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Abstract: Nanoparticles produced in technical aerosol processes exhibit often dendritic structures,
composed of primary particles. Surprisingly, a small but consistent discrepancy was observed be-
tween the results of common aggregation models and in situ measurements of structural parameters,
such as fractal dimension or mass-mobility exponent. A phenomenon which has received little
attention so far is the interaction of agglomerates with admixed gases, which might be responsible for
this discrepancy. In this work, we present an analytical series, which underlines the agglomerate mor-
phology depending on the reducing or oxidizing nature of a carrier gas for platinum particles. When
hydrogen is added to openly structured particles, as investigated by tandem differential mobility
analysis (DMA) and transmission electron microscopy (TEM) analysis, Pt particles compact already at
room temperature, resulting in an increased fractal dimension. Aerosol Photoemission Spectroscopy
(APES) was also able to demonstrate the interaction of a gas with a nanoscaled platinum surface,
resulting in a changed sintering behavior for reducing and oxidizing atmospheres in comparison
to nitrogen. The main message of this work is about the structural change of particles exposed to
a new environment after complete particle formation. We suspect significant implications for the
interpretation of agglomerate formation, as many aerosol processes involve reactive gases or slightly
contaminated gases in terms of trace amounts of unintended species.

Keywords: platinum; spark discharge; morphology; sintering; Hydrogen; fractal dimension; aerosol
photoemission spectroscopy; electron work function

1. Introduction

The formation of gas-borne aggregates from a cooling cloud of metal vapor has been
investigated experimentally and in simulations in numerous studies [1–5]. For many
common synthesis methods, the aggregates are composed of nanometer-sized primary
particles and exhibit dendrite-like structures, which form under the action of diffusional ag-
gregation. In this context, the fractal dimension (Df) of a particle is particularly well suited
for studying gas-particle interactions, since various approaches are described to simulate
fractal dimensions for different particle aggregation theories [6,7] and the simplicity of
determination, e.g., for spark discharge generated particles [8]. Df links directly to particle
morphology since a low Df, i.e., close to 1.8, emphasizes openly structured particles and
Df = 3 or Df = 2 corresponds to spheres in a mass-related analysis or projection area-related
analysis, respectively. For mass mobility exponent determinations (same validity as Df),
not fully explainable experimental results are reported with regard to particle aggregation
theory showing an overestimation of mass mobility exponents for gold [9], suggesting a
possible influence of the gaseous atmosphere, or trace components of the atmosphere, on
particles during aggregation.
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In detail, carrier gases in aerosol research typically exhibit technical purity or high
purity with respect to gaseous contaminants. Regarding the purity of technical nitrogen
or other carrier gases, the entire absence of oxygen can barely be reached. However,
particle synthesis and analysis in ultrahigh vacuum (UHV) allows working under defined
conditions with a low level of gaseous impurities [10]. Under the given circumstances,
residual oxygen might be a disadvantage for the production of technical oxygen-free
particles under atmospheric pressure. Especially for the preservation of an oxide-free
metallic particle surface, hydrogen is a cheap and effective scavenger for free, adsorbed
or chemically bonded oxygen. Without hydrogen, even nitrogen with a purity level of
6.0 (99.9999% and <0.5 ppm O2) forms oxides on a particle surface [11]. Thus, the use
of hydrogen combines the advantages of low oxygen activity and a technically simple
synthesis under atmospheric pressure conditions, avoiding UHV. Nevertheless, activation
of hydrogen is always required for intercepting free oxygen, to reduce metal oxides on
surfaces, as well as for capturing adsorbed oxygen through activated hydrogen species
by means of a reduction of Gibbs free energy ∆G [12]. A thermal activation in a tube
furnace might cause the same effect as an activation in a plasma by, e.g., dielectric barrier
discharge [12–14]. It may be expected that an activation of hydrogen in the presence of
particles always leads to morphological changes due to a thermal input. This leads to the
open question about the role of reactive gases during the particle formation on aggregate
morphology and particle surface properties. Moreover, it is unknown if the later addition
of such gases can change the particle morphology even at room temperature. This question
has so far not been addressed but is of significant importance for aerosols, i.e., particles
dispersed in a carrier gas.

This paper focuses on the change in morphology and altered surface properties
of platinum particles that were produced via spark discharge under 99.999% nitrogen.
Platinum nanoparticles are known as highly active catalysts for different purposes and still
attract interest within the aerosol community, even for the production of gas sensors [15].
Here, openly structured platinum agglomerates with a primary particle size of 4 nm were
used for the investigation of gas adsorption behavior and sintering performance, especially
for the interaction with hydrogen at room temperature. A tandem differential mobility
analyzer setup was used to preselect a narrowly distributed fraction of the initial particle
size distribution (PSD) to study the influences of different gases on the particle structure.
Additionally, Aerosol Photoemission Spectroscopy (APES) was applied to determine the
electron work function (eWF) of an aerosol, enabling an evaluation of surface changes
as the measurement of eWF allows the assessment of solid–gas interactions as reported,
among others, for reactive lithium surfaces [16].

2. Materials and Methods

The particle synthesis was performed by spark ablation in a so-called Spark Dis-
charge Generator (SDG), consisting of a high voltage power supply, a charging capacitor
(C = 24 nF) and two opposing metal electrodes. Between those platinum electrodes (purity
99.99%), a spark ablates a small amount of material, causing an oversaturated metal vapor
to form primary particles while cooling down. Cooling rates in the order of ~108 K/s lead
to openly structured metal nanoparticles [17]. These openly structured particles can be
described by Equation (1) with N the number of primary particles in one agglomerate, k
as a prefactor, xagglo as the agglomerate size, xPP as the primary particle size and fractal
dimension Df:

N = k (xagglo/xPP)Df (1)

The so-formed agglomerates are composed of aggregates of smaller size. In contrast
to aggregates, which are distinguished by stronger bonds between primary particles, due
to “necking” or partial particle melting, agglomerates can additionally include primary
particles with weaker interparticle bonds. For all experiments, the carrier gas flow was kept
constant at 1.1 lpm, as well as the breakthrough voltage at 2.5 kV, and the charging current
at 2 mA. As depicted in Figure 1, the entire setup consists of five sections. The particle
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synthesis as described beforehand, a trace oxygen sensor (MESA GmbH, Filderstadt-
Bonladen, Germany), the interconnection of two DMAs (model 3081, TSI Inc., Shoreview,
Shoreview, MN, USA) including three soft X-ray Neutralizers (model 3088, N, TSI Inc.,
Shoreview, Shoreview, MN, USA) and a condensation particle counter (model 3010, CPC,
TSI Inc., Shoreview, Shoreview, MN, USA) forming a tandem DMA setup, a tube furnace
sintering (Nabertherm GmbH, Lilienthal, Germany, glass tube dimensions d = 26 mm,
L = 70 cm) and an assembly for particle surface analysis by APES. Figure 2 shows a
detailed view of the APES setup, including a broad-band UV-light source (deuterium
lamp, D2, Bentham Instruments Ltd., Berkshire, UK), and a monochromator (Bentham
Instruments Ltd., Berkshire, UK) that transmits well-defined monochromatic light into an
irradiation chamber, where the charged aerosol interacts with photons of a certain energy.
Since the particles were classified in a DMA before, they carry a single elementary charge
(here chosen to be negative). When the photon energy equals or exceeds the eWF of the
aerosol material, the singly charged particle emits an electron, with a certain probability
(given by the photoelectric yield Y) and becomes undetectable by the second Faraday
Cup Electrometer (FCE, SEADM S.L., Spain) downstream of the irradiation chamber. The
photoelectric yield can be calculated by the Fowler-Nordheim equation (cf. Equation(2))
with c as the emission constant, hν as the photon energy and Φ as the eWF. Based on the
concentration ratio of FCE1 and FCE2, the photoelectric yield Y, which is the probability
of electron emission per photon incident on the particle, can be calculated. The plot of
Y1/2 versus the photon energy gives an S-shaped curve with a linear section that allows
the extraction of the eWF at the intersection of the linear regression with the zero-Yield
line [18]:

Y = c (hν − Φ)2 (2)

Figure 1. Experimental setup of particle synthesis, trace oxygen sensor, tandem DMA, sintering via tube furnace and
APES. The admixture of reactive gases takes place seconds after the particle formation is completed, corresponding to the
residence time of the aerosol between synthesis and point of gas addition. SDG: Spark discharge generator, O2: Trace oxygen
sensor, DMA: Differential mobility analyzer, N: Soft X-ray neutralizer, CPC: Condensation particle counter, APES: Aerosol
photoemission spectroscopy. The interconnection of N, DMA and CPC forms a Scanning Mobility Particle Sizer (SMPS).
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Figure 2. Detailed setup of APES. The spectral dispersion of the monochromatic light is
4.04 nm ± 0.13 nm from 190 nm to 320 nm. The standard deviation of eWF determination is
in the range of ± 0.02 eV and is highly reproducible. N: Soft X-ray neutralizer, DMA: Differential
mobility analyzer, FCE: Faraday cup electrometer, D2: Deuterium lamp.

In order to run the SDG with a constant flow of nitrogen (Linde, 99.999%), the individ-
ual analytical sections were connected and disconnected for the intended measurements.
As reactive gases, hydrogen was used as a premixed gas (Linde, 10% H2 & 90% N2) and
oxygen as synthetic air (Linde, 20% O2 & 80% N2). The applied flow rate of hydrogen or
oxygen was set constant at 0.2 lpm. If no reactive gas was added to the carrier gas, pure
nitrogen was inserted instead of H2 or O2 mixtures at 0.2 lpm, respectively. The resulting
H2 concentration in the process gas was about 2%, the O2 concentration about 4%. For the
sake of simplicity, only the gas type is mentioned in the following figures, which refer to
the abovementioned concentrations in the experiment.

For imaging of platinum nanoparticles, a Transmission Electron Microscope (TEM,
Jeol, Tokyo, Japan) was used with finder-TEM grids (Plano) to deposit particles under
nitrogen followed by taking of micrographs followed by a hydrogen gas treatment of the
deposited particles and a last TEM analysis of exactly the same particles analyzed for
nitrogen deposition. Thus, the finder-TEM grids allow superimposing one particle before
and after a hydrogen treatment. Differences in the superimposed particle images indicate
changes to the particles as a whole or parts of the particle, i.e., branches.

3. Results

The subsequent sections divide the result of the gas-particle interaction by discussing
the thermal sintering behavior and the particle size measurements by tandem DMA,
followed by TEM image analysis and particle surface investigations by APES.

3.1. Influence on Mobility Equivalent Particle Size

The first results on the sintering behavior of platinum particles under two different
atmospheres are depicted in Figure 3. After admixing the reactive gases, the particles were
introduced into the tube furnace, which was ramped up from room temperature (RT) to
1200 ◦C at 5 K/min. The subsequent Scanning Mobility Particle Sizer (SMPS) measured
a particle size distribution every 90 s. It is important to emphasize here that the gases
were added to the particles when their formation was completed, i.e., the primary particles
had already aggregated and agglomerated. It is immediately apparent that already the
first particle size distribution at room temperature with added hydrogen differs from pure
nitrogen. The same behavior was observed with oxygenated process gas, which is included
in Figure 4. For instance, the mode diameter decreased from 85 nm to 60 nm when hydrogen
was added at room temperature. This decrease in size could not be reasoned by changes
in the physical properties of the carrier gas such as different flow rates. For instance, the
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addition of hydrogen changed the flow rate through the CPC by 0.3% (0.991 lpm in N2 to
0.994 lpm with H2). Therefore, another phenomenon has to cause the size reduction.

Figure 3. Sintering curves for platinum particles in nitrogen (a) and with hydrogen (b).

Figure 4. Mode and σg of PSDs for particle sintering in N2, with H2 and with O2

Figure 4 displays the mode of the particle size distributions (left y-axis) and the related
geometric widths σg of the distributions for the assumption of log-normal distributed
agglomerate particles (right y-axis).

As stated before, the SDG produces particles under constant conditions. The initial
particle size distribution exhibits a mode of about 85 nm that is reduced to 60 nm for
H2 and 64 nm for O2. This leads to the assumption that adsorbing hydrogen as well as
oxygen is able to densify the particle structure without an addition of thermal energy. In
the course of the sintering curves for H2 and O2, it is visible that the sintering reaches
a horizontal plateau at lower temperatures compared to the size decrease of platinum
under nitrogen. A clear indicator of a modified sintering is given by the decrease in the
width of the measured particle size distributions. The presence of a reactive gas leads
to a narrower distribution, as displayed by the plots of σg. Even though the particle
synthesis is identical for all conditions, the particle sintering in presence of nitrogen ends
up with a σg of 1.5. The curves for H2 and O2 fall even lower, to a geometric width of
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under 1.4, implying a similar sintering for both reactive gases. The gases are added to
the particles long after the particle formation is completed. Therefore, the significant
difference in σg between reactive and inert gases can be completely attributed to the
surrounding gas atmosphere during sintering. Hydrogen and oxygen may improve the
surface diffusivity of mobile platinum atoms during thermal restructuring. This could
lead to more homogeneously formed particles in atmospheres containing reactive gases. A
gas-dependent reorganization of platinum crystal facets was already reported by Altantzis
et al., showing an increase in higher-order facets for oxygenated atmospheres, ending up
with rounder particles. A hydrogen-containing environment led to lower-order faceted
particles [19]. These investigations support the assumption that a gas can intervene in the
restructuring process, as shown here by agglomerate sintering.

The analysis of the sintering behavior of platinum particles shows clearly an inter-
action between solid aerosol particles and the gaseous environment. Mutual movement
of individual primary particles, folding of entire branches or fragmentation are possible
hypotheses for the observed size reduction. Fragmentation would result in an increased
number of smaller particles compared to the original PSD. An individual movement of
primary particles as well as folding of branches would lead to a shift of the whole PSD
towards smaller agglomerates. To better classify the possible mechanisms, tandem DMA
experiments were performed. The original ensemble was classified to a monomobile frac-
tion via a first DMA to 40 nm, 85 nm and 140 nm. After the classification, the charged
aerosol was Boltzmann-neutralized by a second soft X-ray Neutralizer before a reactive gas
was added. After a mixing and equilibrium phase in a glass tube (residence time of ca. 15 s),
the PSD was measured via SMPS. The influence of hydrogen on the monomobile fraction
of platinum particles is depicted in Figure 5a for RT and in Figure 5b for 400 ◦C. Additional
SMPS scans confirm a consistent shift towards smaller agglomerate sizes for 40 nm and
140 nm classified particles at RT as well (not shown here). A gas-induced fragmentation of
particles seems rather unlikely, since the shape of the particle size distribution and the total
concentration remain constant.

Figure 5. PSD obtained from tandem DMA. (a) A hydrogen gas treatment results in a shift to smaller agglomerates. The
inset shows the projection equivalent diameter, acquired by TEM analysis, confirming a compaction. (b) Particles that
underwent sintering at 400 ◦C are assumed to be mechanically reinforced and, therefore, unaffected by reshaping.

The tandem DMA experiments were repeated for an oxygen-containing process gas as
the sintering curves also showed a reduced particle size for RT in the presence of oxygen.
Despite constantly and precisely running particle synthesis and monitoring of oxygen
concentrations in the DMA sheath gas (about 8 ppm) and the whole system, it was not
possible to verify a compaction of platinum particles in an O2-enriched atmosphere in the
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tandem DMA setup. On the one hand, it is presumed that reactive species emitted by the
plasma between the SDG’s opposing metal electrodes adsorb on the particle surface. Those
species might react with the added oxygen in the sintering setup (see Figure 1), resulting
in a decreased size and compacted morphology. Unfortunately, using Fourier-Transform
Infrared Spectroscopy (FTIR) and mass spectrometry (MS) with a resolution of around
1 ppm, no activated gas species could be detected. This may lead to two assumptions:
either are not detectable due to low concentration or they are not present at all. On the other
hand, residual oxygen in the sheath gas of the first DMA may be able to interact with the
platinum particles in the moment when the particles enter the first DMA. A gas-induced
compaction may already occur here, resulting in an unaffected particle size distribution
when extra oxygen is added in the tandem DMA setup.

The fact that oxygen is adsorbed on the surface of the platinum particles can also be
confirmed by O2-concentration measurements in the nitrogen entering and leaving the
SDG. A trace oxygen sensor measures the concentration of the remaining oxygen in 99.999%
purity N2 to about 1.3 ppm. When the SDG is turned on, the level of residual oxygen
decreases immediately from 1.3 ppm to 0.25 ppm. Based on the measured difference in
oxygen concentration and the total available surface of platinum (calculated from the
primary particle size, the agglomerate particle size and the aerosol number concentration),
the adsorbed oxygen forms roughly one monolayer covering the surface. This finding will
be discussed and detailed later in the context of the APES assessment.

3.2. TEM Imaging of Gas-Treated Particles and the Assesment of the Fractal Dimension

As mentioned for the tandem DMA setup, compacting seems more likely for gas-
treated particles than fragmentation. To confirm this hypothesis, TEM micrographs have
been produced using finder grids. The following figure (Figure 6) shows four superimposed
TEM micrographs. The blue-colored particles correspond to the particles produced under
N2 in the SDG. The red-inked particles are the same particles shown in blue that underwent
an H2 gas treatment by inserting the finder grid into the TEM sampling unit again with an
applied gas flow of 0.2 lpm of 10% H2 in N2 for 15 s.

Figure 6. TEM micrographs for N2 (blue) and H2 (red). A, B, E: Shift of a compact part to another position. C: Rotation of a
branch around a pivot point. D: Particle branch turns from the z-axis into the x-/y-axis of the micrograph.

As marked by black arrows, a mobilization of certain branches could be observed.
It is also noticeable that the morphology of the particles changes more significantly if a
branch reaches out from the carbon fiber. Adhesive forces between particles and the fiber
might pin certain parts of the particle. Free-hanging portions are more exposed to the
by-flowing gas and are more mobile, resulting in an increase in compaction. Additionally,
the movement of certain branches indicates loose contacts between two primary particles.
For gold nanoparticles produced by spark discharge, so called “necking” can be seen due
to ultra-pure and oxide free particles. A connection by means of a neck between two
primary particles would lead to stable agglomerates that would not show any movement
of branches, observed for presintered Pt particles (Figure 5b) and as reported for silver
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nanoparticles as well [20]. The observation of compaction in TEM analysis supports
the idea of surface impurities due to residual oxygen in N2 5.0 and PtO formation that
prevents “necking”. Fragments, as well as particles close to the primary particle size, were
not detected.

Flow-through TEM grids also allow the sampling of platinum particles downstream
of the mixing chamber for different added gases (see Figure 1). Figure 7a illustrates
the change in morphology, expressed as an increase in Df for particles freshly synthe-
sized under N2 compared to particles exposed to H2. By comparison, the shift in Df
(∆Df,TEM = 0.07) fits perfectly with the results obtained from tandem DMA (∆Df,DMA = 0.09,
Figure 7b), as both approaches show a compacting particle structure. The initial primary
particle size (xPP,N2 = 4.1 nm and σg,N2 = 1.09) for nitrogen equals, with respect to the
resolution of the used TEM, the primary particle size for agglomerates treated with hydro-
gen (xPP,H2 = 3.9 nm and σg,H2 = 1.09). Assuming the particle formation process to be a
diffusion-limited cluster-cluster aggregation (DLCA) for spark discharge particle synthesis,
Eggersdorfer and Pratsinis suggest a simulated Df = 1.79 ± 0.03 for particles made of
primary particles with σg = 1.00 [6]. This matches the measured fractal dimension for H2-
treated Pt particles based on TEM analysis (see Figure 7). Finally, the change in Df caused
by admixed hydrogen shows a compacting particle structure, leading to the assumption
that a gas is indeed capable of changing the morphological properties of agglomerates.
Differences between estimated and experimentally demonstrated particle morphology,
expressed by effective density or Df, might be strongly linked to gas–particle interaction
after particle formation. Another indication can be found in the ratio of the prefactors k in
the scaling laws for fractal-like aggregates (see Equation (1) and Figure 7b). Even though
the fractal dimension increases with admixed hydrogen, the ratio of ksph/kagglo remains
constant. A reasonable explanation for this can be found in the previously discussed results.
TEM analysis shows that certain branches of agglomerates are able to rotate around pivot
points. Nevertheless, the stronger bonded aggregates within the agglomerate do not exhibit
the same mobility. Therefore, the prefactor for the agglomerate is not influenced and the
ratio stays the same, even with an increasing fractal dimension for admixed hydrogen.

Figure 7. Fractal dimension of platinum particles under nitrogen and after exposure to hydrogen: (a) Df estimation by TEM
based on the determination of the radius of gyration. The insert shows binary TEM micrographs used for image analysis
by ImageJ®. (b) Log-log plot of pre-classified platinum particles with an agglomerate size of xagglo at room temperature, a
primary particle size xPP and spherically sintered particle size xsph at 1150 ◦C. The slope of the linear fit equals 3/Df. Error
bars are within the symbols.
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An interim conclusion of the assessment of particle compaction results based on
tandem DMA and TEM analysis leads to different possible approaches for an explanation
of the interaction between platinum particles and reactive gases. It is reasonable to assume,
on the one hand, that H2 that adsorbs on a platinum surface releases a certain amount of
thermal energy corresponding to the adsorption process. This heat release might cause an
increase in thermal mobility regarding adjacent primary particles, allowing them to move
more easily against each other, resulting in a restructured morphology with a compacted
appearance. As shown by trace oxygen measurements in the carrier gas leaving the SDG,
a small amount of oxygen is preserved on the platinum particle surface. It is also likely,
on the other hand, that a chemical reaction involving adsorbed oxygen and admixed H2
leads to water formation and a short-term weakening of primary particle/primary particle
forces. The formed water would cover the surface of the particle homogenously, due to the
water content of sub 2 ppm in the carrier gas immediate evaporation of produced water is
likely. Torun et al. reported that even for hydrophilic SiO2 in low relative humidity, water
coverage is no greater than one monolayer [21]. A possible monolayer of platinum oxide
covering each primary particle might disappear when hydrogen is added, evoking the
aforementioned increase in primary particle mobility during the fast hydrogen adsorption.

In order to support the proposed model of reshaping of platinum agglomerates due to
gas interaction, a brief calculation of adsorption heat balanced to restructuring activation
and van der Waals energies is intended. We assume two adjacent primary platinum
particles with a diameter of 4 nm and a hydrogen adsorption heat release in the range of
96 kJ/mol for a surface coverage of 20% [22,23]. Based on the exposed platinum surface, a
release of thermal energy of 4.8 × 10−17 J can be calculated. For oxygen, the adsorption heat
is supposed to be even higher [24]. Furthermore, we assume a certain van der Waals (vdW)
energy between two primary particles that are separated from each other by a distance
of 4 Å, e.g., by the disappearance of platinum oxide when hydrogen is added. With a
Hamaker coefficient of 2 × 10−19 J for platinum, an attractive vdW energy of 3.5 × 10−20 J
results. It is already evident here that the thermal adsorption heat exceeds the vdW energy,
supporting the model of an increased mobility leading to compaction. For Ag nanoparticle
restructuring, Weber and Friedlander reported an activation energy of 2 × 10−20 J for 4 nm
particles for temperature-induced compaction [25]. Based on the sintering behavior of Ni
nanoparticles in hydrogen, Seipenbusch et al. stated an activation energy of 50 kJ/mol for
an agglomerate to sinter, leading to a required energy of 5 × 10−16 J when we assume 40%
of platinum atoms located on the particle surface of a 4 nm primary particle are involved
in a restructuring process [26]. By comparison, the gas adsorption heat is higher than the
activation energy suggested by Weber and Friedlander but lower than what is needed for
the reshaping of Ni nanoparticles. Here, the difference between silver and platinum might
be less than the difference between nickel compared to platinum. It is important to mention
that Seipenbusch et al. studied the sintering of agglomerates into spheres, while this paper
focuses on the compaction at room temperature. It seems likely that the interaction of gas
molecules with a solid particle surface leads to a change in morphology just by adsorption
and/or reaction processes evaluated based on energy considerations.

3.3. Surface Analysis by APES

In order to analyze the interaction between a particle and the surrounding gas, mea-
surements of the eWF were conducted with APES. This online characterization technique
takes advantage of the fact that the working principle of Aerosol Photoemission Spec-
troscopy is solely attributed to surface effects. An incident photon flux in combination with
a residence time of five seconds within the irradiation chamber results in a certain yield
for a chosen wavelength. The irradiance intensity-corrected and residence time-corrected
Y1/2 are plotted in Figure 8 for platinum particles under room temperature and sintered
spherical particles in N2 and with H2, respectively. The related eWF can be extracted at
the intersection of the linear fit through the S-shaped curve and the zero-Yield line that
represents an offset where particles do not change their charge state (orange horizontal
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line). Data points below the zero-yield are due to concentration fluctuations around the
arithmetic average of particles, leaving the irradiation chamber in a charged state.

Figure 8. Work function determination of platinum particles in different atmospheres and with
different morphologies.

At room temperature, the agglomerate morphology has been found to change due to
the presence of hydrogen. However, the primary particles appear unchanged in size and
structure. That fact is indeed of significant relevance, as the eWF depends, among other
aspects, on the curvature of an object. A decreasing eWF can be partly attributed to an
increase in primary particle size [27]. For the performed APES measurements, it can be
stated that a change in eWF results directly from a modification of the examined surface.

Comparing the respective measurements for nitrogen and hydrogen atmospheres,
opposing trends become visible for the change in the eWF. As shown in Figure 8, platinum
particles show a shift in eWF from 4.69 eV to 4.13 eV when hydrogen is attached to
their surface at room temperature; thus, a reduction in eWF was measured. Apparently,
hydrogen causes a decrease in eWF for room temperature particles, while the sintered
platinum spheres exhibit an increase in eWF shifting from 4.41 eV to 4.53 eV. It has already
been reported that adsorbed hydrogen can cause a decrease in eWF [28,29] but also an
increase [29] depending on surface contamination. A sintering process can be seen as a
change even for surface contamination, thus opposing trends do not appear contrary to the
measured eWFs by APES.

Despite the reversed trend of eWFs for spheres synthesized in the presence of hy-
drogen, the shift of ∆Φ = 0.40 eV is even more significant than for nitrogen-containing
atmosphere (∆Φ = 0.28 eV). Trace oxygen measurements indicate that oxygen bonds to
the particle surface; hence, the eWF of platinum particles under “pure” nitrogen equals
a value corresponding to an oxide-covered particle. It is tempting to claim that the eWF
measured under N2 5.0 represents a clean and pure platinum surface, but the reported
results lead to a different assessment. For perfectly clean bulk platinum single crystals
measured in UHV, eWFs in the range from 5.6–6.4 eV are reported [30]. However, the APES
results obtained here are intended to show differences only with regard to measurements
under atmospheric pressure conditions. Taking the findings of Altantzis et al. into account,
different gases support the formation of different crystal facets within a sintered parti-
cle [19]. The ability of removing an electron from a solid surface, described by the eWF, also
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depends on the crystal side where the electron detaches from resulting in different eWF
for different crystal facets [30]. This fact might influence the evaluation and comparison of
differences in eWF for different morphologies and temperature history.

Finally, the results obtained from APES should support two main statements: an inter-
action of hydrogen or oxygen with a nanoscaled platinum surface was observed by means
of a change in eWF. A difference of ∆Φ = 0.56 eV for room temperature particles shows
that hydrogen is able to be adsorbed on the particle surface. Furthermore, a difference of
∆Φ = 0.12 eV for sintered particles shows the oxygen to be part of the investigated system
as platinum oxide formation seems realistic based on trace oxygen measurements, but the
behavior of thermally instable PtO needs to be discussed and evaluated with respect to
APES in the future.

4. Conclusions

Initial investigations on the sintering behavior of fractal-like platinum particles under
nitrogen, added hydrogen and with oxygen yielded unexplained results, as the first particle
size distribution displayed a reduced agglomerate size for particles that were in contact
with hydrogen or oxygen at room temperature, respectively. A tandem DMA setup offered
the chance to study the restructuring of particles when reactive gases were added seconds
after complete particle formation. The fractal dimension was found to increase as the
agglomerate size decreased due to the influence of hydrogen, also observed with TEM. Two
possible explanations were given for the movement of primary particles. The adsorption
heat of hydrogen on platinum might deliver enough thermal energy to overcome the van
der Waals energy between two primary particles, ending up with a new position of a
branch. The removal of small amounts of surface bonded oxygen by admixed hydrogen,
and hence, the formation of water might cause a short-term weakening of the contact
between the primary particles. Unfortunately, it was not possible to get insight into the
oxygen-induced reshaping that was observed in the sintering setup only. This might
be due to the need for ultra-pure and oxygen-free nitrogen in particle synthesis. It is
assumed that activated species formed by the spark in the SDG play an important role in
the oxygen-made compaction.

Nevertheless, important findings were obtained, as the interaction effect of freshly
prepared particles with a gaseous atmosphere was demonstrated. In the future, more
attention will have to be given to fractal-like particles when reducing or oxidizing gases are
added to an aerosol. Especially for metallic nanoparticles, an influence on morphological
as well as surface-related properties is expected, even for metals beyond platinum. It is
hypothesized that in previous publications, a mismatch between theory and experiment
might be due to the gas-particle interaction. Future investigation will focus on the online
characterization of change in the fractal dimension by using more defined carrier gas
compositions and by employing the system DMA/ICP-MS to get a deeper insight into
agglomerate restructuring.
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Abbreviations
APES Aerosol Photoemission Spectroscopy
TEM Transmission Electron Microscopy
SMPS Scanning Mobility Particle Sizer
DMA Differential Mobility Analyzer;
SDG Spark Discharge Generator
PSD Particle size distribution
N Soft X-ray neutralizer
RT Room temperature
eWF Electron Work Function
lpm liters per minute
FTIR Fourier-Transform Infrared Spectroscopy;
MS Mass spectrometry
ICP-MS Inductively Coupled Plasma Mass Spectrometry
UHV Ultra High Vacuum
Symbols
Q Gas flow rate
x Particle size
Df Fractal dimension
Y Yield
C Capacitance
c Emission constant
hν Photon energy
∆G Gibbs free energy
Φ Electron Work Function
k Prefactor
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