will remain a significant source
of animal-derived protein and essential amino acids in human nutrition [1].

To meet consumer demands for fresh meat and adhere to food safety regulations, extensive supply
chains have been developed worldwide utilizing cold chain logistics. Despite the universal adoption
of basic food cold chains, alternative technologies for long-term preservation, quality assurance and
meat safety are continuously pursued. Meat and its products are ideal substrates for the growth and
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propagation of spoilage microorganisms and common foodborne pathogens, rendering them as high-risk
perishable foods with potential public health implications [2,3]. More than 20% of worldwide meat
production, which is equivalent to 75 million slaughtered cows, is lost or wasted along the food supply
chain due to spoilage [4]. In monetary terms, meat losses account for ~4% of total food losses and cost
about $150 billion USD, representing more than 20% of the global economic cost due to food losses [5].

Meat contamination with pathogens may originate from any point across the “farm to fork”
continuum, which includes animal farming, transportation, slaughtering, processing, packaging,
distribution, and meal preparation in the household environment [2,6]. The basic pillar for meat
hygiene is the control measures to eliminate or reduce pathogenic or spoilage microorganisms in
farms, slaughterhouses, and meat processing plants. These measures are integrated in the hazard
analysis and critical control point (HACCP) plan, which is a legislative requirement in developed
countries [3,7–9]. Currently, hygiene and preservation methods utilized by the meat industry include
(i) heat treatment (e.g., scalding of carcasses, pasteurization, water, and steam boiling treatment);
(ii) refrigeration (e.g., chilling, freezing, blast chilling, superchilling); (iii) high hydrostatic pressure
(HHP); (iv) packaging (vacuum, modified atmosphere, and active packaging); (v) ionizing radiation;
(vi) chemical preservatives (carbon dioxide, chlorine dioxide, ozone, lactoferrin, organic acids (e.g., lactic
and citric acid), salts (e.g., nitrates, sodium lactate, sodium chloride, sodium benzoate, trisodium
phosphate, potassium sorbate)), and bioactive compounds (e.g., natural phenolic compounds, nisin,
pentosin, chitosan, lysozyme); and (vii) hurdle technologies (i.e., a combination of existing and novel
food preservation techniques). Variability in the effectiveness and applicability of the aforementioned
methods, the need for further optimization/validation in some of them, intellectual property rights
(IPRs), alterations in organoleptic traits of the product, health concerns (real or perceived) such as the
possible carcinogenic effects of nitrates [10], and consumers’ skepticism are driving the decision-making
process of the meat industry toward their exploitation on an evidentiary case-by-case basis [3,7,11,12].

To meet the ever-growing skepticism of the consumer, biocontrol and natural additive compounds
for the prevention of meat oxidation, spoilage, and foodborne pathogens have emerged as novel
preservation technologies. They exploit the antioxidant and antimicrobial properties of bacteriophage
viruses and biomolecules (e.g., bacteriocins, natural organic acids, peptides and other groups of organic
compounds) produced by lactic acid bacteria, plants, and animals. These compounds are used as
biopreservatives according to the type (raw or cooked meat), specific conditions, (storing temperature,
pH, etc.), and targeted pathogens in meat and meat byproducts [3,7,13]. Among these compounds,
naturally occurring phenols are considered promising substances against meat spoilage and foodborne
pathogens. They are plant-derived biomolecules with proven industrial and consumer acceptance for
their antioxidant and antimicrobial capabilities [14,15].

The objectives of the present review are (i) to summarize the current knowledge about the
applications of naturally occurring phenols in fresh meat, meat products, minced meat, and meat
preparations, as defined in Regulation (EC) No 853/2004 [16], emphasizing on the mechanisms,
determinants and spectrum of their antioxidant and antimicrobial activity, and (ii) to present
state-of-the-art technologies utilized for the application of phenolic compounds in meat systems, and
(iii) to discuss relevant regulation, limitations, perspectives, and future challenges for their mass
industrial use.

2. Meat Oxidation, Spoilage, and Foodborne Pathogens

Oxidation of lipids and proteins in meat affect both its quality and safety. In addition to the
organoleptic (flavor, aroma and color) and nutritional deterioration (denaturation of fatty acids and
proteins), oxidation reduces the shelf-life of meat and derived products and undermines their safety
due to production of toxic substances [15,17]. Oxidation is favored by the presence of polyunsaturated
fatty acids in meat [17,18]. Double bonds in polyunsaturated fatty acids function as ideal initiators
for the oxidation process reacting with atmospheric oxygen and other fatty acids and leading to the
formation of hydroperoxides and free radicals [15]. The process continues until the final products,
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such as aldehydes, ketones, and hexanes, cannot further support the oxidation cycle [18]. In turn, the
products of lipid oxidation and free radicals promote protein oxidation results in protein carbonylation,
polymerization, and coagulation [19]. These chemical changes decrease protein solubility and
prevent natural proteolysis, which adversely affects meat organoleptic traits, such as tenderness and
juiciness [17,20]. Apart from the lipid and protein profile and content, the oxidation process is further
influenced by other factors such as heat, light, metal ions, heme pigments, low pH, and oxidative
enzymes [17,21].

Several foodborne illnesses linked to the consumption of contaminated, insufficiently cooked, or
inadequately preserved meat and meat-based products are reported globally, undermining public health
and causing significant monetary losses for the meat industry [3,7,22]. Incidence of foodborne illnesses
associated with the consumption of meat and products thereof, apart from those attributed to major
foodborne outbreaks, is likely to be underestimated, as corresponding cases remain underdiagnosed
or unreported, particularly in countries with inefficient or inexistent monitoring programs [6,23,24].
Additionally, lipid and protein oxidation have been linked to cytotoxicity, neurotoxicity, mutagenicity
and carcinogenesis [19,25]. In particular, the end-products of protein oxidation may constitute risk
factors for cancer and diabetes [19], while the aldehyde groups originating from lipid oxidation have
been linked to metabolic disorders and other diseases of the kidneys, the vasculature and the colon [26].

During the last decade, the annual cases of foodborne illnesses in humans in the EU have fluctuated
without intense variation over the years [27]. In general, meat and meat products along with eggs
and egg products are the top two most frequently reported food vehicles of animal origin pathogens
associated with foodborne outbreaks in the EU [27]. Similarly, each year in the United States of America,
meat and products thereof are responsible approximately for 30% of total foodborne outbreaks and
50% of foodborne illness cases, and they represent the most commonly reported food vehicle of animal
origin for the pathogens implicated in the corresponding human cases [28,29]. The main agents
causing meat borne outbreaks in the EU and in the USA are Salmonella spp.; bacterial toxins produced
by Bacillus spp., Staphylococcus spp., Clostridium spp. (other than Clostridium botulinum), and other
unspecified bacterial toxins; Campylobacter spp., Trichinella spp., norovirus, and other caliciviruses;
Cl. Botulinum; and other bacterial agents (such as Aeromonas hydrophila, enterotoxigenic Escherichia coli
(ETEC), Enterococcus, Shigella spp., Yersinia enterocolitica, Shiga toxin-producing E. coli (STEC), and
Listeria spp.) [27,29].

3. Natural Phenolic Compounds

Natural phenolic compounds are biomolecules with at least one aromatic ring linked to hydroxyl
substituents, and they are derived as secondary metabolites of plant tissues [14,30–32]. They contribute
to the appearance, taste and basic functions of tissues and provide innate defensive functions in
many plant species. Their classification is complex and can be based on their carbon chain length,
the side groups of the aromatic ring, their distribution in nature, and the part of the plant they
derive from [33]. Based on the molecular structure of their aromatic ring, they are classified into
simple phenols and benzoquinones (C6), phenolic acids (C6-C1), acetophenones and phenylacetic acids
(C6-C2), hydroxycinnamic acids, phenylpropenes, coumarins-isocoumarins and chromones (C6-C3),
naphthoquinones (C6-C4), xanthones (C6-C1-C6), stilbenes and anthraquinones (C6-C2-C6), flavonoids
(C6-C3-C6), lignans and neolignans (C6-C3)2, and lignins (C6-C3)n [33]. Natural phenolic compounds
are abundant in plants and can be found in herbs, spices, vegetables, fruits, wine, essential oils, olive
oil, and oil seeds [17,18]. Although they are non-nutritional components, they are utilized by the food
industry for their antioxidant, antimicrobial, antifungal and antiviral functions [34].

Natural phenolic compounds with useful applications in food industry are (i) phenolic acids
with one aromatic ring, further subdivided into the hydroxybenzoic acids (e.g., gallic, protocatechuic,
vanillic, and syringic acid) and the hydroxycinnamic acids (e.g., p-coumaric, caffeic, and ferulic
acid); the antioxidant activity of these compounds is related to the number of hydroxyl groups
in their molecule; (ii) flavonoids (e.g., flavanols, flavones, flavanones, flavan-3-ols, isoflavones,
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anthocyanins), which constitute the largest subcategory in natural phenolics and their structure
consists of a 15-carbon skeleton arranged in two phenyl rings and a heterocyclic ring; (iii) quinones
made of two carbonyls (e.g., benzoquinones, anthraquinones); (iv) tannins, which are abundant in
fruits and are formed by quinones or flavonoids; (v) coumarins with a combination of benzene and
alpha-pyrone ring, which are potentially toxic but also useful for their antimicrobial activity if used
properly; (vi) lignans; (vii) stilbenes; and (viii) curcuminoids [32,34–36]. Essential or volatile oils from
plants have characteristic aromas and are composed of a mixture of several phenolic compounds which
serve as the basic active ingredients (terpenes, terpenoids, and phenylpropanoids). Typical examples
of essential oils rich in phenolic compounds that have been used in the food industry are prepared
from oregano (carvacrol, thymol, p-cymene, γ-terpinene), clove (eugenol), coriander (linalool), ginger
(α-pinene, cineole, borneol, geraniol, α-curcumene, camphene and eucalyptol), rosemary (carnosic
acid, carnosol, rosmadial, genkwanin, rosmarinic acid, 1,8-cineole, α-pinene, limonene and camphor),
sage (α-thujone, β-thujone, camphor, 1,8-cineole, borneol, viridiflorol), thyme (thymol, carvacrol,
ρ-cymene, γ-terpinene, linalool), and mint (menthol) [34,37–39].

3.1. Antioxidant Capacity of Phenolic Compounds

Antioxidant substances prevent or hamper the oxidation chain reaction by capturing free radicals,
reducing oxygen, deactivating singlet oxygen (1O)2, conjugating the metal ions, eliminating the
hydroperoxides, and absorbing UV light [15,17,18]. Phenolic compounds are considered effective
antioxidants due to their ability to deactivate and stabilize free radicals by incorporating them into
their aromatic ring [17,18,21,40] and to absorb UV light [18]. The phenolic subgroup of flavonoids
can also act as metal chelator, mainly for Fe3+, inhibiting the oxidation process [18,21]. Contrary to
synthetic phenolic antioxidant substances, which have been used for decades in the food industry and
are accused for toxicity and carcinogenesis [41–43], natural phenolic compounds have beneficial effects
on human health by protecting against oxidative-stress-related chronic diseases [40,44–46]. Several
studies have investigated the antioxidant capacity of phenolic compounds in meat and its organoleptic
traits. Table 1 presents applications of antioxidant phenolic compounds in meat-based products, the
effects of phenolic compounds on lipid and protein oxidation, and on product organoleptic traits (color,
flavor, and taste). In addition, it summarizes the comparisons between phenolic compounds and
conventional food additives regarding their antioxidant. Phenolic compounds are referred to only in
cases where analytical laboratory techniques have been used to detect them.



Foods 2020, 9, 794 5 of 28

Table 1. Antioxidant effect of phenolic compounds in meat and meat-based products.

Meat/Meat-Based Product Treatment (Main Phenolic Compound) LA 1 PA 2 COL 3 FL/TA 4 FA 5 Ref 6

Pork meat and meat-based products

Fresh meat Lotus extract (tannins, flavonoids) ++ N/A ++ 0/++ N/A [47]

Foal steaks
Oregano essential oil (N/A) * ++ ++ + ++ N/A [48]

Green tea extract (N/A) * ++ ++ 0 0

Patties

Rosemary extract (N/A) ++ + 0 N/A AA (-) [49]
Green tea extract (N/A) ++ + 0 N/A AA (-)
Green tea extract (N/A) ++ N/A ++ N/A [50]

Grape extract (N/A) ++ N/A - N/A BHT (-)
Cudrania tricuspidata leaf powder

(flavonoids) ++ N/A ++ N/A N/A [51]

Black currant (Ribes nigrum L.) extract
(anthocyanins) ++ ++ + 0 N/A [52]

Licorice (Glycyrrhiza glabra) extract
[hispaglabridin (A and B),

glabridin,4′-O-methylglabridin,
isoprenylchalcone, liquiritigenin,
isoliquir-itigenin, formononetin]

++ N/A N/A + BHA (0) [53]

Tea polyphenols (catechins) * ++ N/A ++ ++ N/A [54]
Rosemary extract (N/A) ++ ++ + 0 BHT (-) [55]

Lemon balm extract (N/A) ++ ++ + 0 BHT (-)
Grape seed extract (N/A) ++ N/A 0 0 N/A [56]
Bearberry extract (N/A) ++ N/A 0 0 N/A

Berries extract (N/A) ++ N/A N/A N/A N/A [57]

Meatballs Ginkgo biloba leaves extract (polyphenols,
phenolic acids, flavonols) ++ N/A N/A N/A BHT (-) [58]

Liver pâté

Chestnut extract (N/A) ++ N/A N/A 0 BHT (+)
[59]Grape extract (N/A) ++ N/A N/A 0 BHT (-)

Tea extract (N/A) ++ N/A N/A 0 BHT (-)
Date palm by-products (N/A) ++ 0 - 0 N/A [60]

Date palm paste & annatto extract (N/A) + N/A N/A N/A N/A [61]



Foods 2020, 9, 794 6 of 28

Table 1. Cont.

Meat/Meat-Based Product Treatment (Main Phenolic Compound) LA 1 PA 2 COL 3 FL/TA 4 FA 5 Ref 6

Sausages

Lutein (lutein) 0/+ N/A 0 0 N/A

[62]
Seasamol (seasamol) ++ N/A 0 0 N/A

Ellagic acid (ellargic acid) ++ N/A 0 - N/A
Olive leaf extract (Oleuropein,

verbascoside, luteolin- ++ N/A 0 0 N/A
7-O-glucoside, apigenin-7-O-glucoside,

tyrosol, hydroxytyrosol)
Grape seed extract (N/A) ++ N/A + ++ BHT (-) [63]
Chestnut extract (N/A) ++ N/A + ++ BHT (-)

Adzuki bean extract (N/A) ++ N/A -/0 0 BHT (0) [64]
Jaboticaba peel extract (N/A) ++ N/A 0 0 N/A [65]

Green tea extract (N/A) ++ - - 0 N/A [66]
Rosemary extra (N/A) ++ - - - N/A

Sage (N/A) ++ + ++ 0 N/A [67]
Lotus seed epicarp extract (flavonoids) ++ N/A N/A N/A N/A [68]

Shiitake powder (N/A) ++ N/A 0 + SN (-) [69]
Banana male flowers extract (flavonoids) ++ N/A 0 0 N/A [70]

Bacon Tea polyphenols (N/A) ++ N/A N/A N/A TC (-) [71]

Ham

Garlic, cinnamon, clove and rosemary
essential oils (N/A) ++ ++ ++ N/A

SC-SE
[LA (-),
PA (0)]

[72]

Rosa canina L. extract (N/A) ++ ++ 0 N/A
SC-SE

[LA (0),
PA (-)]

Beef meat and meat-based products

Fresh meat

Rosemary extract (carnosic acid, carnosol) ++ N/A N/A N/A BHT (-),
PG (+) [73]

Polyvinylpolypyrrolidone brewery
washing solution (benzoic acid derivatives,

flavan-3-ols, cinnamic acids, flavanones,
flavones, flavonols, acetophenone

derivates, stilbenoids) *

++ N/A N/A N/A BHT
(-),PG (0)
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Table 1. Cont.

Meat/Meat-Based Product Treatment (Main Phenolic Compound) LA 1 PA 2 COL 3 FL/TA 4 FA 5 Ref 6

Lotus rhizome knot and lotus leaf extracts
(tannins and flavonoids) ++ N/A ++ 0/++ N/A [47]

Olive hydroxytyrosol or
4-dihydroxyphenylglycol (hydroxytyrosol,

4-dihydroxyphenylglycol) *
++ N/A N/A N/A N/A [74]

Patties

Chamnamul (Pimpinella
brachycarpa) extract (N/A) ++ N/A ++ N/A BHT (+) [75]

Fatsia (Aralia elata) extract (N/A) ++ N/A ++ N/A BHT (0)
Chestnut extract (N/A) ++ N/A + 0 BHT [76]

Seasonings derived from wine pomace
(N/A) ++ N/A N/A N/A Sulfites

(-) [77]

Meatballs
Film with sage (Salvia officinalis) (N/A) * ++ N/A 0 - N/A [78]

Film with Laurus nobilis (N/A) * ++ N/A 0 - N/A
Pomegranate peel extract (N/A) ++ ++ + 0 BHT (-) [79]

Sausages

Grape seed extract (N/A) ++ N/A + +
AA, PG

(-) [80]

Green tea extract (N/A) ++ N/A + 0 N/A
[81]Stinging nettle extract (N/A) ++ N/A - 0 N/A

Olive leaves extract (N/A) ++ N/A - 0 N/A

Poultry meat and meat-based products

Fresh meat

Pequi (Caryocar brasiliense) waste extract
(phenolic acids, flavonoids, anthocyanins) ++ ++ - N/A BHT (-) [82]

Jucara (Euterpe edulis) waste extract
(phenolic acids, flavonoids, anthocyanins) 0 ++ - N/A BHT (+)

Meat wafer

Apple peel (N/A) ++ N/A ++ ++ N/A

[83]Banana peel (N/A) ++ N/A ++ ++ N/A
Aloe vera gel (N/A) ++ N/A ++ ++ N/A

Drumstick leaf powder (N/A) ++ N/A ++ ++ N/A

Patties Pomegranate juice, pomegranate rind
powder extract (N/A) ++ N/A 0 0 BHT (-) [84]
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Table 1. Cont.

Meat/Meat-Based Product Treatment (Main Phenolic Compound) LA 1 PA 2 COL 3 FL/TA 4 FA 5 Ref 6

Lamb meat and meat-based products

Patties

Tomato by-products extract (N/A) 0 0 0 N/A SA (0)

[85]Red grape by-products extract (N/A) ++ ++ 0 N/A SA (-)
Olive by-products extract (N/A) ++ ++ 0 N/A SA (-)

Pomegranate by-products extract (N/A) 0 0 0 N/A SA (0)

Burger

Origanum vulgare extract (rosmarinic acid,
cathechin/ epicatechin derivative,

4-(3,4-Dihydroxybenzoyloxymethyl)phenyl-
β-D-glucopyranoside, naringenin)

++ ++ + 0 SE (-) [86]

Sausages Origanum vulgare extract (N/A) ++ ++ - 0/- SE (0) [87]

Mixed meat sausages

Sucuk Green tea extract (N/A) ++ N/A 0 ++ BHT (-) [88]
(lamb- beef) Thymbra spicata oil (N/A) ++ N/A 0 ++ BHT (-)

Poultry- pork Nutmeg essential oil (N/A) ++ N/A 0 ++ N/A [89]
1 lipid antioxidant effect, 2 protein antioxidant effect, 3 color effect, 4 flavor/taste effect, 5 food additives other than phenolic compound (in this column, the brackets indicate equal (0),
increased (+) or decreased (-) antioxidant capacity of food additives compared to phenolic compounds), 6 references. * application of phenolic treatment in packaging. +: poor positive
effect, ++: strong positive effect, -: negative effect, 0: no effect (columns LA, PA, COL, and FL/TA; the grading system reflects the opinion/conclusions of the corresponding referenced
citation). AA: ascorbic acid, BHT: butylated hydroxytoluene, BHA: butylated hydroxyanisole, SN: sodium nitrite, TC: α-tocopherol, SC-SE: sodium citrate- sodium erythorbate, PG: propyl
gallate, SA: sodium ascorbate, N/A: relative data is not available.
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3.2. Antimicrobial Activity of Phenolic Compounds

3.2.1. Antimicrobial Activity Mechanisms

Many phenolic compounds serve as efficient antimicrobial agents [34,37,90]. The mechanisms of
their antimicrobial properties have not been completely clarified as yet; however, the prevalent
hypothesis is that they do so by destabilizing the microbial cell surface and cytoplasmic
membranes [37,91–94]. This may lead to irreversible damage of the cell wall and various intracellular
organelles, coagulation of cell compartments, and inhibition of intracellular enzymes. In particular,
the hydrophobic phenolic compounds are bound by the lipid bilayer of the microbial cell membrane
causing its structural disruption and loss of integrity [95,96], leading to the creation of pores, the flow
of intracellular components in the extracellular space, and the functional dysregulation of proteins
such as the Na+/K+-ATPase pump [96–98]. In addition, the phenolic ring, due to its hydroxyl group
and the indispensable double bonds, has the capacity to act as a transmembrane transporter of cations,
causing influx of H+, efflux of K+, and suppression of ATP synthesis [99,100]. Phenolic compounds
may interact with intracellular components and DNA after disruption of the cell wall and entry into the
cell [95,100]. The destruction of intracellular membranes causes release of free radicals that in turn can
lead to DNA damage and lipid oxidation. As an adaptive response to this phenolic “attack,” microbes
modify their gene expression to reduce aerobic metabolism and increase production of antioxidant and
DNA repair enzymes [101,102]. Suppression of aerobic metabolism by itself restricts microbe motility
and biofilm formation, which are conditions that favor survival.

3.2.2. Antimicrobial Activity Associated Factors

The antimicrobial activity of natural phenolic compounds mainly depends on their chemical
structure and concentration. Several additional factors, however, have been identified that could limit
the antimicrobial activity of the phenolic compounds when applied in meat systems. The antimicrobial
activity is adversely affected by increased pH; low water activity; and salt, fat, and complex carbohydrate
content [34,91,103–106]. Reduced pH and increased concentration of phenolic substances enhance the
hydrophobicity of essential oils favoring their attachment to the pathogen’s lipid cell membranes and
therefore, their antimicrobial activity [104,105,107]. In general, the hydrophobic nature of phenolic
compounds facilitates their accumulation in fat [108]. The high concentration of fat in meat does not
favor the contact between phenolic compounds and the pathogenic microorganisms that accumulate
in the hydrophilic phase of meat [91,106]. Proteins create strong complexes with phenolic compounds,
and this may reduce their antioxidant and antimicrobial capacity. However, the results from relative
studies are contradictory, and the effect of proteins on antimicrobial or antioxidant activity of phenolic
compounds is not clarified [109]. Finally, high temperature can eliminate the antimicrobial activity of
natural phenolic compounds particularly during packaging [34], while low storage temperature favors
it [106,108].

Synergistic and antagonistic interactions contribute to the antimicrobial activity of phenolic
compounds; however, the mechanisms have not been yet elucidated. These interactions are observed
when phenolic substances are used in combination or in cases of essential oils which contain more
than one phenolic compound [39]. The fortified or reduced antimicrobial activity of essential
oils compared to that of individual phenolic compounds reveals the synergistic or antagonistic
interactions, respectively [39,97,110]. For example, carvacrol (the main phenolic compound of oregano
oil) and a fraction of dill oil with d-limonene and carvone when compared with crude essential oils
demonstrated increased antimicrobial capacity, indicating that there is an antagonistic interaction
between some of their components [39,111]. Examples of synergistic action have been documented
in the following combinations of phenolic compounds: (i) carvacrol, thymol, and eugenol against
Listeria innocua; (ii) carvacrol and p-cymene against Bacillus cereus; (iii) cinnamaldehyde and eugenol
against Staphylococcus spp., Micrococcus spp., Bacillus spp., and Enterobacter spp. [39,97]; (iv) carvacrol
and thymol against E. coli O157:H7, Staphylococcus aureus, L. innocua, Saccharomyces cerevisiae, and
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Aspergillus niger [34]; (v) geraniol and menthol against S. aureus; (vi) thymol and menthol against
B. cereus [112]; and (vii) cranberry (ellagic acid) and oregano (rosmarinic acid) extract against Listeria
monocytogenes [104,113]. Synergistic interactions between phenolic compounds and antibiotics against
foodborne pathogens have also been observed. For example, the combination of green tea extract with
oxacillin is effective against S. aureus [114]; gallic acid with amikacin, norfloxacin, gentamicin, and
sulfamethoxazole [115] or catechin and ciprofloxacin [116] against E. coli; p-coumaric acid, sinapic
acid, caffeic acid, vanillic acid, gallic acid, and taxifolin with ciprofloxacin and erythromycin against
Campylobacter jejuni [117]; and ellagic and tannic acids with ovobiocin, coumermycin, chlorobiocin,
rifampicin, and fusidic acid against Acinetobacter baumannii [118]. The aforementioned synergistic
interactions may indicate that one phenolic compound facilitates the antimicrobial function of another
compound or antibiotic and vice versa; e.g., the phenolic compound initiates cell membrane rupture
facilitating the entry of an antibiotic compound [97].

3.2.3. Antimicrobial Activity Spectrum

In Vitro Antimicrobial Activity of Phenolic Compounds

Several in vitro studies have demonstrated the antimicrobial properties of natural phenolic
compounds against foodborne pathogens. Regardless of their chemical structure, phenolic compounds
act primarily against Gram-positive and to a lesser extent on Gram-negative bacteria (Table 2). The list
of Gram-positive bacteria inhibited by various essential oils and spices is remarkable (see Table 2).

Table 2. In vitro antimicrobial activity of phenolic compounds or fractions.

Phenolic Compound Targeted Microorganisms Ref 1

Phenolic acids

p-coumaric acid
Saccharomyces cerevisiae, Escherichia coli, Salmonella enterica serovar Typhimurium,

MRSA, Staphylococcus aureus, Bacillus subtilis, Shigella dysenteriae, Streptococcus
pneumoniae

[90,100,119]

Ferulic acid S. cerevisiae, Lactobacillus plantarum, S. aureus, Staphylococcus epidermidis, MRSA [90,119]

Caffeic acid L. plantarum, E. coli, S. aureus, S. epidermidis, MRSA, Serratia marcescens, Proteus
mirabilis [90,119,120]

Gallic acid E. coli, S. aureus. Klebsiella pneumoniae [120,121]
Vanillic cid E. coli, S. aureus, MRSA, P. mirabilis, K. pneumonia, Candida albicans, C. neoformans [119,120,122]

Protocatechuic acid E. coli, S. aureus, L. monocytogenes, Streptococcus agalactiae [119,120]
Syringic acid MRSA, L. monocytogenes [119]

2,4-dihydroxybenzoic acid E. coli, MRSA, Enterococcus faecalis [119]

Flavonoids

Epicatechin E. coli, E. coli O157:H7, S. enterica serovar Choleraesuis, Salmonella enterica serovar
Enteritidis, Salmonella enterica serovar Paratyphi [123]

Epigallocatechin E. coli, Salmonella spp., S. aureus, Vibrio spp. [124]
Epigallocatechin-3-O-gallate E. coli, Salmonella spp., S. aureus, Vibrio spp. [124]

Procyanidins S. aureus [124]
Theaflavins S. aureus, Vibrio spp. [124]

Prodelphinidin E. coli, Salmonella spp., S. aureus, Vibrio spp.
Myricetin E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi [123]

Quercetin
E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. marcescens,

P. mirabilis, K. pneumonia
[123]
[120]

Rutin
E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. marcescens,

P. mirabilis, K. pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii
[123]

[120,125]
Xanthohumol E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi [123]

Quinones

Thymoquinone E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi [123]
Hydroquinone S. aureus [121]

Tannins

Tannins L. plantarum [126]
Castalagin E. coli, Salmonella spp., S. aureus, Vibrio spp. [124]

Punicalagin S. aureus, Vibrio spp. [124]
Tannic acid S. aureus, Vibrio spp. [124]

Geraniin S. aureus, Vibrio spp. [124]
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Table 2. Cont.

Phenolic Compound Targeted Microorganisms Ref 1

Coumarins

Coumarin E.coli, S. Typhimurium, Salmonella enterica serovar Infantis, Enterobacter aerogenes [127]

Curcuminoids

Curcumin E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi [123]

Other polyphenols

Chlorogenic acid E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi [123]

Terpenes

Carvacrol E. coli, STEC, S. aureus, P. fluorescens, Bacillus cereus [112,121]
Carvone S. aureus [112]

Eugenol E. coli, E. coli O157:H7, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S. aureus,
B. cereus [112,123]

Thymol E. coli, E. coli O157:H7, STEC, S. Choleraesuis, S. Enteritidis, S. Paratyphi, S.
aureus, Pseudomonas fluorescens, B. cereus [121,123]

Phenolic fractions

Scrophularia frutescens Bacillus sp. [128]

Ginkgo biloba E. coli, S. Typhimurium, S. aureus, Listeria monocytogenes, Listeria innocua,
Streptococcus pyogenes, Shigella dysenteriae, E. aerogenes, Vibrio vulnificus [129]

Oil vegetation water LAB, E. coli O:157 H7, S. Typhimurium, S. aureus, S. xylosus, L. monocytogenes, L.
innocua, Pseudomonas spp. [130]

Olive oil Campylobacter jejuni, C. coli [131]
Garlic E. coli, S. aureus [132]

1 references, STEC: Shiga toxin-producing E. coli, LAB: lactic acid bacteria, MRSA: Methicillin-resistant S. aureus.

Gram-negative bacteria are less sensitive to the antimicrobial activity of phenolic
compounds [91,106,121,133] due to the hydrophilic outer membrane of lipopolysaccharides that
hinders entry of lipophilic phenolic molecules [95]. Nevertheless, phenolic compounds from berries
(anthocyanins, flavonols and hydroxy-cinnamates) have proved to be somewhat active against
Salmonella spp. (Gram negative) but not against Gram positive bacteria [134]. Also, a citrus oil called
Brazilian orange terpenes, has presented higher antibacterial action against E. coli (Gram negative) than
Lactobacillus rhamnosus (Gram positive) [135].

In Situ Antimicrobial Activity of Phenolic Compounds in Meat Systems

Various studies have been conducted in situ for the verification of antimicrobial activity of phenolic
compounds in meat-based products. In these studies, phenolic compounds were used mainly in the
form of essential oils and plant extracts and their efficiency against a wide range of pathogens was
assessed under various combinations of substances, concentrations, and types of meat. Successful
applications of several natural antimicrobials containing phenolic compounds are shown in Table 3.
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Table 3. In situ antimicrobial activity of natural phenolic compounds in meat-based products.

Meat/Meat-Based Products Treatment Targeted Microorganisms FA 1 Ref 2

Pork meat and meat-based products

Foal steak
Oregano (O) * TVC, LAB N/A [48]
Green tea (E) * Pseudomonas spp., Enterobacteriaceae, yeasts, molds

Patties
Green tea (E) TVC, LAB, psychrotrophic anaerobic bacteria, Pseudomonas

spp. BHT (-) [50]
Grape (E)

Tea polyphenols (P) * TVC N/A [54]

Sausages

Rosemary (E) Enterobacteriaceae, Pseudomonas spp., yeasts, molds CH(0), TC (-) [136]
Olive mill wastewater (E) Molds Ethanol (-) [137]
Olive vegetation water (E) Staphylococcus spp., molds N/A [138]

Oregano (O) Aerobic heterotrofic bacteria, Escherichia coli N/A [139,
140]

Shiitake (P) TVC SN (0) [69]

Liver pâté Date palm and annatto (E) TVC N/A [61]
Pomegranate peel (E) Listeria monocytogenes N/A [141]

Ham Carvacrol, cinnamaldehyde * L. monocytogenes N/A [142]

Hamburger Cranberry pomace (E) LAB, TVC, L. monocytogenes, Brochothrix thermosphacta,
Pseudomonas putida N/A [143]

Bacon
Tea polyphenols, grape seed (E) TVC, Enterobacteriaceae, Micrococcaceae, yeasts, molds TC (-) [71]

Gingerol TVC, Enterobacteriaceae, Micrococcaceae

Liquid smoke E. coli, Salmonella enterica serovar Choleraesuis,
Staphylococcus aureus, L. monocytogenes N/A [144]

Salami Olive mill wastewater (E) L. monocytogenes Nitrate (-) [14]

Beef meat and meat-based products

Fresh meat

Oregano (O) S. aureus AC (-) [145]
Oregano and cranberry (EP) L. monocytogenes LA (-) [104]

Grape seed (E) E. coli O157:H7, Salmonella enterica serovar Typhimurium, L.
monocytogenes BHA/BHT (-) [103]

Pine bark (E)
Malpighia punicifolia (E) B. thermosphacta, Pseudomonas spp. N/A [146]



Foods 2020, 9, 794 13 of 28

Table 3. Cont.

Meat/Meat-Based Products Treatment Targeted Microorganisms FA 1 Ref 2

Minced meat

Sage (O)
TVC, Enterobacteriaceae, Salmonella enterica serovar

Anatum, Salmonella enterica serovar Enteritidis, S. aureus,
Bacillus cereus, yeasts, molds

N/A [147]

Prickly pear (E) TVC, Enterobacteriaceae, Pseudomonas spp. N/A [148]
Pistacia lentiscus (O) Satureja

montana (O) L. monocytogenes N/A [149]

Rumex tingitanus (E) L. monocytogenes N/A [150]

Patties

Thymol Enterobacteriaceae, Coliforms N/A [151]
Wine pomace seasoning TVC, LAB Sulfites (+) [152]

Grape pomace (E) Coliforms, Enterobacteriaceae, yeasts, molds N/A [153]
Chamnamul and fatsia (E) Coliforms BHT (0) [75]

Sucuk Black carrot concentrate Yeasts, molds SN (-) [154]

Poultry meat and meat-based products

Fresh meat

Carvacrol, cinnamaldehyde E. coli O157:H7, S. Enteritidis N/A [142]
Carvacrol vapor S. Enteritidis, N/A [155]

Oregano (O) LAB, Enterobacteriaceae, B. thermosphacta, Pseudomonas
spp., yeasts N/A [156]

Pomegranate (E) Salmonella enterica serovar Kentucky, S. Enteritidis N/A [157]
Zanthoxylum rhetsa (E) * TVC, Staphylococcus spp., Coliforms N/A [158]

Eugenol * Campylobacter jejuni AC (-) [102]

Minced meat Clove (O) * S. Typhimurium, L. monocytogenes N/A [159]

Sausages Rosemary, Chinese mahogany
(E) TVC N/A [160]

Salami Prickly pear (E) LAB, Staphylococcus spp. SN-CO (-) [161]

Lamb meat and meat-based products

Fresh meat
Oregano (O) TVC, Enterobacteriaceae N/A [162]
Thyme (O) Pseudomonas spp.
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Table 3. Cont.

Meat/Meat-Based Products Treatment Targeted Microorganisms FA 1 Ref 2

Patties

Tomato by-products (E) Mesophile and psycrotrophic microorganisms,
Enterobacteriaceae [85]Pomegranate by-products (E) SA (0)

Red grape by-products (E) Mesophile microorganisms
Olive by-products (E) SA (0)

Minced meat Oregano (O) S. Enteritidis Nisin (-) [163]

Mixed meat sausages

Beef & pork

β-resorcylic acid, carvacrol,
trans-cinnamaldehyde L. monocytogenes DMSO (-) [164]

Cranberry (P) L. monocytogenes NLD (0) [165]
Kitaibelia vitifolia (E) E. coli N/A [166]

Poultry & pork Nutmeg essential (O) TVC N/A [89]
1 food additive other than phenolic compound (in this column, the brackets indicate: equal (0), increased (+) or decreased (-) antimicrobial capacity of food additives compared to phenolic
compounds), 2 references, * application of phenolic treatment in packaging; O: oil, E: extract, P: powder, TVC: total viable count, LAB: lactic acid bacteria, BHT: butylated hydroxytoluene,
CH: chitosan, TC: α-tocopherol, SN: sodium nitrite, AC: acetic acid, LA: lactic acid, BHA: butylated hydroxyanisole, CO: cochineal, SA: sodium ascorbate, DMSO: dimethylsulfoxide, NLD:
nitrite, lactate and diacetate.
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4. Application of Phenolic Compounds in Meat

4.1. Direct Application in Meat

Additives containing phenolic compounds can be either incorporated directly into meat-based
products or in bio-based functional packaging materials. Herbs and spices or their extracted oils can
be added as such, thus exploiting their distinct flavor [34,103,167]. The most appropriate application
of herbs and spices on meat products depends on the phenolic compounds of the extracted essential
oils and their antimicrobial properties (e.g., targeted microorganisms) [34]. Effectiveness depends on
the type of application and could even vary in the same or similar meat products [168].

Active food packaging using bio-based materials that also incorporate phenolic compounds is an
emerging technology. The packaging material in these cases could protect meat against oxidation and
spoilage [3,17,34,169,170]. Currently, active packaging includes sachet-based applications gradually
releasing phenolic compounds, pads with incorporated phenolic compounds and in direct contact
with the product, edible or polyethylene bioactive films coated with essential oils [34,73,169,171–173].
Techniques for the incorporation of phenolic compounds into packaging films is complex and needs to
account for factors such as heat and pressure applied during processing and packaging. These factors
can adversely affect the molecular structure and therefore the functionality of the incorporated phenolic
compounds [174]. During the manufacturing of active packaging materials, microencapsulation
of phenolic compounds is currently exploited to protect their molecular structure and secure their
antioxidant and antimicrobial activity [73,175]. State-of-the-art nanotechnologies that have been
exploited in food nano-encapsulation applications include (i) biopolymer and lipid-based nanoparticles
and cyclodextrins; (ii) nano-emulsions; (iii) nano-spray drying; and (iv) electro-spinning [174–178].
These technologies facilitate the carriage and delivery of phenolic compounds, protecting them from
challenging conditions within food (e.g., pH, temperature, and other organic compounds). Additionally,
they improve their solubility and bioavailability, and mitigate the risk of developing undesirable
flavors [175,179,180].

4.2. Incorporation in Animal Diets

The addition of phenolic compounds in animal diets has been used to improve the antioxidant
capacity of the produced meat. In ruminants, natural phenolic compounds have been related
with (i) inhibitory effect on fibrolytic bacteria and protozoa, (ii) reinforcement of rumen bypass of
polyunsaturated fatty acids and protein metabolism, and (iii) the production of conjugated linoleic
acid [181–183] contributing to the qualitative improvement of the derived meat products. In monogastric
animals, phenolic compounds have been found to act beneficially for the intestinal microbiota and
the stability of polyunsaturated fatty acids in the intestine and muscle tissues [184]. For example, in
broilers, incorporation of polyphenols extracted from the industrial waste of olive oil processing in
their diets improved the antioxidant capability of their meat [185]. Similarly, the addition of gallic
and linoleic acid to broiler diets had beneficial effects on their lipid metabolism, their productivity, the
nutritional value and quality of meat, and its antioxidant and antimicrobial capacity [186], whereas
oregano and laurel oil improved growth rate and reduced lipid oxidation [187]. Feeding rosemary
extract in turkeys had a beneficial effect against lipid oxidation and spoilage of their meat [188]. In goats,
consumption of tannin-rich leaves from woody plants improved the oxidative stability of the derived
meat due to modulation of the fatty acid profile [189]. In rabbits and lambs, consumption of chestnut
tannins increased their immune response under stress conditions, and improved growth rate, meat
quality and antioxidant capacity [190,191]. In pig diets, incorporation of wood extract and oregano oil
increased the presence of antioxidant enzymes in animals, prevented lipid oxidation and improved
meat color [192]. Similarly, the addition of rosemary extract in lamb diets delayed lipid oxidation, color
deterioration, and bacterial spoilage of the produced carcass [193], whereas tannins and oregano oil
improved antioxidant status and color of meat [194,195]. Hence, the improvement of meat antioxidant
and antimicrobial capacity results both from the direct accumulation of the phenolic compounds in
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meat and their indirect activity, which reinforces the health and welfare status of animals, therefore
mitigating the oxidative stress and the respective degradation of their products.

5. Regulation, Limitations, and Challenges in the Use of Phenolic Compounds

Health risk assessment of phenolic compounds (essential oils, extracts and purified compounds) is
necessary prerequisite for their commercial use in food products. This means that the inclusion of
phenolic compounds in food legislation and their subsequent approval for commercial use by the meat
industry, demand scientific evidence and the conduction of relevant risk assessment considering human
health. This implies that the safety, health, and quality claims of phenolic compounds when applied
in meat systems should be documented; records available by the European Food Safety Authority
and corresponding committees of other countries need to be considered as well. This process is
cost-intensive and time-consuming particularly when purified phenolic compounds are to be used [97],
limiting their industrial application.

To date, the European Commission has approved (EU, 1333/2008 and 1129/2011) the application of
rosemary extract (E392) as a food additive for meat products to concentration up to 150 mg/kg [38,196,197]
and several other phenolic compounds (linalool, thymol, eugenol, carvone, cinnamaldehyde, vanillin,
carvacrol, citral, and limonene) in the list of food flavoring substances, as described in the Regulation
(EU) No 872/2012 [198]. Rosemary extract has been also approved for use in food industry in Japan,
China [196], the US, and recently in Australia and New Zealand (Australia New Zealand Food Standards
Code—Standard 1.3.1—Food Additives). The use of phenolic compounds in active food packaging
(e.g., edible films, encapsulation) according to the Regulation (EU) No 450/2009 demands their incorporation
in the list of approved food additives, given that they come into contact with food [199]. Likewise, the
Food and Drug Administration (FDA) in the US has included several essential oils containing phenolic
compounds such as clove, oregano, thyme, nutmeg, basil, mustard, cinnamon oil, and even estragole
(prohibited in EU as genotoxic) in the list of Generally Recognized as Safe (GRAS) substances [39,97].
Hence, the commercial use of phenolic compounds in meat-based products to exploit their antioxidant
and anti-spoilage activity is currently scarce.

Phenolic compounds naturally occurring in fruits and vegetables or produced by microorganisms
could modify food flavor [90]. Several extracts and essential oils from fruits and vegetables
(e.g., citrus, carrots, potatoes, orange, oregano) give sweet, sour, bitter, or astringent flavor due
to their phenolic content, which precludes their unconditional use in meat preparations and meat
products [7,15,91,106,156,165]. Adoption of the recommended concentrations, addition of modulatory
substances like salt [91] and application of appropriate technologies, like micro-encapsulation of
phenolic compounds, are significant measures to mitigate undesirable effects of phenolic compounds
on organoleptic traits of meat-based products [15,180].

The interaction of phenolic compounds with meat components (lipids, proteins, carbohydrates) and
their effect on intrinsic quality traits of meat (e.g., pH, organoleptic attributes) limits their wide
application [37,39]. Although phenolic compounds are considered to decrease the digestibility of
carbohydrates and proteins, inhibit the bioavailability of amino acids and bind the available iron,
these effects have not been observed in meat [90,109]. In any case, further in situ experiments are
necessary to evaluate the activity and possible anti-nutritional effects of natural phenolic compounds
in meat-based products under various conditions.

Phenolic compounds are commonly added in meat in the form of essential oils. However, the
intrinsic composition of each essential oil and its interrelated antimicrobial capacity depend mainly on
the plant species and also, on the season, the age and the origin of the plant, environmental factors
that can affect its phenotypic expression and the used extraction process (e.g., solvent extraction,
fermentation, distillation, effleurage) [97,149,200–202]. Also, the source of natural phenolic compounds
determines their purity and, therefore, their antimicrobial capability [123]. Finally, the cost for the
extraction of natural phenolic compounds is affected by the degree of purification and the improvement
of extract quality by removing potentially toxic organic components [203]. Protocols to standardize the



Foods 2020, 9, 794 17 of 28

composition of essential oils and the extraction of phenolic compounds are critical for the evaluation of
their inhibitory activity and the cost-effectiveness of their application in meat-based products. Another
way to increase the content of phenolic compounds in meat is via the incorporation of phenolic
compounds in the diets of farm animals. This is a growing research field, currently challenged by
knowledge gaps regarding the determination of the most effective phenolic compounds (type and
concentration) and the most appropriate techniques to incorporate them in farm animal diets, without
adversely affecting animal productivity, health, and welfare status.

In general, the demand for nutritious, functional, healthy and safe meat-based products is
growing in modern societies, motivating the meat industry to develop new technologies. Among
these technologies, the ones based on the addition of natural compounds such as fatty acids, minerals,
vitamins, natural antioxidants, dietary fibers, probiotics or bioactive peptides are emerging [204–207].
Except for the antioxidant and anti-spoilage function of natural phenolic compounds, they also act
beneficially for human health [208]. For example, flavonols have presented an anti-obesity effect [68,209],
a protective effect against oxidative stress-induced neurotoxicity [210], and anti-diabetic [211] and
potential anti-tumor activity [212]. Some natural phenolic compounds (e.g., date palm extract) have
been found to exhibit an inhibitory function against the invasion and metastasis of cancer cells [45,213].
Another interesting aspect for public health is the fact that their antimicrobial action renders them
promising alternatives to chemical additives and synthetic antimicrobials and, thereby, useful tools
against the development of antibiotic resistance.

6. Conclusions

Despite the numerous in vitro and in situ studies demonstrating the beneficial effects of natural
phenolic compounds against meat oxidation, spoilage, and foodborne pathogens, wide application
and commercialization in the meat industry has not been yet achieved. Major obstacles are still the
scarcity of a legislative framework, the large variety of meat-based products and targeted pathogens,
and, in many cases, the limited number of case-specific application protocols and the questionable
efficiency of those applied. The immediate establishment of a legislative framework for the use and
assessment of natural phenolic compounds in meat-based products is a crucial prerequisite towards
their massive application in meat industry and for the consumers’ acceptability. Regardless of direct or
indirect applications of phenolic compounds in meat systems, their effectiveness is neither universally
accepted nor unquestionable. Instead, it is defined in a case-by-case manner, taking into account the
phenolic compound itself, the meat-based product and the targeted microorganisms. In any case,
real-world, in situ testing of these compounds is of paramount importance to verify their functionality
and significance for the meat industry. Nano-encapsulation of the phenolic compounds in active
packaging systems is a state-of-the-art technology with, though, limited in-depth studies regarding
possible adverse effects on human health and the environment. Also, natural phenolic compounds and
other natural antioxidant and antimicrobial substances could be jointly tested for the production of
novel commercial food additives that will facilitate meat quality and safety assurance. Furthermore,
the existence of synergistic activity between natural phenolic compounds and other preservation
methods (e.g., high pressure processing) need to be investigated to achieve the optimum outcomes
with the minimum effects on the organoleptic traits of meat. In the future natural phenolic compounds
are expected to constitute an innovative tool integrated into meat systems to satisfy the ever-increasing
demands for natural, quality, safe, and healthy food.
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78. Akcan, T.; Estévez, M.; Serdaroğlu, M. Antioxidant protection of cooked meatballs during frozen storage by
whey protein edible films with phytochemicals from Laurus nobilis L. and Salvia officinalis. LWT Food Sci.
Technol. 2017, 77, 323–331. [CrossRef]
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