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Abstract: Ullrich congenital muscular dystrophy (UCMD) bring heavy burden to patients’ families
and society. Because the incidence of this disease is very low, studies in patients are extremely limited.
Animal models of this disease are indispensable. UCMD belongs to extracellular matrix-related
diseases. However, the disease models constructed by knocking out some pathogenic genes of human,
such as the Col6a1, Col6a2, or Col6a3 gene, of mice could not mimic UCMD. The purpose of this
study is to construct a mouse model which can resemble the pathology of UCMD. miR-29 is closely
related to extracellular matrix deposition of tissues and organs. To address this issue, we developed
a mouse model for overexpression miR-29 using Tet-on system. In the muscle-specific miR-29ab1
cluster transgenic mice model, we found that mice exhibited dyskinesia, dyspnea, and spinal anomaly.
The skeletal muscle was damaged and regenerated. At the same time, we clarify the molecular
mechanism of the role of miR-29 in this process. Different from human, Col4a1 and Col4a2, target genes
of miR-29, are the key pathogenic genes associating with these phenotypes. This mouse model
simulates the human clinical and pathological characteristics of UCMD patients and is helpful for the
subsequent research and treatment of UCMD.
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1. Introduction

Ullrich congenital muscular dystrophy (UCMD) belongs to collagen VI-related myopathy. Collagen
VI-related myopathies are caused by mutations of COL6A1, COL6A2, and COL6A3, which encode
the collagen VI alpha chain [1]. COL6A1 and COL6A2 lie on chromosome 21, and COL6A3 lies on
chromosome 2. The dominant and recessive mutations of COL6A1, COL6A2, and COL6A3 constitute a
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series of muscle diseases, ranging from mild terminal Bethlem myopathy (BM) to severe UCMD and a
series of intermediate phenotypes between the two extremes [2,3].

Although UCMD is less prevalent than Duchenne muscular dystrophy, muscle damage is more
serious in patients with UCMD. Before birth, UCMD patients presented less fetal movement. After birth,
UCMD patients showed dystonia; joint abnormality; excessive flexibility of fingers, wrists, ankles,
and so on [1].

UCMD patients can learn to turn over, crawl, and maintain a certain sitting posture during their
growth; however, patients who are 5 to 15 years old usually lose walking ability. In patients with
UCMD, spinal column fixation is required for scoliosis. The weakening of the diaphragm and other
respiratory muscles causes respiratory failure in patients, and the patient needs assisted breathing.
Respiratory-associated skeletal muscle failure is the main cause of death in adolescents [4–7].

For rare diseases, patient studies are limited, and the inherent variability of symptoms often leads
to ambiguous results. Animal models of diseases are important for the research and treatment of
these diseases.

A genetic mouse disease model of Col6a1 deficiency was generated by knockout the Col6a1, and the
homozygous mutants lost collagen VI in the skeletal muscle. However, the extracellular matrix of this
mouse model is intact, which is only suitable as a mouse model of Bethlem myopathy [8].

At the same time, detection of Col6a2 knockout mice by high-throughput platform showed that
the grip strength of the mice was reduced and no other abnormalities were found [9,10]. Researchers
also constructed a mouse model by gene targeting to induce abnormal splicing of Col6a3 mRNA [11]
and a mouse model knocked out the exon 16 of the Col6a3 gene [12]. However, neither of these mice
could mimic UCMD.

So how can we build a suitable mouse model that can recapitulate features of UCMD? Excessive
accumulation of extracellular matrix proteins can cause fibrosis of tissues and organs, and the absence
of extracellular matrix proteins can lead to collagen VI-related myopathy or skeletal muscle diseases
related to the integrity of cell membranes and extracellular matrix. miR-29 can directly inhibit the
expression of more than 20 kinds of extracellular matrix-related genes, including collagen, elastin,
and integrin proteins, which are important components of extracellular matrix [13,14].

To address these issues, we developed a mouse model for overexpression miR-29 using Tet-on
system. In the muscle-specific miR-29ab1 cluster dual transgenic (dTG) mice model, we found
that mice exhibited dyskinesia, the skeletal muscle was necrotic with an abnormal extracellular
matrix (ECM) structure. The partially dTG mice displayed respiratory disturbances or severe kyphos.
Mechanism analysis reveal that the absence of Col4a1 and Col4a2, the component of ECM and target
genes of miR-29, cause the phenotypes, just like the performance of collagen VI mutations in human.
These muscle-specific miR-29ab1 cluster dTG mice constitute an excellent abnormal skeletal muscle
basement membrane model that closely resemble pathology of UCMD.

2. Materials and Methods

2.1. Ethics Statement

This study was approved by the Institutional Animal Care and Use Committee of China
Agricultural University (SKLAB-2015-01-03).

2.2. Mice

To generate TRE-miR-29 mice, the mmu-miR-29a and mmu-miR-29b coding sequences were
amplified by PCR from mouse genomic DNA (Forward Primer: 5′-GGACTTCACCTTCCCTCTCC-3′

and Reverse primer: 5′-ATTGGTTTGGCCCTTTATCC-3′), cloned into pTRE2 plasmid (Clontech) to
generate pTRE-miR-29a,b1 cluster construct.

To generate ACTA1-rtTA mice, the promoter sequences were amplified by PCR from
mouse genomic DNA (Forward Primer: 5′-TACTTGCCAGAGGTGACGGA-3′ and Reverse primer:
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5′-GCTCTGACTCTGGCCCTGGG-3′), cloned into pTet-on plasmid (Clontech) instead of PCMV
promoter to generate ACTA1-rtTA construct [15].

The TRE-miR-29a,b1 cluster transgenic mice and ACTA1- rtTA transgenic mice were generated
using KUNMING mice, and backcrossed into the C57BL/6 mouse strain.

Generation of dual transgenic mice by crossing the TRE-miR-29a,b1 cluster mice and
ACTA1-rtTA mice.

Mice were raised in controlled temperature (25 ± 1 ◦C) and humidity (60–70%) with a 12 h light,
12 h dark cycle.

The Evans Blue Dye (EBD) was injected i.p. into 28-day-old dTG mice and control mice 1 day
before the sample collection [16].

2.3. Micro-Computed Tomography Experiment

The mice were anesthetized with sodium pentobarbital through i.p. then transferred to the in vivo
Micro-computed tomography (Micro-CT) imaging system (Quantum FX, Caliper) [17]. Images were
obtained with imaging software SimpleViewer.

2.4. Exercise

First, we observed the ability of the mouse to walk and turn over. When the dTG mice walked and
turned over “normally”, each mouse used a mouse swimming pool for 10 min of exercise. When the
“normal” dTG mice consumed physical energy by swimming, they were tested on their ability to
walk and turn over. The pool was filled with distilled water and the temperature of the water was
maintained at 30 ◦C. During the time the mice were swimming, attention was paid to the prevention of
drowning in mice.

2.5. Histology, Immunochemistry, and Immunofluorescence

Skeletal muscles were cut, fixed in 4% PFA overnight, and then embedded in common paraffin.
The antigen retrieval and 5% goat serum blocking were needed before the addition of the primary
antibody. Immunostaining was performed with anti-Pax7 (Developmental Studies Hybridoma
Bank, DSHB), anti-eMyHC (Developmental Studies Hybridoma Bank, DSHB), anti-Laminin (L9393,
sigma), and anti-Collagen IV (ab6586, abcam) overnight at 4 ◦C [18]. After washing with PBS,
the sections were incubated with Alexa 488-labeled goat anti-mouse Immunoglobulin G (Invitrogen,
A-11034)/Alexa 594-labeled goat anti-mouse Immunoglobulin G (Invitrogen, A-11032)/Alexa
488-labeled goat anti-Rabbit Immunoglobulin G (Invitrogen, A-11008)/Alexa 594-labeled goat
anti-Rabbit Immunoglobulin G (Invitrogen, A-11037) 1 h at room temperature.

2.6. Cell Culture

C2C12, mouse skeletal myoblasts were purchased from Beijing’s Cell Resource Center. C2C12
cells were cultured with DMEM, 10% FBS and 1% penicillin and streptomycin. C2C12 cells were
transfected with 100 nM concentration of miRNA mimics, miRNA inhibitor, NC or INC, which were
synthesized from Gene Pharma (Shanghai, China) using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA, USA) in serum-free Opti-MEM. After 6 h of culture, use DMEM, 10% FBS and 1% penicillin and
streptomycin to replace serum-free Opti-MEM.

miR-29a mimics forward, 5′- UAGCACCAUCUGAAAUCGGUUA -3′, and
reverse, 5′- ACCGAUUUCAGAUGGUGCUAUU -3′;
miR-29b mimics forward, 5′- UAGCACCAUUUGAAAUCAGUGUU-3′, and
reverse, 5′-CACUGAUUUCAAAUGGUGCUAUU -3′;
negative control (NC) forward, 5′-UUCUCCGAACGUGUCACGUTT-3′ and
reverse, 5′-ACGUGACACGUUCGGAGAATT-3′.
miR-29a inhibitor, 5′-UAACCGAUUUCAGAUGGUGCUA -3′,
miR-29b inhibitor, 5′-AACACUGAUUUCAAAUGGUGCUA -3′,
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inhibitor NC, 5′-CAGUACUUUUGUGUAGUACAA-3′.

2.7. Luciferase Reporter Assay

HEK293T cells were purchased from Beijing’s Cell Resource Center. HEK293T cells were cultured
with DMEM, 10% FBS and 1% penicillin and streptomycin. HEK293T cells were transfected using the
Lipofectamine 2000 reagent with psi-CHECK2TM plasmid and miRNA mimics or miRNA inhibitor.
Luciferase activity were measured by the Dual Luciferase Assay System (Promega, Madison, WI, USA).
The data were normalized to the firefly luciferase signal.

2.8. Q-PCR

Expression analysis of miRNA was based on Q-PCR (reverse transcription by stem-loop method).
miR-29a RT stem-loop primer,

CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTAACCGAT; miR-29b RT stem-loop
primer, CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACACTGA; U6 RT primer,
CGCTTCACGAATTTGCGTGTCAT). Q-PCR were conducted using a Roche LightCycler480 Real-Time
PCR system. The primers sequences are as follows:

miR-29a forward 5′-TCACGTAGCACCATCTGAA-3′

miR-29b forward 5′- TCACGTAGCACCATTTGAAA -3′

miR-29a/miR-29b reverse 5′-TCAACTGGTGTCGTGGAGT-3′;
U6 forward 5′-CTCGCTTCGGCAGCACA -3′

U6 reverse 5′- AACGCTTCACGAATTTGCGT -3′. U6 was used as the internal standard.
The primers sequences of mRNA are as follows:
Col4a1, 5′-TGGGAAAGACGGTGAAAAAG-3′ and 5′- AAAGGCATGGTGCCTATCAC-3′;
Col4a2, 5′-CATCCGTCGGAGATGAAGAT-3′ and 5′- CAAACAGGAAGCCATCTGGT-3′;
GAPDH, 5′-GGCTGCCCAGAACATCAT-3′ and 5′-CGGACACATTGGGGGTAG-3′. GAPDH was

used as the internal standard.

2.9. Western Blotting

The following antibodies were used: anti-GAPDH (2118S, CST), and anti-Collagen IV (ab6586,
abcam).

2.10. Statistical Analysis

Data were analyzed using Student’s t-test with SPSS.
Calculating Cross Section Area (CSA) with Image J Software.

3. Results

3.1. Overexpression of the miR-29ab1 Cluster Leads to Skeletal Muscle Dysplasia

To develop a mouse model that can reproduce features of UCMD, we used the mice generated by
Tet-on system in which the overexpression of the miR-29a, b could be induced in the dual transgenic
(dTG) mice muscle fibers with temporal specificity (Figure 1A). The level of miR-29 was 30 times higher
in the dTG mice than in the control.
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Figure 1. Overexpression of the miR-29a,b1 cluster leads to skeletal muscle dysplasia in juvenile
mice. (A) Q-PCR analysis of miR-29a, b showing that miR-29a and miR-29b were induced in the
tibialis anterior. The dual transgenic (dTG) mice were treated with Dox at P28 (28 day of postnatal
development). The tibialis anterior were collected at P35. **, p < 0.01. The values represent the
mean ± SEM (n = 3). (B,C) Measurement of miR-29a, b in the tibialis anterior muscles in mice at
different ages. d, day(s); m, month(s). (D) Size comparison of 30-day-old control and dTG mice.
(E) Body weight quantification over time; n = 10 for 7 days, n = 6 for other timepoints. **, p < 0.01.
(F,G) Representative photograph of the dTG mice crawling and turning over. (H) Comparison of
tibialis anterior muscles and gastrocnemius muscles between control and dTG mice. (I) Number of
surviving control and dTG mice over time. n = 20 for control mice, n = 17 for dTG mice.

The expression of miR-29a, b increased in developing postnatal muscles (Figure 1B,C) [19,20],
then we induced miR-29ab1 cluster overexpression on postnatal first day. The Dox-treated dTG mice
began to exhibit small size (Figure 1D), low body weight (Figure 1E), rolling over the body hardly
(Figure 1F, Supplementary Video S1) and dyskinesia (Figure 1G, Supplementary Video S1). The muscle
mass of the dTG mice was significantly reduced (Figure 1H). In total, 29% of the dTG mice did not
survive one month (Figure 1I), and these mice displayed respiratory disturbances before they die
(Supplementary Video S2).

Skeletal muscle related to breathing include the external intercostal muscles, internal intercostal
muscles and diaphragm. The diaphragm is the main contributor to breathe [21]. The diaphragm in
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the dTG mice was significantly thinner than that of the controls, and the fibers were loosely arranged
(Figure 2A). In addition, fibrosis was observed in the diaphragm of the dTG mice (Figure 2B).

Figure 2. Diaphragm and skeleton of dTG mice display anomalies. (A) H&E staining of diaphragm
muscles. Scale bars: 50 µm. (B) Immunofluorescence detection of Laminin expression in diaphragm
muscles (green represents Laminin), scale bars: 50 µm. (C) X-ray photograph of the control and
dTG mice.

The partially induced dTG mice displayed severe scoliosis and kyphos (Figure 2C). The Skeletal
muscle were attached to the skeleton, indicating the abnormal development of skeletal muscle, which
may lead to abnormal skeleton development [22].

3.2. Overexpression of the miR-29ab1 Cluster in Juvenile Mice Induces Skeletal Muscle Injury

The collagen VI-related myopathies include a range of diseases ranging from severe Ullrich
muscular dystrophy to mild Bethlem myopathy [23]. Different miR-29 overexpression levels can mimic
different disease states.

The level of miR-29 was 15–25 times higher in the dTG mice than in the control, and the dTG
mice showed relatively moderate skeletal muscle damage. The dTG mice walked and turned over
“normally”. When the “normal” dTG mice consumed physical energy by swimming, they turned
over more slowly than the controls (Supplementary Video S3). Moderately damaged dTG mice can be
considered a mouse model which can resemble pathology of Intermediate phenotype.

To better illustrate the advantages of the dTG mice as a mouse model, the severely and moderately
damaged dTG mice are both described. Consistent with the exercise capacity, the ratios of the TA and
GA muscles in the severely and moderately damaged dTG mice were also stunted (Figure 3A).
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Figure 3. High miR-29 expression in juvenile mice induces skeletal muscle injury. (A) Quantification of
tibialis anterior (TA) and gastrocnemius (GA) muscles weight at 30 days (n = 5). *, p < 0.05; **, p < 0.01.
(B) Detection of myofibers damage in individual whole-body muscle following i.p. injection of 1% EBD
24 h prior to sampling. Comparison of tibialis anterior muscles between control and moderate dTG
mice. And immunofluorescence analyses of EBD in the tibialis anterior muscles squash slide between
the control and moderate mice. (C) H&E staining of tibialis anterior muscles. (D) Quantification of
the rate for central nuclear myofibers. **, p < 0.01. (E) Immunofluorescence analyses of Pax7 (red)
and collagen IV (green) in tibialis anterior muscles of control and dTG mice. Scale bars: 50 µm.
(F) Expression analysis of Pax7. GAPDH was used as an internal normalized reference. The values
represent the mean ± SEM (n = 3). *, p < 0.05; **, p < 0.01. (G) Immunofluorescence analyses of eMyHC
(red) and collagen IV (green) in tibialis anterior muscles of control and dTG mice. Scale bars: 50 µm.
(H) Expression analysis of MYH8. (I) Masson staining of the tibialis anterior muscles. Scale bars:
50 µm. (J) Immunofluorescence analyses of Laminin in tibialis anterior muscles of control and dTG
mice. Scale bars: 50 µm. Con.: control mice, moderate: moderately damaged dTG, severe: severely
damaged dTG.

To further illustrate the state of the skeletal muscle phenotype, Evans Blue Dye (EBD) was used.
EBD has been widely used as a tracer to evaluate cellular membrane permeability in multiple models of
skeletal muscle injury [24]. One day before the sample collection, EBD was injected i.p. into 28-day-old
dTG mice and control mice [16]. The severely damaged dTG mice exhibited EBD in multiple muscles
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(Figure 3B). The moderately damaged dTG mice also exhibited EBD staining (Figure 3B). The dye was
observed in all TA muscles in the moderately damaged dTG mice (Figure 3B), suggesting that the
permeability of the cell membrane was flawed.

H&E staining showed many pathological phenotypes in the TA muscles of the dTG mice.
The number of muscle fibers containing centrally located nuclei (black arrow) was significantly higher
in the dTG mice than that in the controls (Figure 3C,D). In total, >3% of all muscle fibers exhibited
centrally located nuclei, which is a hallmark indicator of myopathy [25].

Normal fibers have a pentagonal or hexagonal shape, but the dTG mice exhibited fibers that were
circular or oval (black arrow) (Figure 3C). The dTG mice displayed a disorganized fiber distribution,
necrotic fibers (blue arrow), and split fibers (red arrow) (Figure 3C).

The activation of satellite cells and synthesis of eMyHC indicate the presence of muscle injury
and regeneration [26,27]. In this study, satellite cells activation (Figure 3E,F) and eMyHC expression
(Figure 3G,H) were observed in the TA muscles of the dTG mice. In addition, the Masson staining
and Laminin immunofluorescence showed excess fibrosis and fiber shape changes in the TA muscles
(Figure 3I,J).

We simultaneously examined the triceps of the forearm and gastrocnemius of the hindlimb,
and H&E results showed serious muscle tissue injury in the induced dTG mice (Figure 4A). H&E staining
and eMyHC immunofluorescence demonstrated severe skeletal muscle dysplasia and regeneration in
the 15-day postnatal dTG mice (Figure 4B,C).

Figure 4. Multiple muscles of dTG mice display injuries. Scale bars: 50 µm. (A) H&E staining
of Triceps and gastrocnemius (GA) muscles. (B) H&E staining of tibialis anterior (TA) muscles.
(C) Immunofluorescence analyses of eMyHC (green) in tibialis anterior muscles of control and dTG mice.

3.3. Col4a1 and Col4a2 Are the Direct Target Genes of miR-29

Subsequently, we determined the genes related to cellular membrane or extracellular matrix that
were disturbed in the dTG mice. Prediction using TargetScan 6.2 revealed that the 3′UTRs of the
mouse collagen genes contain conserved complementary sequences of miR-29. Thus, we measured
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the expression of these genes, and only the mRNA levels of Col4a1 and Col4a2 were significantly
downregulated in the 1-month-old dTG mice (Figure 5A). The protein level of Col4 was also decreased
in the dTG mice (Figure 5B).

Figure 5. Col4a1 and Col4a2 are the direct target genes of miR-29. (A) Expression analysis of miR-29
target genes related to collagen in the tibialis anterior muscles. The values represent the mean ± SEM
(n = 3). *, p < 0.05. (B) Western blot showing the decrease in Col4 protein level in the dTG mice.
GAPDH was used as an internal normalized reference. (C) The relative expression levels of Col4a1 and
Col4a2 in the tibialis anterior muscles of mice at different ages were analyzed by Q-PCR. The values
represent the mean ± SEM (n = 3). d, day(s); m, month(s). (D) Expression analysis of Col4a1 and Col4a2
in the tibialis anterior muscles. *, p < 0.05. (E) The binding sites in the Col4a1 3′UTR are indicated in
bold, and all nucleotides in the binding sites are conserved across several species. Hsa, Homo sapiens;
Ptr, Pan troglodytes; Rhesus, Macaca mulatta; Mmu, Mus musculus; Rno, Rattus norvegicus; Cfa, Canis
lupus familiaris; Bta, Bos Taurus. (F) Expression analysis of genes related to protein degradation in the
tibialis anterior muscles. *, p < 0.05; **, p < 0.01. (F) Expression analysis of Col4a1 and Col4a2 in C2C12
cells transfected with miR-29 mimics or negative control (NC). The values represent the mean ± SEM
(n = 3). **, p < 0.01. (G) Expression analysis of Col4a1 and Col4a2 in C2C12 cells transfected with miR-29
inhibitor or INC (n = 3). *, p < 0.05. (H) miR-29 mimics influenced the relative luciferases activity of the
Col4a1, mutant (Mut) Col4a1, Col4a2, and mutant Col4a2 vectors. **, p < 0.01.
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Col4 is the main component of basement membrane [28], Col4 direct interact with collagen
VI [29,30]. Heterozygous mutations in COL4 have been identified in both mouse models and families
with porencephaly, angiopathy, nephropathy, aneurysms, and muscle cramps [31–33]. Col4a1 and
Col4a2 were highly expressed in newborn mouse skeletal muscle (Figure 5C). In the dTG mice,
the expression of Col4a1 and Col4a2 was decreased (Figure 5D), which destroyed the formation of the
basement membrane.

The predicted binding sites of Col4a1 (Figure 5E) and Col4a2 are conserved in several species.
Then, we investigated whether miR-29 directly inhibits Col4a1 and Col4a2. According to the Q-PCR
and Western blot analyses, miR-29 mimics inhibited the expression of Col4a1 and Col4a2 (Figure 5F),
and the miR-29 inhibitor upregulated the expression of Col4a1 and Col4a2 (Figure 5G).

We chose the psiCHECKTM-2 vector to confirm the direct inhibition of 3′UTRs target site.
The putative 3′UTRs target site or mutation site was cloned downstream of the reporter gene. Then,
we co-transfected the psiCHECKTM-2 vector (wild-type Col4a1 and Col4a2 or mutant Col4a1 and Col4a2)
with miR-29 mimics or negative control (NC) into HEK293T cells.

Twenty-four hours after the transfection, the luciferase activity was measured. The relative
luciferase activity in the cells that were co-transfected with the miR-29 mimics and wild-type Col4a1
and Col4a2 vector was significantly lower than that in the cells co-transfected with NC and wild-type
Col4a1 and Col4a2 vector (Figure 5H). According to the relative luciferase activity, miR-29 inhibited
Col4a1 via the 33 bp-40 bp binding region at the 3’UTR, whereas the inhibition of Col4a2 occurred
through two binding regions at the 3’UTR, i.e., 43 bp-49 bp and 214 bp-220 bp.

4. Discussion

The collagens are essential for the extracellular matrix. UCMD is an early onset disease, which
caused by loss of collagen VI. The collagen VI-related myopathies encompass a range of diseases
ranging from severe UCMD to mild BM [23]. Disease models constructed by knocking out the Col6a1,
Col6a2, or Col6a3 gene, and none of these mice could mimic UCMD [8–12].

The Col6a1 mutant Landseer dogs can reproduce the human UCMD phenotype, and zebrafish
model constructed by mutating Col6a1 can also mimic the human phenotype [34–36]. So far, no studies
have been able to explain why Col6a1 mutations are so variable in different species [6]. Well, based on
phenotype of Col6a1, Col6a2, and Col6a3 mutant mice model and human UCMD, we could speculate
that the function of collagen is not the same in human and mouse species. However, the specific
mechanism needs to be further studied.

Although there are more severe animal models in dogs and zebrafish, the mouse disease model is
irreplaceable for scientific research. Because of this, although the disease model mice cannot simulate
human UCMD, the model mice still provide a major role in promoting the research and treatment of
UCMD [37–43].

Collagen VI associates with the ECM around muscle cells and interacts with several other matrix
constituents in human beings [29,30,44]. Efficient contraction of skeletal muscle is closely related to the
muscle fibers, the surrounding ECM, and the coordination between them [45–47]. So, the essential
cause of UCMD is the abnormality of extracellular matrix-related proteins.

The members of the miR-29 family are closely related to extracellular matrix-related proteins.
Low expression of miR-29 can cause fibrosis in many tissues and organs fibrosis of various tissues
and organs, including liver [48–50], lung [51–53], heart [54,55], kidney [56], skin [57,58], trabecular
meshwork [59], and bone [60,61]. At the same time, the down-regulation of the expression of miR-29a
and miR-29c in patients with primary skeletal muscle disease is also directly related to skeletal
muscle fibrosis [62]. Therefore, we constructed a UCMD model by overexpressing miR-29 to inhibit
extracellular matrix-related proteins. The dTG mice skeletal muscle uncovered a significant myopathic
phenotype. More importantly, we can mimic the spectrum of the collagen VI-associated myopathy
phenotype by adjusting the expression of miR-29.
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Similar to UCMD patients, the miR-29ab1 cluster dTG mice exhibit dyskinesia, dyspnea,
and kyphosis. Because of the abnormal development of respiratory-related skeletal muscle,
the overexpression of miR-29 affected the life span of mice. However, the life span of the previous
model mice was not affected, and there was also no significant abnormality in their walking ability [6].
Skeletal muscle affects the development of bone, many human being muscular dystrophy display
abnormal development of bone, the phenotype of bone is caused by gene loss or myopathy that is in
dispute [21,23,63–65]. The muscle-specific miR-29ab1 cluster dTG display the scoliosis and kyphos also
mean myopathy can be significantly and enough interrupt the bone development. So, the miR-29ab1
cluster dTG mice simulate the human clinical and pathological characteristics of UCMD patients.

Analysis of multiple target genes that miR-29 may inhibit and we found that miR-29 did not
inhibit collagen VI, but inhibited the expression of Col4a1 and Col4a2. Col4 is a component of the
basement membrane of various tissues and organs [66]. Col4 forms a microfibrillar network which
interacts with other ECM components, including collagen VI [30,67].These different types of proteins
can work together to support and protect the integrity of muscle. Col4 is a critical role in the ECM
formation and cell arrangement in skeletal muscle. At the same time, the mutation of Col4a1 in mice
can also cause skeletal muscle dysplasia [33,68], which further confirms our results. Therefore, a mouse
model that resemble pathology of UCMD can be constructed by inhibiting the expression of Col4a1
and Col4a2 in the skeletal muscle.

In this study, the miR-29ab1 cluster dTG mice displayed a significant myopathy and downregulated
collagen expression, suggesting that these muscle-specific miR-29ab1 cluster dTG mice constitute an
excellent mouse model that can recapitulate features of UCMD. The dTG mice can provide suitable
materials for the drug development of related diseases and provide reference for understanding the
pathogenesis of human diseases.

5. Conclusions

Col4 is important for the postnatal skeletal muscle formation, the insufficient of Col4a1 and Col4a2
could cause some phenotypes of UCMD, and the miR-29ab1 cluster dTG mice were also demonstrated
to be an excellent model that resemble the pathology of UCMD.
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