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Introduction
Huntington disease (HD) can be defined as a completely pen-
etrant degenerative brain disease resulting from CAG (cyto-
sine-adenine-guanine) repeat expansion that is inherited as a 
dominant trait in IT15 (“interesting transcript 15”) gene also 
defined as huntingtin (HTT) gene.1,2 Huntingtin is translated 
into such an excessively massive polyglutamine domain around 
the N-terminus of the Huntington protein.3 Mutant hunting-
tin (mHTT) becomes particularly unstable due to the enlarge-
ment of the CAG region and allows to a combination of 
proteins of the same type and/or other types resulting in clumps 
that may lead to discontinued neurotransmission.4,5

Huntington disease is caused by a complicated interaction of 
environmental and genetic factors, resulting in succeeding genera-
tions to live in increasingly deplorable social conditions. Autosomal 
recessive inheritance is often seen in mid-life diagnosis and 

continuous progressive motor including intellectual and mental 
symptoms across 15 to 20 years.6,7 It commonly starts in middle 
age, between the 21 and 50 years, including an average starting age 
of 41 years.6,8 Fine motor function deterioration, cerebellar abnor-
malities, gait abnormalities, dysarthria, cognitive difficulties, and 
stiffness are all prevalent symptoms and indicators.9 It produces 
substantial physical and cognitive deficiencies such as memory 
loss, depression, mood fluctuations clumsiness as well as some 
other psychological problems and disorders.4,10 Clinical diagnosis 
to identify HD is conducted when there are strong sets of evi-
dence of a motor disorder, particularly chorea involving iatrogenic 
conditions and general internal disorders.9 Degenerative muta-
tions and cellular damage can be found throughout the cortex and 
external areas of the central nervous system, specifically across the 
striatum; there are various symptomatic therapies and medication 
available, but there is no permanent remedy for this devastating 
brain disorder presently.10,11 There are currently no medications 
available to delay symptoms and disease development; however, 
there are numerous effective post management (ie, medication and 
nonpharmacologic approaches available).12
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As the disease was first diagnosed, especially after Davenport 
and Munceyat 1916 pointed out a large collection of information 
on households in the New England area of America, individual 
family surveys on HD have been conducted.13 Most European 
nations, including Northern and Southern, have a quite high 
prevalence, ie, 4 to 8 in every 100 000 individuals, and the disease 
may also be common in India side by side in some areas of Central 
Asia, according to the findings.14 The prevalence of HD world-
wide appears to vary by region.15 In South Africa and Zimbabwe, 
prevalence rates were determined to be extremely low.16 Since 
1995, the prevalence rate (average) in Asian countries (South 
Korea, Hong Kong, Taiwan, and Japan) has been low (0.42 per 
100 000 individuals) compared with the rate among white popu-
lations (North America, Australia, the United Kingdom and 
Western Europe) where the rate was 9.71 per 100 000 individu-
als.15 Following the emergence of genetic testing, the frequency 
of HD has increased in several populations.17

Although several studies have already identified histone 
modifications, protein hubs identification, transcription factor 
(TF) impairments, and abnormal microRNA (miRNA) expres-
sion, HD is difficult to diagnose at an early stage and identifica-
tion is restricted in accuracy and precision, as well as expensive.18,19 
Also, contradictions between researchers were found about the 
conclusion of differential expressed genes. As a result, using 
brain cell analysis to predict HD could enhance disease’s early 
detection and treatment. In 1993, the faulty gene that triggers 
HD was first discovered and a genetic test for diagnosis is avail-
able now.20 The test can identify the malfunctioning gene for 
HTT protein as well as discover the genetic defect in individuals 
who already haven’t shown any symptoms but has the possibility 
to obtain the disease but this is a slow process and can only be 
diagnosed after mid-age.20,21 This condition is caused by a CAG 
triplet repeat amplification in the HTT gene.20,22 Due to pro-
longed CAG repeat, HTT protein with an enlarged polyglu-
tamine tract is produced, resulting in pathogenic HTT protein 
residues that are immune to the protein cycle, leading to cellular 
toxicity.23,24 Most HD patients have motor-involved problems, a 
small percentage (15%) establish clinically relevant psychological 
disease first and hence have a mental diagnosis before the start of 
movement disorder.20,25 Huntington disease is associated with 
extremely selective deterioration of the corpus striatum which is 
a brain region with no noticeable abnormalities in peripheral tis-
sues. Huntington and mHTT are prevalently distributed across 
the brain also including peripheral tissues.10

Histone modifications, protein hubs identification, TF 
impairments, and abnormal miRNA expression are among the 
processes linked to this imbalance and identification of disease 
specification biomarkers is crucial for HD drug testing.26 Several 
studies have been conducted from different perspectives to iden-
tify molecular biomarkers with various brain and blood data. As 
HD is a completely penetrant degenerative brain disease, in this 
study brain-based data sets were obtained to progress further 
analyses. Generally, genetic factors in HD have primarily been 
examined in diseased brains comparing controlled individuals, as 
well as in cell and animal models.23,27 Hundreds of research 

teams have spent the past 3 decades trying to figure out what 
causes HD based on cellular and molecular compounds.18,19,27 
The goal of this research is to find molecular biomarkers that 
represent the brain expression alignments of associative factors 
connected to HD development. The main objective of this study 
is to identify the differentially expressed genes (DEGs) and 
common genes using genomic information for HD. Second, we 
aimed to identify molecular biomarkers to diagnose early detec-
tion of HD and progression by identifying transcriptional and 
post-transcriptional level; side by side another objective was to 
identify potential interacting components that are prominent in 
the gene list which can be used to find valuable medicines or 
drug targets. The rest of this article is organized as materials and 
methodology, results, discussion, and conclusions section. The 
materials and methodology section contains data acquisition, 
determination of DEGs and common genes, gene set enrich-
ment analysis (GSEA), construction of protein-protein interac-
tion (PPI) network for hub protein identification, transcriptomic 
marker identification, prediction of small drug molecules, and 
finally, validation of the predicted molecular markers.

Materials and Methodology
Data acquisition
In this study, data sets were obtained from National Center for 
Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO).28 We searched for Homo sapiens data of HD 
and detected 747 data sets, the majority of which were initially 
disqualified as they were noncoding data sets, had a very small 
sample size, were redundant data sets, had an inadequate for-
mat, or inappropriate experimental set-up, contained stem-
cells, did not contain control subjects, or was from organisms 
other than humans. Finally, after considering all perspectives, 
we have selected 2 data sets for the analysis which are 
GSE64810 and GSE95343, where GSE64810 contained 
mRNA sequence expression of brain tissue and GSE95343 
contained mRNA sequence of neural cells.

Determination of differentially expressed genes and 
common genes

Gene set enrichment analysis identifies DEGs from a large set 
of genes linked to disease symptoms using a number of statisti-
cal approaches.29,30 Figure 1 visualizes the steps involved in 
data acquisition and identifying DEGs also shows the analyti-
cal approaches in a nutshell. GSE64810 and GSE95343 shared 
a total of 162 common genes, whereas 106 genes were up-reg-
ulated and 56 genes were down-regulated. Gene expressions of 
the data sets were analyzed in accordance with P  value < .05  
and log2 absolute values for Fold Control (FC); (− ≥ ≥1 1FC ). 
Linear models identified the DEGs where (limmapackage 
obtained from Bioconductor using R) R or the online tool 
GEO2R for microarray data sets and GREIN31 for RNA 
sequence data sets were used. The limma is known as a 
Bioconductor software package for analyzing data using R 
from gene expression studies and experiments.32 P value was 



Meem et al 3

adjusted using the Benjamini-Hochberg (BH) technique 
where the FDR (false discovery rate), Qe  is defined as the 
expectation of Q33 and it implies that

Q E Qe = ( )  (1)

The random variable indicates the fraction of errors made 
by the null hypotheses that are falsely rejected and

Q V
V S

=
+( )

 (2)

R V S= +  (3)
where

V number of significant true null hypotheses=       ,
S number of significant nontrue null hypotheses=       , and
R number of hypotheses that are rejected=       .

Finally, it can be seen that

E Q E V
R

( ) ( )=  (4)

Common genes were obtained from the DEGs using the 
Venn diagram comparing the common DEGs.

Gene set enrichment analysis

Gene set enrichment analysis was conducted to depart analytical 
obstructions and examine data if individuals from a set of genes 
tend to appear near the highest points (or bottom) of the list and 
also checks where the gene set is linked to behavioral class distinc-
tion.34,35 To obtain GSEA, gene ontologies (molecular function, 
biological process as well as cellular components), molecular path-
ways (Kyoto Encyclopedia of Genes and Genomes [KEGG] 
pathway) and was obtained using Enricher, GREIN, David 
Bioinformatics Resources 6.8 and R programing, respectively.36,37 
A considerable analytical effort is required to identify common 
biological findings using GSEA. An adjusted P< .05  was used as 
the cut-off parameter to conduct gene enrichment. The KEGG 
pathways were performed by David Bioinformatics Resources 6.8 
and the significant KEGG pathway was obtained underlying the 
P < .05 . A bubble plot was also generated using the R tool 
ggplot2 to visualize KEGG pathways where P value ( P < .05 ) 
and the FDR value (FDR < .05 ) was demarked. It is commonly 
used to comprehend metabolic pathways to annotate genes.

Determination of protein-protein interaction

Protein-protein interaction (PPI) is the protein interactions 
with other proteins, ions, and nonprotein elements like lipids, 
carbohydrates, and nucleic acids generate the distinctive fea-
tures of each protein.38 Protein-protein interaction plays an 
important role in several biological functions and includes a 
variety of applications in biology regarding structure, affinities, 
and whether or not the interaction is persistent.39 Interaction 
of protein hubs through PPI networks was retrieved using 
Network Analyst40 from the STRING database depending on 
the physical connection of common gene proteins selecting 
confidence score 900 (adjusted P < . )05 . We used Cytoscape 
software41 including cytoHubba and MCODE applications40 
to identify hub genes.

Analysis of transcription factor gene and 
transcription factor-microRNA coregulatory 
interconnections

Transcription factors interact directly with DNA to bind the 
regulatory regions known as regulators and enhancers, which 
increase (or occasionally prevent) gene transcription and con-
sequently messenger RNA synthesis.42,43 Network Analyst was 
used to determine regulatory TFs-DEGs interaction network 
and also to identify TFs and miRNAs that control common 
genes at the transcriptional and post-transcriptional stages. 
The TF-genes and TF-miRNA were obtained from the 
JASPAR TF binding site profile database and TarBase v8.0, 
respectively. Here, JASPAR is a popular manually organized, 
nonredundant open-accessed TF binding profiling database 
recorded as matrices and models of TF.44 TarBase is a compre-
hensive database of miRNA-gene interactions that had been 
confirmed empirically.45

Figure 1. Systematical implementation approach in the study: significant 

differentially expressed genes were identified as well as associated gene 

ontology terminologies and pathways were enriched using mRNA 

expression data sets of Huntington disease from neural cells and brain 

tissue. Multiple network approaches were also implemented to identify 

PPI, regulatory signature molecules, and potential therapeutic drug 

targets. DEGs indicate differentially expressed genes; KEGG, Kyoto 

Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; 

TF, transcription factor.
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Gene disease association

Genetic and/or environmental factors are thought to play a role 
in complex disorders.46 Recognizing the genes linked to an ill-
ness can help with disease treatment, prevention, and health 
care.47 It is also crucial for knowing how genes work biologi-
cally. It emphasizes the evolution of human genetic illnesses 
which are used to uncover linkages between hereditary and 
genetic disease while using Network Analyst to investigate 
related diseases and common DEGs. The DisGeNET data-
base, which is exclusively suitable for human data sets, was used 
to gather the gene-disease association information. DisGeNET 
is a research platform that includes one of the most compre-
hensive publicly available libraries of genes and variations 
linked to human disorders.48

Prediction of candidate drugs or small compounds

Enrichment of drug-target was executed using Enrichr to 
obtain candidate drugs or small compounds. This method 
was used to find small chemical that influenced HD function. 
The gene sets (DSigDB) database from the Enrichr was 
employed to identify prospective drugs or small molecules. 
The Drug Signatures Database (DSigDB) is a gene set data-
base that connects drugs/compounds with respective target 
genes.49 Chemical structures of the candidate drugs were 
extracted from PubChem.50

Validation of relevant biomarkers

To check the validation of relevant biomarkers revealed in this 
research, we conducted an overall review from literatures with 
respect to the findings of our study.51,52

Results
Determination of differentially expressed genes and 
overlapping genes

High-throughput sequencing data (GSE64810, GSE95343) 
of prefrontal cortex and neural cells of HD were analyzed 
using GEO2R and GREIN. GSE64810 data were obtained 
by expression analysis of human post-mortem brain tissue 
(BA9) for HD patients and neurologically normal people 

using mRNA-Seq. GSE95343 data set consists of neural cells 
for HD and control patient using mRNA-Seq. The transcrip-
tomic HD data sets exhibited 162 common DEGs including 
up-regulated and down-regulated genes from overlapped 
DEGs (Table 1 and Figure 2). Figure 2A and B depicts inter-
active heatmaps for control and case samples from the selected 
data sets.

Gene set enrichment analysis

Significant Gene Ontology (GO) was enriched through 
molecular function, biological process as well as cellular com-
ponents (Table 2). Significant GO terms were displayed in 
Table 2 and Figure 3C to E, which was obtained using David 
Bioinformatics Resources 6.8. In Biological process, 13 genes 
were involved in proteolysis and 8 genes were found to be 
engaged in transcription from skeletal system development. 
The cellular component visualized 46 genes that came from 
extracellular region, whereas extracellular space (40 genes) and 
extracellular exosome (32 genes) also involved majority num-
bers of genes. Molecular function of the GO expressed 18 
genes (EOMES, OSR2, PRRX2, etc) which were involved in 
sequence-specific double-stranded DNA binding. Figure 3A 
illustrates the DEG-enriched molecular pathways that have 
been found in KEGG Pathway with help of Enrichr and 
Figure 3B represents the bubble plot following KEGG Pathway 
produced by R programing. In the KEGG pathway, antigen 
processing and presentation pathway was seen to be enriched 
with 6 genes significantly, according to significant P value. Top 
significantly enriched pathways were represented by bubble 
plots in this study.

Protein-protein interaction

Figure 4 visualizes the PPI obtained by network analysis 
highlighting the protein hubs with the list of top 10 hub 
genes produced by Cytoscape, and it shows the interactions 
between the hub genes generated by Network Analyst and 
Cytoscape. Protein-protein interaction network of the pro-
teins was analyzed to identify the protein hubs of respective 
DEGs including 162 common genes. Network analysis deter-
mined the hub proteins, and they were DUSP1, NKX2-5, 

Table 1. Statistical overview for gene expression in data sets used in analysis.

SERIAl 
NUMBER

GEO 
ACCESSION

GEO 
PlATFORM

SOURCE NUMBER OF DEGS COMMON 
GENES

UP DOwN TOTAl

1 GSE64810 GPl11154 Prefrontal cortex (post-
mortem BA9 brain tissue)

715 521 1236 162

2 GSE95343 GPl11154 Neural cells 1297 1799 3096

Total 2012 2320 4332

Abbreviations: DEGs, differentially expressed genes; GEO, Gene Expression Omnibus.
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Figure 2. (A) Overlapping 106 up-regulated common genes among data sets GSE64810 and GSE95343; (B) Overlapping 56 down-regulated common 

genes among data set GSE64810 and GSE95343; (C and D) heatmap of selected data sets, GSE64810 and GSE95343 displaying differential expression 

level; the color scale reflects the expression value, and each row and column represents a gene. DEGs indicates differentially expressed genes.

GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2, S100A4, and 
MSX1. These hub genes could be the indicators that play a 
key role in the progression of HD.

Transcription factor gene and transcription factor-
microRNA coregulatory interconnections

To get insights into substantial changes happening at the 
transcriptional and post-transcriptional level, the DEGs 
were screened to pick out the transcriptional (TFs) and post-
transcriptional (miRNAs) regulatory biomolecules which 
were identified based on degree value. We predicted regula-
tory biomolecules that may influence DEGs at the transcrip-
tion regulatory and post-transcriptional stages by identifying 
TFs and miRNAs targeting DEGs. Figure 5A and B exhibits 
the analysis of TF-gene and TF-miRNA coregulatory inter-
connections with network. The analysis disclosed top signifi-
cant transcriptomic factors (TFs), ie, FOXC1, GATA2, YY1, 
TFAP2A, FOXL1, PPARG, HINFP, STAT3, MEF2A and 
top significant miRNAs, ie, hsa-miR-340, hsa-miR-34a, 
hsa-miR-495, hsa-miR-1, hsa-miR-124, hsa-miR-29a, hsa-
miR-29b, hsa-miR-30e, hsa-miR-16, hsa-miR-206, hsa-
miR-30a, hsa-miR-30c, and hsa-miR-944 as regulatory 
biomarkers for HD.

Gene disease association

Figure 6 indicates the main diseases linked to common DEGs 
are highlighted in the gene-disease association network. 
Degenerative polyarthritis, schizophrenia, short stature, auto-
somal recessive predisposition, and liver cirrhosis (Experimental) 
were identified as the correlated diseases to the DEGs from 
gene-disease association study using Network Analyst.

Development of candidate drugs or small 
compounds

Table 3 lists the top associated small molecules, along with 
respective molecular formula and structural composition, 
and Figure 7 shows a bar graph of the small drug molecules 
produced by Enrichr. Cytarabine exhibited the strongest 
negative association and the best chance of reversing HD 
among these compounds. Arsenite has also shown effective-
ness against HD.

Validation of relevant biomarkers

The hub genes we identified were DUSP1, NKX2-5, GLI1, 
KLF4, SCNN1B, NPHS1, SGK2, PITX2, S100A4, and MSX1 
reflecting as the potential biomarkers for HD. To determine 
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Figure 4. Visualization of PPI network of common DEG: (A) PPI network developed by Network Analyst showing the top 10 hub genes that interconnect 

other DEGs marked by blue nodes and other nodes symbolize DEGs connected by edges which reflect DEG interaction. (B) list of top 10 hub genes 

produced by Cytoscape through MCC method. Here, color shades represent the rank of hub proteins. The darker shades of color express the higher rank 

of hub genes and vice versa. (C) According to the selected layout, the top 10 hub proteins in a network are visualized using the MCC technique in 

Cytoscape v3.8.2 using the cytoHubba plugin. Pink-colored nodes represent the proteins associated via edges with the top 10 hub proteins in blue shade. 

DEG indicates differentially expressed gene; MCC, maximum clique centrality; PPI, protein-protein interaction.

the validity of these putative biomarkers, we looked through 
the related studies for prospective HD biomarkers (Figure 8). 
It was identified that low DUSP1 also known as MKP-1 
expression may contribute to hyperactivation of MAPK in 
HD, whereas increased MKP activity may be neuroprotec-
tive.53-55 NKX2-5 was found to be correlated with the protein 
synthesis in HD56 and also as one of the significantly up-regu-
lated genes.57 GLI1 was also found as contributing gene of 
HD, and we found that it was one of the hub proteins that 
contribute to HD.58-63 Previous studies suggested KLF4 as a 

potential biomarker for HD which is consistent with our 
study.64-68 SCNN1B’s utility as a molecular biomarker in HD 
was demonstrated in 2 earlier studies.69,70 Increased expression 
of NPHS1 has consistently been identified to HD, which sup-
ports our research results.71 In our research, it was revealed that 
SGK2 is a possible protein hub in HD, and it has been seen to 
be widely expressed in a study published in 2011.72 Over-
expressed PITX2 have effects on the initial formation of stri-
atal neurons composing the pathways directly and indirectly, 
according to few studies. In our study, PITX2 was recognized 
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Figure 5. TF-gene and TF-miRNA coregulatory interconnections. (A) Identification of transcriptomic regulatory signatures by network analysis of DEGs 

using the Network Analyst server: the network highlights the top 9 TFs that are linked to DEGs. Blue nodes represent the TFs, other nodes represent the 

DEGs, and edges represent the interaction levels. (B) Network-based analysis of transcriptomic regulatory signatures by network analysis of DEGs using 

the Network Analyst server: the network displays the top 12 miRNAs interconnected with DEGs, with blue nodes representing miRNAs and other nodes 

representing DEGs linked through edges. DEGs indicates differentially expressed genes; TF, transcription factor.
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Figure 6. The main diseases linked to common differentially expressed genes are highlighted in the gene-disease association network (green: seeds and 

blue: diseases).

Table 3. list of probable Huntington disease medications, along with respective chemical formula and structural composition.

TERM P CHEMICAl 
FORMUlA

GENES STRUCTURAl 
COMPOSITION

Cytarabine CTD 
00005743

3.64E-07 C9H13N3O5 BNC2; CPZ; DCN; SLC7A2; BMP5, etc

Arsenite CTD 
00000779

5.76E-07
AsO3

3−
CFH; SIX1; HTR2C; SOGA3; BARX1, etc

Methotrexate CTD 
00006299

2.91E-06 C20H22N8O5 SLC26A2; CSTA; DUSP1; TNFRSF11B; 
CTSS, etc

Retinoic acid CTD 
00006918

3.05E-06 C20H28O2 PTPRS; BNC2; SIX1; HTR2C; SOGA3, etc

(continued)
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TERM P CHEMICAl 
FORMUlA

GENES STRUCTURAl 
COMPOSITION

Progesterone CTD 
00006624

3.44E-06 C21H30O2 PTGFR; SLC26A2; CSTA; CRABP2; CFH, 
etc

Cyclophosphamide 
CTD 00005734

1.84E-05 C7H15Cl2N2O2P NKAIN1; TMEFF1; CSTA; CRABP2; 
CYP2D6, etc

Sertraline CTD 
00007358

3.00E-05 C17H17Cl2N FABP1; SLC5A7; CYP2D6; DUSP1; 
CASP4; HSPA1B; HSPA1A

Phenytoin CTD 
00006527

3.00E-05 C15H12N2O2 EOMES; COL1A1; COL1A2; CYP2D6; 
COL6A2; COL6A3; S100A4

Menadione PC3 UP 3.78E-05 C11H8O2 OSR2; DUSP1; CYP1B1; MSX1; KLF4; 
HSPA1B; HSPA1A

Table 3. (Continued)

as a hub protein.73,74 S100A4 has been shown in 2 previous 
studies to be a useful biomarker and to be abundantly expressed 
in HD.75,76 We found MSX1 to be a potential hub protein 
which is relevant to some studies.77,78

Discussion
Huntington disease is a hereditary neurodegenerative condi-
tion which impacts in early forties and fifties.24,79 Dysregulation 
of possible biomarkers has recently been found to be linked 
with neurological and neurodegenerative diseases,80,81 and sev-
eral studies have looked into the implications of biomolecular 
activities in patients with HD.27,82-85 Omics-based approaches 
are currently being used more often in biomedicine and sys-
temic biology studies, and they have proven to be a helpful 
resource for deciphering disease pathogenesis, discovering 
molecular pathways, and determining biomarkers for various 
diseases.31 Gene expression is perhaps modulated at multiple 
stages of RNA processing, post-translational modification 
(PTM) of proteins, translation, or other genomic changes, 
according to previous researches.86,87 Determining the 

biochemical pathway of an exact disease and identifying the 
impact of fundamental mechanisms involved in a certain phe-
notype require defining the activity target proteins in bioactive 
molecules.31,88 The functional characteristics of hub proteins 
are of special intrigue, and PPI can be characterized as persis-
tent or transient, depending on how long they last and what 
they do.89 The networks based on PPI are considered scale-free 
where the connectivity between components follows generally 
a Poisson distribution.90 Adapting a network-based technique 
to genomic data aids in the discovery of connections between 
diverse biological activities and processes, resulting in new 
pathways, interaction networks, as well as other disease-related 
signals that result in identifying biomarkers and treatment tar-
gets.91 Although several studies identified miRNA expression 
of cellular and mouse structure,85,92 common gene expression 
of HD patient,82 and DNA methylation in HD,27 a bioinfor-
matics study regarding the identification of molecular signa-
tures and pathways of healthy controls and HD patients has yet 
not been conducted comprehensively in a framework compar-
ing all these methods at same time. We used a comprehensive 
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bioinformatics strategy to identify molecular signatures and 
key pathways for HD in this study and emphasized an overall 
overview.

The key word ‘Huntington’s Disease’ was used to explore 
the GEO database, and data sets featuring Homo sapiens 
mRNA and array expression profiles were sorted containing 
control and diseased groups after reviewing some literatures.28 
A bioinformatics approach was used to assess DEGs between 
the control and diseased groups where the HD patients revealed 
significant variations in gene expression compared with neuro-
logically healthy controls. The selected databases (GSE64810 
and GSE95343) showed total 162 common genes among them 
106 genes were found up-regulated and 56 genes were found 
down-regulated by systematic and statistical approaches. The 
data set GSE95343 has not been studied yet in the view of 
comprehensive bioinformatics, and it was found that 
GSE64810 was studied separately in a study where 1612 
DEGs had been determined.83

The GO analysis was used to evaluate the biological rele-
vance of HD regarding 162 common DEGs found. These 
important genes are identified to generate proteins with vari-
ous molecular functions linked with important biological pro-
cesses such as skeletal system development, collagen fibril 
organization, embryonic forelimb morphogenesis, proteolysis, 
and positive regulation of tumor necrosis factor–mediated 
signaling pathway matrix as well. However, GO term signal 
transduction in Biological Process83,84 and plasma membrane 
in Cellular Component93 were found in some other related 
researches. In our study, TF activity and sequence-specific 
DNA binding was found in molecular function enriched by 
gene ontologies, whereas TF activity in molecular function3 
was found to be relevant to HD in a study. Combining earlier 
study findings, the current analysis may give new treatment 
targets or probable pathogenesis to be investigated further.

In our study, the hub genes we identified were DUSP1, 
NKX2-5, GLI1, KLF4, SCNN1B, NPHS1, SGK2, PITX2, 
S100A4, and MSX1 reflecting as the potential biomarkers for 
HD. These hub proteins are thought to be important particle 
in the disease-causing pathways.94 As a result, we recreated the 
protein interaction network with a focus on DEGs to find rel-
evant hub proteins. These proteins could play a role in the 
development and progression of HD. In HD, sodium butyrate 
has previously been shown to be neuroprotective, and this is 
correlated with an increased affirmation of mitogen-activated 
protein kinase phosphatase 1 (DUSP1/MKP1).53 In some dis-
eases, such as HD, low DUSP1 (also known as MKP-1) 
expression may contribute to MAPK hyperactivation, whereas 
increased MKP activity may be neuroprotective.53-55 GLI1 has 
also been identified as a contributing hub protein gene in HD, 
which has been linked to a number of other studies.58-63

In a study, NKX2-5 was discovered to be associated with 
protein synthesis in HD along with AGG and GATA-4.56 
NKX2-5 was also found as one of the significantly ( . )P < 05  
up-regulated genes.57 Previous research has suggested KLF4 as 
a possible biomarker for HD, which is supported by our find-
ings.64-68 Histones and nephrin (NPHS1) levels in the neu-
ronal cytoplasmic pool were found to be higher in HD and 
Alzheimer disease brains in a previous study. Increased NPHS1 
expression has been linked to HD in a study, which backs up 
our findings.71 SCNN1Bs were identified as a molecular bio-
marker in HD which was also demonstrated in 2 earlier 
studies.69,70

Decreased AKT signaling has been linked to the patho-
physiology of HD in a previous study, and the SGK family has 
gained a lot of interest because of its high similarity to AKT.72 
A study identified that in mammalian genomes, 3 genes encode 
the SGK family (SGK1, SGK2, and SGK3).72 In our research, 
we discovered that SGK2 is a possible protein hub in HD 

Figure 7. Bar graph including top 10 related small molecules with high significant correlations according to P values.
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which is relevant to this previous study. Loss of PITX2 in HD 
does not affect the initial formation of striatal neurons com-
posing the pathways directly and indirectly, according to recent 
studies although over-expressed PITX2 affects neurons.73,74 In 
mice models of HD, S100A4 genes were found to be consider-
ably up-regulated within early-symptomatic R6/2 as well as 
pre-symptomatic HdhQ150 hearts, according to a study,76 and 
it was also identified as up-regulated in another research.75

Directory biomolecules are being explored more and more 
as potential biomarkers for serious illnesses like neurodegen-
erative disorders.26,31,95,96 Keeping this in consideration, we 
investigated the involvement of TFs and miRNAs in DEG 
regulation via TF-miRNA coregulatory networks. MicroRNAs 
have a crucial role in the regulation of gene expression, and 
there is growing evidence that they could be used as biomarkers 
for HD and other disorders.83,92 Many miRNAs are expected 
to have a role in the pathogenic problem that introduces 
HD.2,94 Our study disclosed top significant transcriptomic fac-
tors (TFs), ie, FOXC1, GATA2, PRRX2, YY1, TFAP2A, 
FOXL1, PPARG, HINFP, STAT3, MEF2A, and NFKB1 and 

top significant miRNAs, ie, hsa-miR-340, hsa-miR-34a, hsa-
miR-495, hsa-miR-1, hsa-miR-124, hsa-miR-29a, hsa-miR-
29b, hsa-miR-30e, hsa-miR-16, hsa-miR-206, hsa-miR-30a, 
hsa-miR-30c, and hsa-miR-944 as regulatory biomarkers for 
HD. FOXC1, GATA2, YY1, FOXL1, and PPARG, which 
were revealed to be engaged as regulatory TFs in another neu-
rodegenerative disease (Alzheimer disease, Parkinson disease, 
and some other neurodegenerative diseases also), were among 
the TFs we detected.81,95,96 In a study, researchers discovered an 
increase in the concentration of TFAP2A nucleoid signals 
from various micropattern colonies in HD.97 Some relevant 
studies showed similar result as our findings resulting the TFs 
PPARG, STAT3, MEF2A, and NFKB1 be found in HD side 
by side other TFs.22,98-100

It has been found that hsa-miR-340, hsa-miR-34a, 
hsa-miR-495, hsa-miR-30e, hsa-miR-206, and hsa-miR-
30a have contribution to as a down-regulated miRNA;96,101-

104 on the contrary, hsa-miR-1 was found to have 
potentiality in Schizophrenia.105 Huntington disease, 
Alzheimer disease, Hypoxic Ischemic Encephalopathy, 

Figure 8. Graphical representation of the validation of relevant biomarkers.
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Parkinson disease, and ischemic stroke have all been iden-
tified to have aberrant miR-124 expression.106,107 Our 
findings revealed that decreased expression of miR-29a 
and hsa-miR-29b is a prevalent occurrence in many neu-
rodegenerative disorders, including HD85 and Alzheimer 
disease108 and hsa-miR-16 is also a potential miRNA for 
HD.109 Differentially expressed genes were then investi-
gated further to understand more about the prospective 
interactions using minor candidate drugs that could cure 
HD.

Finally, we predicted drugs/compounds to produce drug 
repositioning hypothesis in HD based on the probability that 
revealed biomarkers (ie, hub proteins and TFs) could be 
potential therapeutic targets.110-112 As a result, connections 
between identified HD biomarkers and medicines have been 
established, suggesting that they may impact critical pathways 
in disease development113; nevertheless, more research is 
needed to assess the ramifications of proposed biomarker 
blocking.

Conclusions
The successful implementation of disease-modifying therapies 
in HD progression will require the detection of potential bio-
markers and their pathways. This research provided a summary 
of network-based approaches for identifying biochemical 
mechanisms underlying HD progression. From 2 transcrip-
tomic data sets of HD, 162 DEGs were identified using a com-
prehensive bioinformatics analysis to build a PPI network, and 
the top most significant hub genes from the PPI network were 
identified as potential novel biomarkers in HD diagnosis. 
Following that, several TFs, ie, FOXC1, GATA2, PRRX2, etc 
and miRNAs such as, hsa-miR-340, hsa-miR-34a, hsa-
miR-495, hsa-miR-1, etc were identified from the common 
genes linked to HD. However, more research is needed to con-
firm the anticipated drugs. We anticipate that all these bio-
markers will allow quicker and more affordable detection of 
brain samples for the identification of HD. This method of 
identifying biomarkers can be used in obtainable tissue from 
brain to assess their presence and activity in inaccessible tissue, 
and it could be used to solve other therapeutic difficulties. We 
therefore suggest a more thorough validation of this framework 
and the possible biomarker transcripts we detected through 
clinical studies.
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