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Abstract: Immunoglobulin (Ig), a characteristic marker of B cells, is a multifunctional evolutionary
conserved antibody critical for maintaining tissue homeostasis and developing fully protective
humoral responses to pathogens. Increasing evidence revealed that Ig is widely expressed in non-
immune cells; moreover, Ig produced by different lineages cells plays different biological roles.
Recently, it has been reported that monocytes or macrophages also express Ig. However, its function
remains unclear. In this study, we further identified that Ig, especially Ig mu heavy chain (IgM),
was mainly expressed in mice macrophages. We also analyzed the IgM repertoire characteristic in
macrophages and found that the VHDJH rearrangements of macrophage-derived IgM showed a
restricted and conservative VHDJH pattern, which differed from the diverse VHDJH rearrangement
pattern of the B cell-expressed IgM in an individual. Functional investigation showed that IgM knock-
down significantly promoted macrophage migration and FAK/Src-Akt axis activation. Furthermore,
some inflammatory cytokines such as MCP1 and IL-6 increased after IgM knockdown under LPS
stimulation. A mechanism study revealed that the IgM interacted with binding immunoglobulin
protein (Bip) and inhibited inflammatory response and unfolded protein response (UPR) activation
in macrophages. Our data elucidate a previously unknown function of IgM in macrophages that
explains its ability to act as a novel regulator of Bip to participate in endoplasmic reticulum stress
and further regulate the inflammatory response.

Keywords: macrophage; IgM; Bip; inflammatory response; ER stress

1. Introduction

It is well known that immunoglobulin M (IgM) is an ancient molecule that is the
first antibody isotype to appear as a specific product of the B cell lineage during evolu-
tion [1,2]. Monomer IgM comprises four peptide chains, including two identical heavy
chains and two identical light chains. IgM is divided into both membrane and secretory
IgM. The membrane IgM appears as a monomer, which is only located on the B cell mem-
brane and responsible for recognizing antigens and then specifically activating B cells.
The function of secretory IgM has long been determined only to exert antibody activity,
which can be divided into natural IgM and immune IgM [3]. Natural IgM, which shows
poly-reactivity and low-affinity, can be spontaneously secreted in an antigen-independent
manner to recognize multiple epitopes of different microbial common antigens and exert
natural antibody activity. Immune IgM can specifically recognize only one epitope under
antigen stimulation and exert adaptor humoral immune function [3].
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IgM is a glycoprotein synthesized in the endoplasmic reticulum (ER). To control the
correct folding of heavy chains and ensure the fidelity of IgM assembly, the IgM will
be glycosylated in the ER and Golgi body via binding its partner molecule, binding im-
munoglobulin protein (Bip), which is also called Grp78 [4,5]. In recent years, evidence
revealed that secretory IgM not only exerted antibody activity but also utilized the sia-
lylated N-linked glycans to inhibit T cell-mediated inflammatory response and play an
immune homeostasis role [6]. However, whether intracellular IgM, especially in ER, might
have critical physiological functions, like anti-inflammatory, has not been reported.

According to the current classical theory of immunology, IgM has been considered a
unique B cells product. However, increasing evidence has proved that non-B cells, such as
epithelial cells, cardiomyocytes, renal mesangial cells, and vascular endothelial cells, also
produce different isotypes of Ig, including the IgM [7,8]. Moreover, it was found that, like
B cell-derived IgM, the epithelial cell-derived IgM also serves as natural antibody activity.
The expression and secretion of IgM in epithelial cells were significantly upregulated by
CpG ODN, a synthetic analog of bacterial DNA [9,10]. However, it is not yet clear if the
IgM produced by non-B cells has other biological functions to date.

Macrophages originate from myeloid hematopoietic cells and are ubiquitous and
versatile immune cells in all body compartments [11–13]. Macrophages play an innate
immune function, which involves the recognition and elimination of pathogens or dead
cells by their phagocytosis, and producing inflammatory mediators, including cytokines
(i.e., IL-1β, IL-6, and TNF-α) and reactive oxygen species (i.e., nitric oxide) [14,15]. In addi-
tion, macrophages are characterized by rapid migration, circulating within almost every
tissue, patrolling for pathogens, serving as the first line of defense against infection [13].
So far, it has been considered that macrophages do not produce Ig, and there is no direct
association between the above functions of macrophages and Ig. However, it was recently
found that myeloid blood cells, such as human monocytes, tumor-associated macrophages
(TAM), and acute myeloid leukemia (AML) cells, can express IgG or IgM [16–18]. Moreover,
AML-derived IgG and IgM can promote the proliferation and migration of AML tumor
cells [18,19]. However, it remains unclear if normal macrophages generally express Ig and
its significance.

To address if typical macrophages generally express Ig under homeostasis conditions
and its significance, in this study, we further identified Ig expression, especially the IgM ex-
pression in normal peritoneal macrophages, bone marrow-derived macrophages (BMDM),
and macrophage cell line (RAW264.7). Moreover, the intracellular IgM but not membrane
IgM was detected in macrophages. IgM knockdown significantly promoted macrophage
migration and increased LPS-induced inflammatory response to ER stress via interaction
with Bip. The findings suggested that the IgM in macrophages played an anti-inflammatory
role via interacting with Bip.

2. Materials and Methods
2.1. Mice

Balb/c mice between 6–8 weeks of age were obtained from Beijing Vital River Labora-
tory Animal Technology Co., Ltd. (Beijing, China), and µMT mice (Balb/c background)
were from Professor Zhihai Qin (Institute of Biophysics, Chinese Academy of Sciences,
Beijing, China). All animal experimental procedures were approved by the Institutional An-
imal Care and Use Committee for Peking University Health Science Center on 24 February
2017 (LA2017026). All efforts were made to minimize suffering and to reduce the number
of animals that were used.

2.2. Isolation of Primary Macrophages

Mice were inoculated with 3 mL of 3% sodium thioglycolate via intraperitoneal
injection. Peritoneal cells were recovered after 72 h after the sacrifice of mice by lavage with
5 mL of ice-cold phosphate-buffered saline (PBS). The cells were centrifuged at 1000 rpm
for 5 min and then were resuspended in Dulbecco’s modified Eagle’s medium (DMEM,
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Thermo Fisher Scientific, Waltham, MA, USA) containing 10% fetal bovine serum (FBS,
Thermo Fisher Scientific, Waltham, MA, USA) and incubated at 37 ◦C, 5% CO2 for 2 h.
After removing nonadherent cells by washing three times with pre-warmed PBS, the
adherent peritoneal macrophages were added with fresh complete RPMI 1640 (Thermo
Fisher Scientific, Waltham, MA, USA) with 10% FBS for subsequent experiments.

Bone marrow cells were isolated from the femur and tibia of 8-week-old Balb/c and
µMT mice. To obtain macrophage colony-stimulating factor from fibroblast conditioned
medium (FCM, Thermo Fisher Scientific, Waltham, MA, USA), L929 fibroblasts were
cultured in RPMI 1640 medium with 10% FBS for 5 days, and the supernatant FCM was
collected and centrifuged at 12,000 rpm for 10 min. The centrifuged FCM was stored at
−80 ◦C. Bone marrow cells were cultured in DMEM containing 10% FBS and 20% FCM to
generate BMDMs. By the 7th day, all adherent cells had become mature macrophages. The
population of CD11b+F4/80+ adherent peritoneal and BMDMs was then validated and
purified by flow cytometry assay (>99% purity).

2.3. Cell Culture and Transfection

RAW264.7, a mouse macrophage cell line (ATCC, Rockville, MD, USA), was cultured
in DMEM containing 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin (Sigma-
Aldrich, St. Louis, MO, USA) at 37 ◦C in a humidified incubator containing 5% CO2.

RAW264.7 cells were transfected with specific siRNA against IgM as follows: siRNA-1,
5′-GUGUGGAAGACUGGAAUAATT-3′ and siRNA-2, 5′-UUAUUCCAGUCUUCCACA
CTT-3′ synthesized by GenePharma (Shanghai, China). The scrambled siRNA as a negative
control (siNC), which is confirmed to have no target in mammalian cells, was also pur-
chased from Shanghai GenePharma (A06001). According to the manual, these siRNAs were
transfected into RAW264.7 cells with the Lipofectamine 3000 kit (Thermo Fisher Scientific,
Waltham, MA, USA) and scramble siRNA as control. Subsequently, cells were stimulated
with lipopolysaccharide (LPS, Sigma-Aldrich, St. Louis, MO, USA).

2.4. Protein Extraction and Western Blot Analysis

Total cellular protein was extracted from primary macrophages and RAW264.7 cells
using RIPA lysis buffer (10 mM Tris-HCL, pH 7.2, 1% Triton X-100, 1% sodium deoxy-
cholate, 0.1% sodium dodecyl sulfate, 0.15 M NaCl, with fresh protease inhibitor cocktail),
and incubated on ice for 30 min. Lysates were then centrifuged at 13,000 rpm for 30 min at
4 ◦C, and the supernatants were collected for Western blot analysis. The protein samples
were separated by SDS-PAGE and transferred onto nitrocellulose membranes (GE Health-
care, Chicago, IL, USA). Membranes were blocked in tris-buffered saline containing 0.1%
Tween-20 (TBS-T) and 5% non-fat milk or 5% BSA (for detecting phospho-proteins) for 2 h
at room temperature. They were incubated overnight at 4 ◦C with the appropriate primary
antibodies: biotin-conjugated goat anti-mouse IgM (µ chain specific) antibody (VECTOR
LAB, Burlingame, CA, USA), and anti-β-actin mAb (MBL, Nagoya, Aichi, Japan). Blots
were washed three times for 10 min each with TBS-T and incubated for 1 h at room tem-
perature in the dark with the appropriate IRDye 800- or IRDye 700-conjugated secondary
antibodies (LI-COR Bioscience Inc., Lincoln, NE, USA). The signal was detected using the
Odyssey Imaging System (LI-COR Bioscience Inc., Lincoln, NE, USA).

2.5. Immunofluorescence

Cells grown on cover glasses were washed with ice-cold PBS and fixed with acetone for
5 min. After blocking with PBS with 2% FBS for 30 min, the cells were incubated with rabbit
anti-GRP78 antibody (ab21685, Abcam, Cambridge, MA, USA) overnight at 4 ◦C, and then
incubated with AF488 labeled goat anti-mouse IgM mAb (ab150121, Abcam, Cambridge,
MA, USA) and FITC-conjugated anti-goat secondary antibody for 30 min at 4 ◦C. Samples
were then washed and mounted in antifade reagent containing Hoechst 33,342 for nuclei
staining. After washing, images were observed and acquired using TCS-SP8 STED 3X
(Leica Microsystems, Wetzlar, Germany).
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2.6. Flow Cytometry Analysis

For detection of IgM on the cell surface, the cells were harvested, washed twice with
PBS, blocked with 2% FBS in PBS at 4 ◦C for 30 min, and stained with AF488 labeled goat
anti-mouse IgM mAb at 4 ◦C for 40 min. For assessment of intracellular IgM, the harvested
cells were fixed in 4% paraformaldehyde at room temperature for 30 min, washed with
PBS, and permeabilized twice with permeabilization buffer (eBioscience, Thermo Fisher
Scientific, Waltham, MA, USA). The cells were then centrifuged at 1500 rpm at 4 ◦C for
5 min. The supernatant was discarded, and the cells were stained with the same antibody
as described above. After two washes with PBS, the cells were analyzed on a FACSCalibur
flow cytometer using CellQuest software (BD Biosciences, San Jose, CA, USA). Background
fluorescence was determined using cells incubated with isotype antibodies.

2.7. RT-PCR and Repertoire Analysis of IgM

For the analysis of IgM gene expression, RNA was isolated according to the TRIzol
LS Reagent manual (Thermo Fisher Scientific, Waltham, MA, USA). The cDNA synthesis
was carried out with RevertAid First Strand cDNA Synthesis Kit (Fermentas, Glen Burnie,
MD, USA) according to the manufacturer’s instructions. To amplify the aimed genes,
the primers in Table 1 were used. For every isolated cell fraction, a quality control PCR
was conducted using specific primers for β-actin. No contaminating genomic DNA was
detected. To generate the IgM sequences derived from different samples, different barcodes
were added to the same sense primers and internal antisense primers to amplify the IgM
variable region of different macrophages during the second PCR step. PCR products were
separated on 1.5% agarose gel by electrophoresis and extracted using a DNA purification
kit (Tiangen, Beijing, China) according to the instruction manual. Concentrations were
measured by NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA).

Table 1. The sequences of PCR primers were used in this study.

Gene Name Primer Sequence 5′-3′

IgM variable region sense primer (P1) CTTCCGGAATTCSARGTNMAGCTGSAGSAGTCWGG
external antisense primer (P2) CTTCAAGAAGGTGAGACCC
internal antisense primer (P3) GACATTTGGGAAGGACTGACTCTC

IgM constant region sense primer (P4) GCTAAAGGATGGGAAGCT
antisense primer (P5) GGATGCTGTGGGTAAAGT

F4/80 sense primer AAGTGACTCACCTTGTGGTCC
antisense primer TAGATGCAAAGCCAGGGTGG

CD19 sense primer AAGGAAGCGAATGACTGACCC
antisense primer GAAGTCCATCATCCTGCCA

β-actin sense primer CAGGGTGTGATGGTGGGAAT
antisense primer GGAAAAGAGCCTCAGGGCAT

IL-6 sense primer GCCTTCTTGGGACTGATGCT
antisense primer GCCACTCCTTCTGTGACTCC

MCP-1 sense primer GGCTCAGCCAGATGCAGTTA
antisense primer GTGCTTGAGGTGGTTGTGGA

IL-1β sense primer TGCCACCTTTTGACAGTGAT
antisense primer TGGGTGTGCCGTCTTTCATT

TNF-α sense primer ACGTGGAACTGGCAGAAGAG
antisense primer TGAGGGTCTGGGCCATAGAA

MIP-1α sense primer ACTGCCCTTGCTGTTCTTCT
antisense primer GTCTCTTTGGAGTCAGCGCA

iNOS sense primer GTGGTGACAAGCACATTTGG
antisense primer GGCTGGACTTTTCACTCTGC

XBP-1 sense primer GAACCAGGAGTTAAGAACACG
antisense primer AGGCAACAGTGTCAGAGTCC
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2.8. Next-Generation Sequencing and Bioinformatic Analysis

Extracted DNA was sent to Novogene Institute (Beijing, China). The amplicons were
sequenced on the Illumina HiSeq2500 platform with the MiSeq Reagent Kit V3 (Illumina,
San Diego, CA, USA). The raw data (raw reads) in FASTQ format were first processed using
Python and custom Perl scripts. Clean data (clean reads) were obtained after removing
various reads, including poly-N reads; reads without a 3′ adapter or an insert tag, reads
with 5′ adapter contamination; reads with poly-A, T, G, or C; and low-quality reads from
the raw data. Moreover, the Q20, Q30, and GC contents of the raw data were calculated.
All sequences shorter than 200 bps, having homopolymers of 6 bps barcodes, containing
primer mismatches, and with a quality score lower than 19, were removed.

Complementary determining regions (CDR3s) were defined as the segment that
encompasses all amino acids flanked by the conserved amino acid sequences Y[YFLI]C at
the 3′ end of the V gene segment and [FW]GXGT (X stands for 1 of 20 amino acids) within
the J segments. IMGT/High V-QUEST (version 1.7.1) was used for sequence annotation
to determine the VDJ genes, CDRs, and junctional modification; characterize nucleotide
substitution mutation data for CDRs and framework regions (FRs); and then statistically
analyze the usage frequency of VDJ and mutations.

2.9. Transwell Assay

The 750 µL DMEM medium with 10% FBS was added into the lower transwell chamber.
The transfected RAW264.7 cells in serum-free DMEM medium were seeded onto the upper
transwell chamber at a density of 5 × 105/well in 24-well plates. Then, the culture plates
were incubated at 37 ◦C and 5% CO2 for 15 h. Afterward, the medium in the chamber
was discarded, and the chamber was washed with PBS twice to eliminate the remaining
medium. The chamber was fixed with methanol for 30 min, and the cells in the upper
chamber were wiped off. After the chamber was air-dried, it was stained for 15 min in 0.1%
crystal violet solution, and subsequently washed away. Following air-drying, the chamber
was observed under a microscope. Five fields were randomly chosen for each chamber,
and images were taken at a magnification of 200×. The number of cells that crossed the
membrane was counted and used for the evaluation of the migration of cells. Each test was
performed in triplicate.

2.10. ELISA of Cytokines

The transfected RAW264.7 cells were treated with LPS (0, 1, 10, 100, and 1000 ng/mL)
for 12 h. The culture supernatant from each well was collected at the end of scheduled
experiments and used to measure IL-6 and MCP-1 concentration by ELISA according to the
manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, USA). The absorbance
was then measured at 520 nm using a microplate reader.

2.11. Glutathione S-Transferase (GST) Pull-Down Assay

IgM cDNA fragments encoding the complete variable domain and first exon of the
constant region were PCR-amplified, respectively, and then cloned into a pGEX-4T-2
vector (Amersham Pharmacia Biotech, Buckinghamshire, UK) to produce GST fusion
protein. The GST and GST fusion proteins bound to Glutathione Sepharose 4B beads
(GE Healthcare, Chicago, IL, USA) were incubated with crude protein extracted from
RAW264.7 cells overnight at 4 ◦C. After washing three times, the Pull-Down mixtures were
analyzed by mass spectrum and Western blot analysis.

2.12. Statistical Analysis

The data were expressed as the mean± standard deviation (SD). Statistical differences
between multiple groups were analyzed by one-way ANOVA with Tukey’s post hoc test,
and two groups were analyzed using the two-tailed Student’s t-test. All statistical analyses
were performed using the GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA,
USA). p < 0.05 was considered statistically significant.
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3. Results
3.1. IgM Expression in Primary Macrophages of Adult Mice and Macrophage Cell Line-RAW264.7

Recent evidence revealed that IgM and IgG were expressed in human CD14+ mono-
cytes and macrophages induced by IFN-γ, as well as CD11b+ bone marrow macrophages
of C57BL/6 mice [16,18]. To further confirm the expression of Ig in macrophages during
homeostasis, we first sorted peritoneal CD11b+F4/80+ macrophages by flow cytometry
from both wild-type (WT) Balb/c and µMT mice. The µMT mice are used as a B cell-
deficient mouse model, which contains a disruption of the first transmembrane exon of the
IgM heavy chain and thus does not express the membrane form of IgM, leading to a lack
of mature B cells [20]. The high purify (≥99%) of isolated CD11b+F4/80+ macrophages
and consistent absence of expression of the B cell marker B220 indicated that these cell
subpopulations were not attributable to B cell contamination (Figure 1A). Then we further
identified if different classes of Ig heavy chain and light chain, such as IgG, IgM, IgA, Igκ,
or Igλ can be expressed in these macrophages. As shown in Figure 1B, only the Ig mu heavy
chain (IgM) was markedly detected in the primary peritoneal macrophages by Western blot
analysis. While other classes of Ig heavy chain and light chain were not detected (data not
shown). Next, we induced and obtained differentiated BMDMs from µMT and WT mice
and then explored whether the BMDMs also express IgM. We also found IgM expression in
the BMDMs (Figure 1B). Of note, the expression level of IgM in BMDMs of µMT mice was
consistent with that in WT mice. As expected, we also identified the IgM expression in a
mouse macrophage cell line RAW264.7 (Figure 1B). Interestingly, we found that, unlike the
B cell-expressed IgM located on the surface of B cells or secreted into extracellular space, the
macrophage-expressed IgM exhibited a primarily intracellular staining pattern. In contrast,
little or no expression of membranous IgM in BMDMs or RAW264.7 was detected by flow
cytometry and confocal microscopy analysis (Figure 1C,D).
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RAW264.7 cells using goat anti-mouse IgM polyclonal antibody showed that IgM was present in the intracellular space. 
DAPI (blue) was used for nuclear staining. Scale bars, 25 μm. (E) Diagrams (not to scale) of amplified DNA segments of 
IgM gene variable region and constant region by semi-nested PCR. The arrows indicate the positions of the listed primers 
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Figure 1. IgM expression in primary macrophages in adult mice and RAW264.7 cell line. (A) Purity of the isolated
CD11b+F4/80+ cells validated by flow cytometry. The representative flow cytometry analysis of in vitro differentiated
BMDMs from WT and µMT mice demonstrate the purity of 99.9% and absence of B220+ B cells/Gr1+ granulocytes. (B) The
mu heavy chain (IgM) was detected in peritoneal macrophages and BMDMs from WT and µMT mice and RAW264.7 cells
by Western blot with goat anti-mouse IgM polyclonal antibody. β-actin acted as an internal control. (C) Flow cytometry
analysis using AF488 labeled goat anti-mouse IgM mAb showed that IgM was localized only in the intracellular space of
BMDMs from WT and µMT mice as well as RAW264.7 cells, but not on the plasma membrane of these cells. Black line, isotype
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control IgG1; red line, anti-mouse IgM. (D) Confocal microscopy analysis of BMDMs from WT and µMT mice and RAW264.7
cells using goat anti-mouse IgM polyclonal antibody showed that IgM was present in the intracellular space. DAPI (blue)
was used for nuclear staining. Scale bars, 25 µm. (E) Diagrams (not to scale) of amplified DNA segments of IgM gene
variable region and constant region by semi-nested PCR. The arrows indicate the positions of the listed primers in Table 1
used for amplification of the segments. (F) IgM gene rearrangement and transcriptions in sorted peritoneal macrophages
and BMDMs from WT and µMT mice and RAW264.7 cells were analyzed by RT-PCR. The sorted CD19+ B cells were used
as the positive control. F4/80 as macrophages-specific marker and CD19 as B cells markers were amplified. B, barcodes
for primers to differentiate various samples in the next-generation sequencing; MC, membrane component; SC, secreted
component; and β-actin as an internal control.

Next, we analyzed IgM transcripts by RT-PCR in CD11b+F4/80+macrophages from
both WT and µMT mice. We first used the primers to amplify constant region transcripts
of IgM heavy chain. We then found that the constant region transcripts of IgM were
markedly demonstrated in these macrophages (Figure 1E,F). The characteristic sequence
of functional Ig transcripts is its variable region presenting typical V (D) J rearrangement.
As expected, we also determined the IgM transcripts with a typical VDJ rearrangement
of the variable region in the primary peritoneal macrophages and BMDMs from either
WT or µMT mice, as well as in RAW264.7 cells (Figure 1E,F). The results indicated that
macrophages expressed IgM, mainly located in intracellular compartments but not on the
cell surface.

3.2. The Repertoire of IgM Heavy Chain Variable Region Sequences Displays Restricted Diversity
in Macrophages

It has been reported that rearranged IgM variable region was expressed in a small
macrophage subfraction, which showed markedly restricted Ig repertoires compared
to normal B cells [16]. In this study, we further analyzed the rearranged sequences of
IgM VHDJH in BMDMs of three WT and three µMT mice, as well as in the RAW264.7
cells, by next-generation sequencing. The B cell-derived IgM served as a positive control.
We obtained 8911 reads of IgM transcripts in BMDMs of WT mice, 3175 reads of IgM
transcripts in BMDMs of µMT mice, and 8295 reads of IgM transcripts in RAW264.7 cells.
The sequence analysis results demonstrated that all IgM transcripts showed a typical
VDJ rearrangement pattern, and above 90% of VHDJH rearrangements from macrophages
showed a functional rearrangement (Table 2). Next, we analyzed the usage of the VH,
DH, and JH families in macrophages compared to the corresponding B cells. All VH, DH,
and JH gene families were distributed in B cells, respectively, according to previously
published numbers for normal B cells [21]. Among these sequences, we have noted that
several VH families, such as VH1, VH5, and VH14, are most highly selected in B cells,
which are consistent with another study [22]. At the same time, the macrophage-derived
IgM mainly selected VH7; D2, D4, and JH1 in BMDMs of WT mice, and BMDMs of
µMT mice preferentially selected with VH5; D1, D2, and JH2; and JH4. The RAW264.7-
derived IgM only used VH1, D1, and JH4 (Figure 2A). Of note, several identical patterns
of VHDJH rearrangement, such as V7-1*01/D4-1*01/J1*01 (21%, 1810/8620 indicated as
the number of biased sequence vs. the total number of all productive sequences derived
from BMDMs of WT mice) and V7-1*01/D2-4*01/J1*01 (17%, 1465/8620), were observed
in BMDMs of WT mice. Still, the V5-6-4*01/D2-11*01/J2*01 (32.8%, 1041/3175), V5-6-
4*01/D1-1*01/J4*01 (30.8%, 978/3175), and V5-6-4*01/D2-1*01/J4*01 (12.2%, 387/3175)
frequently showed in BMDMs of µMT mice (Figure 2B). Interestingly, a unique oligoclonal
rearrangement pattern, with V1-39*01/D1-1*01/J4*01 (97.5%, 7747/7946) was displayed
in RAW264.7 cells (Figure 2B). Importantly, some identical VHDJH rearrangements such
as V7-1*01/D2-4*01/J1*01 were detected in the BMDMs among different WT individuals,
even the V5-6-4*01/D2-11*01/J2*01 was found between WT and µMT mice. All the above
results revealed that macrophage-derived IgM repertoires showed restricted diversity
and conservativeness.
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Table 2. The total number of VHDJH recombination sequences and productive sequences were
analyzed for each sample.

Sample Total Sequences Productive Sequences Productive Percentage (%)

No.1 WT-BMDM 3843 3704 96.38
No.2 WT-BMDM 2380 2320 97.48
No.3 WT-BMDM 2688 2596 96.58

No.1 µMT-BMDM 842 816 96.91
No.2 µMT-BMDM 929 845 90.96
No.3 µMT-BMDM 1553 1514 97.49

RAW264.7 8295 7946 95.79
No.1 WT-B 1930 1773 91.97
No.2 WT-B 2022 1827 90.36
No.3 WT-B 2085 1943 93.19
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family usage profiles of BMDMs from WT and µMT mice and RAW264.7 cells compared with B cells. The frequency (%)
of VH family genes (left), DH family genes (middle), and JH family genes (right) expressed by macrophages and B cells,
respectively, from three different individuals, demonstrated the IgM derived from macrophages differed significantly
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parentheses. (C) Length variant analysis of CDR3 demonstrates the constitutive expression of individual-specific IgM
variable heavy-chain repertoires in B cells. Non-normalized CDR3 length spectra typing for BMDMs from WT and µMT
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mice and RAW264.7 cells. (D) Sequential CDR3 repertoire analyses in BMDMs from WT and µMT mice and RAW264.7
cells. The common sequences were colored in red or green consistently. (E) Mutation frequencies of IgM variable region in
BMDMs from WT and µMT mice and RAW264.7 cells compared with B cells. Abundance was first normalized by region
length and then by total number of cleaned, productive reads in each respective data set, and multiplied by 100 to attain
percent abundance. **** p < 0.0001.

Subsequently, we compared the complementarity determining region 3 (CDR3) length
of BMDM-derived IgM with B cell-derived IgM. As expected, the CDR3 in different B cells
from an individual showed different lengths (presented as spectra type plots). However,
most CDR3 in different BMDMs from an individual showed the same length because
there are many high frequencies of clonotype of shared VDJ rearrangements in an indi-
vidual, even among different individuals of either WT or µMT mice (Figure 2C). To further
assess whether the dominant CDR sequence of IgM VDJ rearrangements also existed in
macrophages, we compared CDR3 sequences among all the individuals. The most frequent
CDR3 sequences were exhibited in BMDMs and RAW264.7 cells as a combinatorial and
individual-specific pattern. Significantly, identical sequences were found in the BMDMs
from different WT individuals but not between WT and µMT mice (Figure 2D), suggesting
the hierarchy of prevalent clonotypes was broadly conserved in different individuals.

We also analyzed mutation frequencies of the IgM variable region sequences derived
from macrophages. Interestingly, the overall number of mutations in the IgM variable
region genes from BMDMs of both WT and µMT mice showed a lower mutation frequency
than those in B cells (Figure 2E). Thus, the differences in the IgM repertoire diversities
between macrophages and B cells were also based on distinct abilities for mutation of IgM
variable region.

3.3. Knockdown of IgM Enhanced the Migratory Ability of Macrophages through Activating
Src/FAK Axis

Based on IgM expression and characteristics of IgM transcript in RAW264.7 cells,
which was consistent with primary macrophages, it was chosen as a cell model for further
analysis. To evaluate the effects of IgM, RAW264.7 cells were transfected with specific
small interfering RNA (siRNA) against IgM constant region. After the effective knock-
down of IgM in RAW 264.7 cells was confirmed by RT-PCR and Western blotting assays
(Figure 3A,B), we found that RAW264.7 cells gradually became spindle-shaped (data not
shown). Moreover, knockdown of IgM remarkably promoted RAW264.7 cell migration
using transwell assays (Figure 3C,D) but had no significant effects on cell viability and
proliferation through CCK8 assay (Figure 3E).

It is well known that Src/FAK axis played a pivotal role in macrophage mobiliza-
tion [23]. Thus, to ascertain the involvement of the Src/FAK signaling pathway in IgM-
mediated macrophage migration, the phosphorylated statuses of Src and FAK in RAW264.7
cells were examined. As expected, significant increases in phosphor-Src, -FAK at Tyr 397
were observed in RAW264.7 cells after the knockdown of IgM. However, total Src and
FAK were unaltered (Figure 3F). Thus, the results indicated that macrophage-derived IgM
indeed inhibited macrophages’ migration via Src/FAK signaling.

3.4. Knockdown of IgM Promoted Pro-Inflammatory Response of Macrophages through Secreting
Pro-Inflammatory Mediators

On account of the macrophages treated with LPS, which had characteristics of ac-
tivation and are pro-inflammatory, we firstly explored whether IgM is involved in LPS-
stimulated macrophage activation in vitro. Both primary BMDMs and RAW264.7 cells
were treated with LPS, and then we analyzed the IgM expression level at different time
points. The results showed that the IgM expression was significantly decreased in a time-
dependent manner in both LPS-stimulated BMDMs and RAW264.7 cells following LPS
stimulation for 12 h (Figure 4A,B). The observation indicated that macrophage-derived IgM
might play an essential role in the LPS-induced macrophage pro-inflammation process.
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Since activated macrophages release pro-inflammatory mediators, such as IL-6, MCP-1,
and NO, we further investigated the role of IgM in LPS-induced macrophage inflammation
response. As shown in Figure 4C, knockdown of IgM significantly upregulated the levels of
IL-6, MCP-1, and iNOS mRNA induced by LPS in a dose-dependent manner. Meanwhile,
IL-6 and MCP-1 protein levels increased dramatically after IgM knockdown with LPS
stimulation using ELISA assay (Figure 4D). These results suggested that IgM exerted anti-
inflammatory activity via the inhibition of NO production and pro-inflammatory cytokines
IL-6 and MCP-1 in macrophages.

To determine the downstream signaling pathways involved in the IgM-mediated
anti-inflammation effect stimulated with LPS, we first investigated the involvement of
TLR4-mediated PI3K-Akt, MAPK, and NF-κB pathways in macrophages. Since TLR4 is
a receptor that binds to LPS, activates its downstream signaling pathways, and induces
various inflammatory responses. The RAW264.7 cells were treated with LPS for 0, 8,
and 15 min and then analyzed by Western blot analysis. As shown in Figure 4E, the
elevated level of Akt, ERK1/2, JNK, and p38 phosphorylation were observed after LPS
stimulation, while knockdown of IgM only upregulated phosphorylation of Akt at Ser473,
playing a critical role in the inflammation pathway, but had no effect on MAPK signaling
pathway in LPS-induced macrophage. In addition, IgM knockdown also upregulated the
phosphorylated level of STAT3 at Ser727, which is a vital regulator of the inflammatory
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response, and its activation promotes the expression of inflammatory cytokines, including
IL-6 and MCP-1. In addition, we also investigated the LPS-induced NF-κB pathway and
found that the phosphorylation of p65 remained unchanged when IgM was knocked down
(Figure 4E). Overall, these results indicated that the anti-inflammatory effect of IgM in
macrophages might be, in part at least, dependent on Akt and STAT3 phosphorylation.
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Figure 4. IgM knockdown promoted a pro-inflammatory effect in LPS-induced RAW264.7 macrophages through Akt
signaling. The upregulated expression of IgM in BMDMs and RAW264.7 cells stimulated with 100 ng/mL LPS for 0, 3, 6,
12, and 24 h by RT-PCR (A) and Western blot (B). (C) Cells were transfected with IgM siRNA (si-Igµ) and control siRNA
(siNC) for 36 h and treated with various concentrations of LPS (0, 1, 10, 100, and 1000 ng/mL) for an additional 3 h. The
pro-inflammatory cytokines, including IL-6, MCP-1, IL-1β, TNF-α, MIP-1α, and iNOS, were determined by RT-PCR. IgM
acted as positive control and β-actin as an internal control. (D) Cells were transfected with IgM siRNA (si-Igµ) and control
siRNA (siNC) for 36 h and treated with LPS (0, 1, 10, 100, and 1000 ng/mL) for an additional 12 h. The production of IL-6
and MCP-1 cytokines was measured by ELISA kit using the microplate reader. The data are presented as means ± SD
(n = 3). (* p < 0.05 and ** p < 0.01, *** p < 0.001 vs. siNC control group). (E) Cells were transfected with IgM siRNA (si-Igµ)
and control siRNA (siNC) for 36 h before exposure to LPS (100 g/mL) for 8 and 15 min. Enhanced effects of IgM knockdown
on phosphorylation of AKT at Ser 473 and STAT3 at Ser 727 in LPS-induced RAW264.7 macrophages were shown by Western
blot analysis, but no obvious effect on phosphorylation of ERK1/2, JNK1/2, p38, and p65 was shown. p, phosphorylated
protein; t, total protein. IgM acted as positive control and β-actin as internal control.

3.5. IgM Located in ER and Interacts with Bip in Macrophage

To further explore the anti-inflammatory mechanism of macrophage-derived IgM,
we first constructed an expression vector containing GST and IgM heavy chain, which
had a unique V1-39/D1-1/J4 rearrangement pattern expressed by RAW264.7, to find the
potential interacting protein of IgM. Next, the specific GST-IgM prokaryotic protein and
GST protein as control were expressed and purified. They then were used to find and
identify the interacting protein of IgM using RAW264.7 cell lysate by pull-down assay
and mass spectrometry. Some differential proteins were pulled down in GST-IgM fusion
protein but not GST protein alone (Figure 5A). By mass spectrometry and Western blot
analysis, the differential proteins were identified to be an immunoglobulin binding protein
(Bip; also known as Grp78 and Hspa5), ER-resident chaperone, and heat shock protein
(Hsp70; also known as Hspa9) (Figure 5B,C). Moreover, we also confirmed the presence
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of IgM-Bip complexes in RAW264.7 cells by coimmunoprecipitation assay (Figure 5D).
In addition, we also revealed that IgM co-localized with Bip in RAW264.7 (Figure 5E).
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Figure 5. IgM interacted with Bip in RAW264.7 cells. (A) Whole cell lysate derived from RAW264.7
cells was used to pull down with the same amount of GST-IgM recombinant protein or GST protein
as control, respectively. The complexes were separated on SDS-PAGE gels. After silver staining, the
differential bands or dots were analyzed by MS. Asterisks and circles indicated for the differential
band of Bip. (B) Candidates of IgM-associated proteins were identified by liquid chromatography-
mass spectrometry. Only part of the identified proteins was shown after removal of repeated proteins
and proteins related to the heavy or light chains of the antibody. (C) Western blot analysis to
determine the interaction between IgM and Bip in GST-pull down assay. (D) The interaction between
endogenous IgM and Bip was shown in the coimmunoprecipitation assay. The cell lysate of RAW264.7
cells was immunoprecipitated with goat anti-IgM antibody and goat IgG as control. Input, RAW264.7
cell lysate. (E) Confocal microscopy analysis of IgM (red) and Bip (green) in RAW264.7 cells using
goat anti-mouse IgM polyclonal antibody and rabbit anti-mouse Bip antibody. DAPI (blue) was used
for nuclear staining. Scale bars, 25 µm (Low magnification) and 10 µm (High magnification).

3.6. IgM Regulating Bip Expression via IRE1α-Mediated XBP1 mRNA Splicing Is Necessary for
ER-Stress-Induced Macrophage Activation

Bip is a major ER chaperone and is suggested to act as a primary sensor in activating
the unfolded protein response (UPR) [24]. During unstressed conditions, Bip binds to
and inhibits the three ER-proximal UPR transmembrane proteins: pancreatic ER kinase
(PERK), inositol-requiring transmembrane kinase/endonuclease 1 (IRE1), and activating
transcription factor 6 (ATF6). ER stress is averted as long as newly synthesized proteins fold
correctly and transit into the ER lumen. When unfolded proteins accumulate during stress,
Bip is recruited away from ATF6, IRE1, and PERK to activate the different UPR signaling
axes [25,26]. So far, it is only known that Bip combined with IgM heavy chain in the ER helps
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IgM folding and glycosylation as a chaperone molecule [27], but whether IgM heavy chain
might affect the activity of Bip as a UPR sensor has not been reported. To address if the IgM
might be involved in UPR via interacting with Bip, we examined whether IgM regulated
the expression of Bip in an ER stress model induced by LPS. We found that knockdown
of IgM significantly enhanced the level of LPS-induced Bip protein in a time-dependent
manner (Figure 6A). To further elucidate if IgM was involved in any UPR responses to
promote macrophage activation, we examined the effect of IgM on phosphorylation of
PERK and IRE1α, as well as cleavage of ATF6, in RAW264.7 cells. It can be seen from
Figure 6B that LPS stimulation significantly induced the phosphorylation of IRE1α, and
knockdown of IgM further increased the level of phosphorylated IRE1α induced by LPS
in a time-dependent manner. However, knockdown of IgM had no apparent effect on the
level of phosphorylated PERK and downstream CHOP, as well as ATF6 cleavage. Since
IRE1α phosphorylation stimulates endoribonuclease activity, which splices mRNA of XBP1
to form a potent transcriptional activator, we further examined whether IgM inhibited
the mRNA level of spliced XBP1 (XBP1s). As shown in Figure 6C, knockdown of IgM
indeed enhanced the mRNA level of spliced XBP1 induced by LPS in a time-dependent
manner. Since prolonged ER stress promotes ROS release to enhance the killing effect of
macrophages, and ROS has also been reported to regulate the activation of XBP1 [28], we
thus investigated whether IgM knockdown underwent ER stress due to increased oxidative
stress. We found that the knockdown of IgM significantly upregulated ROS (Figure 6D). In
summary, IgM knockdown promoted the IRE1α branch of the ER stress pathway through
regulating Bip expression, thereby mediating macrophage activation.
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Figure 6. IgM knockdown promoted the IRE1α branch of the ER stress pathway through regulating Bip expression.
RAW264.7 cells were transfected with IgM siRNA (si-Igµ) and control siRNA (siNC) for 36 h before exposure to LPS
(100 g/mL) for the indicated times. (A) Intracellular Bip protein expression was upregulated after IgM knockdown by
Western blot analysis. β-actin acted as an internal control. (B) Enhanced effects of IgM knockdown on phosphorylation of
IRE1α but not PERK, ATF6, and CHOP were shown by Western blot analysis. (C) RT-PCR analysis showing the Expression
of XBP1u mRNA and XBP1s mRNA. IgM as positive control and β-actin as an internal control. (D) Representative flow
cytometric histograms showing ROS production measured by the H2DCF-DA probe in RAW264.7 cells. blue line, si-Igµ1;
red line, si-Igµ2; black line, siNC as control siRNA.
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4. Discussion

In the present study, we extended previous findings and demonstrated IgM expression
in macrophages of mice under hemostasis conditions, especially the macrophages of B-cell
deficient mice (µMT mice), and further revealed that the repertoire features of IgM variable
region sequences exhibited individual-specific effects using next-generation sequencing.
More importantly, we identified for the first time that IgM interacted with Bip to inhibit
ER stress via suppressing IRE1α-mediated XBP1 mRNA splicing, thereby inhibiting the
migratory ability of macrophages and decreasing LPS-induced pro-inflammatory response
in macrophages.

The classical immunological theory has long defined that only B cells can produce
Ig among the blood cells. In contrast, myeloid blood cells, such as monocytes and
macrophages, do not produce Ig. Thus, as long as Ig-expressing cells are found clini-
cally, they are classified as B cells. Increasing shreds of evidence have proved that myeloid
blood cells also produce Ig. This fact was first uncovered that AML cells expressed IgG,
IgM, and IGK, all of which promoted the occurrence and development of AML. For exam-
ple, AML-derived IgG and IGK promoted the migration of AML cells, and their expression
predicted poor prognosis of AML patients [19,29]. IgM was also involved in the prolif-
eration of AML cells [18]. Recently, some studies have found that Ig was expressed in
tumor-infiltrating macrophages and ex vivo differentiated macrophages [16,17]. Consistent
with this, in our present study, evidence for the expression of the Ig mu heavy chain
(IgM) was further confirmed in macrophages of both B-cell-deficient and WT mice under
hemostasis, as well as a macrophage cell line. Interestingly, we demonstrated the presence
of the mu heavy chain alone without the light chain, including κ and λ chain, in primary
macrophages and RAW264.7 cells, suggesting that IgM derives from mouse macrophages
perhaps as a free heavy chain by itself to exert bioactivity in the macrophages.

As is well known, a diverse repertoire of B-cell-derived Ig contributes to immunity
against a vast number of potential pathogenic threats. The generation of Ig diversity
begins with Ig variable region assembly from V, D, and J gene segments to form the
antigen recognition piece of the B cell receptor (BCR), which was initially expressed as
IgM on the cell membrane and then secreted into extracellular space [30]. However, it
has been revealed that non-B cell-derived Ig, including the IgM, usually displays non-
antibody activities involved in cell survival, adhesion, and proliferation [7,9,10,31,32].
Therefore, the repertoire of non-B-cell derived Ig exhibits restricted diversity compared
with that of B-cell-derived Ig. The restricted diversity reflected that Ig from the same
lineage often displays several dominant VDJ rearrangement patterns and even shares
them among different individuals. The characteristics suggest that the function of non-B
cell-derived Ig might be different from that of B cell-derived Ig, and these dominant VDJ
rearrangement patterns shared by different individuals might act on similar pathways.
In this study, we used next-generation sequencing to analyze the repertoire characteristic
of macrophage-derived IgM and found that the Ig repertoires of macrophage showed
biased VH, DH, and JH family usage. Moreover, similar to the IgM repertoire in other
non-B cells [16–18,33], the macrophage-derived IgM in an individual often displays several
dominant VDJ rearrangement patterns. However, only a few VDJ rearrangement patterns
of macrophage-derived IgM were shared by different individuals, which suggested that
the different usage of VDJ rearrangement patterns may be related to the ontogeny of
macrophages. Interestingly, a unique oligoclonal rearrangement pattern was displayed
in RAW264.7 cells, and it is a real possibility that a genomic VDJ rearrangement occurred
once prior to the establishment of the RAW264.7 cell line. The specific significance needs
to be further revealed. It has also been reported that myeloid cell-derived IgM shares
the restricted or biased usage of specific sequences under certain selection pressure due
to neoplastic conditions compared to normal B cells [18]. It is worth noting that the
Ig repertoires from tumor-associated macrophages (TAM) and circulating monocytes in
glioblastoma patients revealed a negative correlation to the tumor volume, which could
not be detected in the Ig repertoires of the patients’ B lymphocytes [17]. Thus, macrophage-
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derived IgM might be a novel molecule with a unique structure and function, revealing yet
unrecognized host defense mechanism in macrophages.

Meanwhile, IgM on the B cell surface responsible for the negative selection of B cells
facilitates B cell development, recognizes an antigen, and enhances the humoral immune re-
sponse to the antigen. The secreted IgM provides the first line of defense against pathogens,
thereby maintaining tissue homeostasis [1]. In addition, it has been reported that the
secreted IgM exerts an anti-inflammatory response by suppressing the activation of T
cells [6]. However, intracellular IgM has never been reported to exert this function to
date. In this study, we found that silencing IgM significantly promoted cell migration
and activation of the FAK/Src signaling pathway, which involves cell migration. It has
been reported that expression or activation of Src, a cellular nonreceptor tyrosine kinase
downstream of integrin signaling, could reflect the migratory ability of macrophages [34].
As a substrate of Src, FAK serves as an adaptor that connects integrins with the actin
cytoskeleton. Upon integrin activation, FAK is phosphorylated at tyrosine residues Tyr397,
activating the binding site Src [35]. Those results hint that IgM might inhibit macrophage
migration via the FAK/Src axis.

More importantly, mechanism research reveals that IgM is located in ER and interacts
with Bip, the upregulation of which is the most used marker for UPR signaling activa-
tion [36]. Bip was initially named for its binding to Ig heavy chains as a vital chaperone
molecule involved in the protein folding and assembly in ER [4]. When a newly synthesized
Ig heavy chain does not bind with the light chain in ER, the Ig heavy chain will couple
with Bip. Next, Ig heavy chain is retained in the cytoplasm but not transported to the
extracellular matrix or cell membrane. It has been reported that the variable region and the
first constant region of Ig heavy chain are key regions mediating this binding with Bip [37].
Moreover, we identified the interaction of Bip and IgM with a unique V1-39/D1-1/J4
rearrangement pattern derived from RAW264.7 cells. Therefore, we conjecture that lim-
ited VDJ rearrangements of IgM might bind with BiP in macrophages to exert bioactivity.
However, it remains unclear if IgM regulates Bip-mediated function. This study first found
that ER stress induced by LPS stimulation resulted in reduced IgM expression. At the
same time, IgM knockdown markedly increased the expression of Bip and inflammatory
mediators in macrophages, such as MCP1 and IL-6, as well as iNOS. The findings suggest
that IgM might play a negative mediator role for ER stress in macrophages. It is well
known that there are three key UPR signal activators—PERK, IRE1α, and ATF6—which
give rise to separate branches of the response [38,39]. In the absence of ER stress, the PERK,
IRE1α, and ATF6 proteins are sequestered in inactive complexes with Bip and maintain the
downstream transduction signals. During ER stress, the accumulating unfolded-protein
species preferentially bind Bip to dissociate it from IRE1α, PERK, and ATF6 complexes,
resulting in autophosphorylation of IRE1α and PERK, and mobilization of ATF6 to the
Golgi for activation [25,38]. The activated IRE1α splices XBP1u mRNA into XBP1s mRNA,
from which protein XBP1s is translated and then translocated into the nucleus during the
early phase of ER stress [40]. The splicing XBP1s binds to the promoters of IL-6 and TNF-α
and promotes their transcription and expression [41]. We further address if IgM is involved
in any of the UPR responses to activate macrophage activation. The results revealed that
knockdown of IgM only promoted the phosphorylation of IRE1α and XBP1 mRNA splicing
yet did not affect the phosphorylation of PERK and ATF6 cleavage in the LPS-induced UPR
pathway. Meanwhile, intracellular ROS production in LPS-induced macrophages increased
after the knockdown of IgM. The results suggested that IgM maybe promotes Bip binding
to IRE-1 to inhibit XBP1 mRNA splicing. However, the detailed mechanism of how IgM
maintains ER homeostasis through binding with Bip in the ER of macrophage is unclear,
and further investigation needs to be performed.

In conclusion, our results provided evidence for the existence of IgM in mice macrophages
under homeostasis and RAW264.7 cell line and further illustrated that the macrophage-
derived IgM VHDJH gene rearrangements showed a restricted recombination pattern
and are individual-specific. Furthermore, we found that IgM regulated LPS-induced in-
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flammatory response and UPR activation through interacting with Bip in macrophages.
To our knowledge, this is the first-ever study to reveal the physiological function of IgM in
macrophages and to renew the understanding of the biological significance of macrophage-
derived IgM.
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