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ABSTRACT Bluetongue is one of the major diseases of ruminants listed by the
World Organisation for Animal Health. Bluetongue virus serotype 8 (BTV-8) has been
considered enzootic in France since 2018. Here, we report the nearly complete ge-
nome sequences of two BTV-8 isolates from the 2020 outbreak in the Grand Duchy
of Luxembourg.

Bluetongue is a vector-borne disease affecting both domestic and wild ruminants.
The disease is caused by the Bluetongue virus (BTV), which is the type species of

the genus Orbivirus, within the family Reoviridae (1, 2). In August 2006, BTV serotype 8
(BTV-8) emerged for the first time in northwestern Europe and rapidly spread across
large parts of the continent (3). The outbreak was successfully controlled through a
large-scale vaccination campaign, with only a small number of cases reported in
Europe in 2010 (4). However, in 2015, BTV-8 reemerged in France (5), from where it
spread to neighboring countries, including Switzerland, Germany, and Belgium.

In 2020, BTV reemerged in the Grand Duchy (GD) of Luxembourg, with 25 out-
breaks being detected in cattle all across the country. To gain more insights into the
origin of this reemergence, we isolated and sequenced BTV from the blood of cattle
collected during the first two outbreaks. The viruses were isolated in embryonated
chicken eggs and subsequently passaged twice on BHK-21 cells (6). Total RNA was
extracted from the cell pellet of an infected 175-cm2 monolayer showing 100% cyto-
pathic effect using a NucleoSpin RNA virus kit (Macherey-Nagel) and treated with
Baseline-ZERO DNase (Lucigen) and mung bean nuclease (New England Biolabs).
cDNA was synthesized with SuperScript IV reverse transcriptase (Thermo Fisher
Scientific) using a mixture of random hexamers and primers targeting the conserved
BTV termini (7). Nextera XT sequencing libraries were prepared from 1 isolate per out-
break and analyzed on a MiSeq system using a MiSeq reagent kit v3 (2� 300 bp;
Illumina), yielding approximately 2.5 million read pairs per sample. After removal of
adapter sequences and low-quality bases with Trimmomatic v0.38 (8), both data sets
were enriched for BTV using mirabait with a target data set containing 2,517 BTV
sequences from GenBank (9). De novo assembly of the segments was performed
using IVA v1.0.8 (10), MIRA v5rc1 (9), and SPAdes v3.9.0 (11). The resulting contigs of
the different assemblers were combined into single consensus sequences. Nucleotide
variants were called using the GATK v4.1.3.0 best practices pipeline (12, 13). Finally, the
sequences were annotated with GATU (14), using BTV isolate FRA2017-7300 (GenBank
accession numbers MN837938, MN838139, MN838307, MN838410, MN838571,
MN838719, MN838862, MN839113, MN839158, and MN839405) as the reference genome
sequence.
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Although only 14 to 39% of the total reads were derived from BTV, we were able to
reconstruct complete genome sequences with a high depth of coverage for both data
sets (Table 1). Comparison of the genome segments revealed that the isolates are
closely related with identities at the nucleotide level ranging from 99.82 to 100.00%.
We also compared the genome segments with other BTV segments from publicly avail-
able databases. BLAST analysis showed that all the segments are closely related to
recent BTV-8 isolates from France, with BTV isolate FRA2017-7300 displaying the high-
est percent identity (BTV8/LUX/2020/1, 99.80 to 100.00%; BTV8/LUX/2020/2, 99.73 to
100.00%). As expected, we observed the highest number of differences in segment 2,

TABLE 1 Summary of the assembly results of the BTV8/LUX/2020/1 and BTV8/LUX/2020/2 data sets and comparison with BTV isolate
FRA2017-7300

Isolate Segment Size (bp) GC content (%)
Depth of
coverage (×)

SNPsa (position/
substitution)

GenBank
accession no.

BTV8/LUX/2020/1 1 3,944 42.22 1,553 134/AfiR
3566/G!A

MW528437

2 2,939 42.67 1,662 281/C!T
2051/T!C
2663/A!G
2901/TfiK

MW528438

3 2,772 43.58 1,826 1777/CfiT
2327/C!T
2627/G!A

MW528439

4 1,981 43.61 1,994 354/GfiR
1278/AfiG
1511/G!C
1625/G!A

MW528440

5 1,776 45.50 1,832 879/GfiA MW528441
6 1,637 44.04 2,447 26/A!G

480/C!A
729/A!G

MW528442

7 1,156 46.54 1,850 746/C!T
1061/TfiW

MW528443

8 1,125 45.24 2,584 MW528444
9 843 49.67 2,385 843/T!C MW528445
10 822 45.86 1,173 MW528446

BTV8/LUX/2020/2 1 3,944 42.24 14,223 1571/A!G
3566/G!A

MW528447

2 2,939 42.57 15,327 281/C!T
688/AfiR
1540/GfiA
1783/CfiT
1948/CfiT
2051/T!C
2663/A!G
2901/TfiK

MW528448

3 2,772 43.54 17,384 1777/CfiT
2086/CfiY
2327/C!T
2627/G!A

MW528449

4 1,981 43.66 18,194 1278/AfiG
1511/G!C
1625/G!A

MW528450

5 1,776 45.55 16,824 MW528451
6 1,637 43.98 22,451 480/C!A

729/A!G
1455/T!Y

MW528452

7 1,156 46.54 17,146 746/C!T MW528453
8 1,125 45.24 22,406 58/T!C

623/GfiA
MW528454

9 1,049 49.67 22,006 843/T!C MW528455
10 822 45.86 10,389 MW528456

aNonsynonymous substitutions are shown in bold. SNPs, single nucleotide polymorphisms.
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which is known to be the most variable segment (Table 1). The whole-genome
sequence data thus strongly suggest that both GD Luxembourg isolates are derived
from recent French outbreaks.

Data availability. The complete genome sequences have been deposited in
GenBank under accession numbers MW528437 through MW528446 (BTV8/LUX/2020/
1) and MW528447 through MW528456 (BTV8/LUX/2020/2), and the raw sequencing
reads are available in the SRA database under BioProject accession number
PRJNA705052.
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