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The progression of disorder-specific brain pattern expression

in schizophrenia over 9 years
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Jouko Miettunen™, Dominic B. Dwyer*>'? and Nikolaos Koutsouleris {?>'%'"12

Age plays a crucial role in the performance of schizophrenia vs. controls (SZ-HC) neuroimaging-based machine learning (ML)
models as the accuracy of identifying first-episode psychosis from controls is poor compared to chronic patients. Resolving whether
this finding reflects longitudinal progression in a disorder-specific brain pattern or a systematic but non-disorder-specific deviation
from a normal brain aging (BA) trajectory in schizophrenia would help the clinical translation of diagnostic ML models. We trained
two ML models on structural MRI data: an SZ-HC model based on 70 schizophrenia patients and 74 controls and a BA model (based
on 561 healthy individuals, age range = 66 years). We then investigated the two models’ predictions in the naturalistic longitudinal
Northern Finland Birth Cohort 1966 (NFBC1966) following 29 schizophrenia and 61 controls for nine years. The SZ-HC model’s
schizophrenia-specificity was further assessed by utilizing independent validation (62 schizophrenia, 95 controls) and depression
samples (203 depression, 203 controls). We found better performance at the NFBC1966 follow-up (sensitivity = 75.9%, specificity =
83.6%) compared to the baseline (sensitivity = 58.6%, specificity = 86.9%). This finding resulted from progression in disorder-
specific pattern expression in schizophrenia and was not explained by concomitant acceleration of brain aging. The disorder-
specific pattern’s progression reflected longitudinal changes in cognition, outcomes, and local brain changes, while BA captured
treatment-related and global brain alterations. The SZ-HC model was also generalizable to independent schizophrenia validation
samples but classified depression as control subjects. Our research underlines the importance of taking account of longitudinal
progression in a disorder-specific pattern in schizophrenia when developing ML classifiers for different age groups.
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INTRODUCTION Another possibility is that the above age-related finding may

Neuroimaging-based machine learning techniques have the
potential to improve the accuracy of diagnosing schizophrenia
in clinical care'. However, previous cross-sectional research shows
that the stage of schizophrenia plays a key role in the performance
of machine learning classifiers. The accuracy of identifying first-
episode psychosis from controls is poor® compared to older and
more chronic patients®. Given the widely-reported findings of
more significant progression of longitudinal structural brain
alterations in schizophrenia compared to controls*®, it is possible
that the above finding reflects progression in the multivariate
patterns that could have multiple underlying sources.

One possibility is that the neuroanatomical pattern distinguish-
ing schizophrenia from controls (SZ-HC) becomes more discern-
ible over time due to the disorder’s progressive nature. This
possibility should be explored in a longitudinal sample since
the above age-related finding might also reflect selection bias,
where those schizophrenia patients meeting recovery in the
future (about 13.5%’) are missing from chronic samples®. This is an
important consideration since schizophrenia patients with poor
outcomes have more structural abnormalities than those with
good outcomes”'°,

reflect deviations from a normal brain aging trajectory in
schizophrenia that are non-disorder-specific. Brain aging is a
synchronized process among individuals, which has enabled the
employment of machine learning to estimate chronological age
from an individual’s brain with high accuracy'"'% In schizophre-
nia, there appears to be a gradient of aggravation in higher
predicted age (vs. chronological age) from at-risk individuals to
established diagnosis'®. Nonetheless, increased brain aging (i.e.,
predicted - chronological age) is not schizophrenia-specific as it
can also be traced in other disorders like depression'" ">,
Furthermore, previous work has shown that the patient status can
be accurately predicted from controls using only non-disorder-
specific brain aging in depression and bipolar disorder in addition
to schizophrenia'®. Therefore, it is possible that brain aging in
schizophrenia accommodates the aggregations of secondary
effects (e.g., cumulative exposure to antipsychotics) as brain
aging is generally considered a proxy of overall brain health'>'®.
Given the cross-sectional report of an association between an
individual's schizophrenia fingerprint expression and brain
aging'?, longitudinal investigations on the two patterns’ trajec-
tories are crucial.
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To our knowledge, only one previous study has explored the
longitudinal course of these patterns'”. In the study, schizophrenia
patients demonstrated an acceleration of brain aging compared to
controls over the follow-up. The schizophrenia-related pattern
expression in schizophrenia was also magnified over time, but the
change was not significant. These findings might imply that non-
disorder-specific abnormalities mainly drive the increment in the
distinction of schizophrenia from controls over time. To evaluate
this possibility, however, a cross-disorder assessment of different
clinical manifestations should also be performed. Furthermore,
although some of the schizophrenia patients in the study'’ were
followed up to 13 years, the comparison between schizophrenia
and controls was limited only to 3.5 years, limiting the conclusions
on these patterns’ longitudinal trajectories. Also, since the
magnitude of the aging effect on brain structures varies between
different age groups'?, these investigations should be conducted
in a sample with a minimum and, most importantly, harmonized
age range. Lastly, to avoid potential selection bias, the long-
itudinal comparison should ideally be performed in individuals
recruited and followed within an epidemiological and naturalistic
framework.

We aimed to investigate the expression of the SZ-HC and brain
age-related patterns over a nine-year follow-up period to resolve
whether the age-related increment in the separability of schizo-
phrenia from controls results from progressive schizophrenia-
specific alterations in multivariate brain patterns. To avoid
potential selection bias in study sample recruitment®'® and limit
the potential variance in aging effect on brain structures across
different age groups'®, we investigated these patterns’ trajectories
in a prospective birth cohort with a naturalistic setting. Given the
previous cross-sectional machine learning findings of higher
sensitivity in older (vs. younger) schizophrenia®, we hypothesized
that we would find a more accurate classification of schizophrenia
patients at the follow-up (vs. the baseline). Second, building upon
the existing evidence on schizophrenia’s separability from other
psychiatric disorders?®?!, we hypothesized the SZ-HC classifier is
disorder-specific (i.e., the model is not generalizable to a different
clinical manifestation). Consequently, we hypothesized that the
SZ-HC model and non-disorder-specific brain aging are differently
reflected in longitudinal changes in brain structures and clinical
variables.

RESULTS
Sociodemographic and clinical characteristics

Demographic data are described in the Table 1 and a more
detailed description is provided in the Supplement. The
schizophrenia patients of the Centre for Biomedical Research
Excellence (COBRE) sample were older than the schizophrenia
patients of the Northern Finland Birth Cohort 1966 (NFBC1966)
at the baseline (Cohen’s d =0.35, t(70) = 2.5, P value =0.01).
The Follow-up NFBC1966 schizophrenia patients were older
than the COBRE schizophrenia patients (Cohen’s d=0.42,
t(70) = —2.9806, P value = 0.004). There were more females in
the NFBC1966 schizophrenia sample compared to the respec-
tive COBRE sample (x*> = 8.08, P value = 0.004). Schizophrenia
onset age did not differ between the COBRE and NFBC1966
(Cohen’s d =0.26, t(85) = —1.4, P value = 0.15). There were no
Chlorpromazine dose differences between the COBRE and the
baseline NFBC1966 (Cohen’s d =0.02, t(41) = —0.07, P value =
0.95), and between the COBRE and the follow-up NFBC1966
(Cohen’s d =0.04, t(45) =0.14, P value = 0.89). No differences
were found in symptomatic remission between the COBRE and
NFBC1966 at baseline (> = 0.13, P value = 0.72), or at follow-up
()(2 = 0.47, P value = 0.49). The number of hospitalizations did
not differ between the COBRE and NFBC1966 at baseline
(Wilcox U-test:;; W=1124.5, P value =0.22), but there were
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Sociodemographic characteristics of the included schizophrenia vs. controls samples.

Table 1.

NMorphCH CNP

(HC, N

NFBC1966
(HC, N

COBRE
(HC, N

CNP

NMorphCH

(SZ, N

NFBC1966
(SZ, N

COBRE
(SZ, N

=52)

(HC, N

43)

=61) BL/FU =

=74)

(SZ, N=18)

= 44)

29) BL/FU

=70)

30.71 (9.13)

36.78 (8.75) 35.82 (11.58)  34.5(0.71)/43.0 (0.54)  31.53 (8.43)

3245 (6.91)

33.7 (0.75)/42.8 (0.57)

13.84)
20%)
1.83)
7.56)

26 (50%)
15.08 (1.75)

23 (51%)
15.96 (2.55)

23 (38%)

NA

23 (31%)
14.43 (3.32)

3 (17%)
12.83 (1.62)

14 (32%)

12.79 (1.82)

14 (48%)

NA
229 (4.5)

NA
NA

20.65 (4.61)

NA

7 (0-31)/11 (0-36)

37.83

Age [Mean(SD)]

14
12.95
21.16

Sex [Females(%)]

School years [Mean(SD)]

Age of illness onset [Mean(SD)]

Number of hospitalizations

?[Median(range)]

NA

12.35 (7.26)

4.5)/19.83 (4.58)

3 (17%)
2933 (23.73)"
31.44 (16.47)"

2 (6%) NA
43.71 (33.43)
58.35 (24.58)"

25%)/6 (21%)
4.88)/15.61 (5.83)

10.32)/22.36 (11.39)
423.7)/354.63 (367.68)

330 (176.18)

NA

10.72

12.75)
29%)
4.7)
4.78)

7

13.15

17.44
371.59

307.34)

16.49

Disorder duration [Mean(SD)]

Remission [N (%)]

20
14.73
14.67

365.84

Positive symptoms [Mean(SD)]

Negative symptoms [Mean(SD)]

CPZ equivalent in mgs [Mean(SD)]

*Assessed with SAPS or SANS.

Remission was assessed according to the Andreasen et al.,, 2005 without the duration criteria.

SZ schizophrenia, HC controls, CPZ chlorpromazine, NA not available, BL baseline, FU follow-up.
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Fig. 1

Flowchart depicting the analyses of the study. a Training the schizophrenia vs. controls classifier in the COBRE. The classifier was

applied, without any in-between retraining, to schizophrenia samples to assess within-disorder and MDD samples to assess cross-disorder
performance. b Training the brain aging regressor in the IXl. The models were then applied to the NFBC1966 without any in-between
retraining. ¢ The visualization of the schizophrenia vs. controls classifier and brain aging regressor as cross-validation ratio maps. Warm colours
indicate signal increases, and cold colours signal decreases in VBM data.

more hospitalizations at follow-up in NFBC1966 compared with
COBRE (Wilcox U-test: W = 1304, P value = 0.008).

Schizophrenia classification
Classification of schizophrenia from controls in the COBRE model
discovery sample resulted in a balanced accuracy (BAC) of 70.8%
(sensitivity = 70.0%, specificity = 71.6%). The SVM classifier's diag-
nostic pattern’s reliable parts were computed using the cross-
validation ratio method of NeuroMiner and shown in (Fig. 1c).
Figure 2 presents the ROC curves and SVM decision scores for the
SZ-HC classification in NFBC1966 (using the COBRE-trained models).
We measured an out-of-sample cross-validation BAC (BACyoc,) Of
72.8% (sensitivity = 58.6%, specificity = 86.9%) at baseline, whereas
BAC,ocy measured 79.7% (sensitivity = 75.9%, specificity = 83.6%) at
follow-up. Compared to the baseline ROC-curve, the diagnostic
separability was significantly better at the follow-up (paired
Delong's test of two ROC-curves, Z=26, P value=0.01).

Published in partnership with the Schizophrenia International Research Society

We found an increment in the SVM decision scores over time in
the NFBC1966 schizophrenia patients (Cohen’s d =0.58, t(28) =
3.11, P value = 0.004) but not in controls (Cohen’s d = 0.09, t(60) =
—0.7, P value =049). We also found an SVM decision score by
timepoint interaction (F(1,88) =12.5, P value = 0.0007). The inter-
action was present even when we used BrainAGE as a covariate in
the model (F(1,89) =10.5, P value =0.002). There was no sex by
group interaction on the SVM decision scores at the baseline
(F(1,0.28) = 0.189, P value = 0.665) or at the follow-up (F(1,0.28) =
0.189, P value = 0.665).

Schizophrenia classification in the validation samples

Applying the COBRE-trained classifier to the external validation
samples, we measured classification performances of BAC,oc, =
77.5% (Sensitivity = 72.2%, Specificity =82.7%) in the CNP,
BACo0cy = 69.1% (Sensitivity = 54.5%, Specificity = 83.7%) in the
NMorphCH. The ROC-curves are provided in Supplementary Fig. 5.

npj Schizophrenia (2021) 32
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Fig. 2 The classification of schizophrenia from controls over time. a ROC-curves for the schizophrenia vs. controls classification in the
baseline and the follow-up. b SVM decision scores over time. Error-bars as standard deviation. SZ schizophrenia, HC healthy controls. ¢ The
brain regions contributing to the increment in SVM decision scores over time (Threshold-Free Cluster Enhancement-corrected P value < 0.05).

The Performance of the Schizophrenia classifier in
classification of MDD from controls

The SZ-HC model’s classification performance in the two MDD
datasets resulted in BAC,oc, Of 61.5% in the Minster (Sensitivity =
35%, Specificity = 88%) and BACocy Of 49% in the Munich dataset
(Sensitivity = 18.4%, Specificity =79.6%). The SZ-HC classifier's
performance was superior in the external SZ datasets compared
to the Minster (DelLong's test: D = 3.9, P value = 0.0001) and the
Munich MDD cohorts (D = 6.1, P value < 0.0001). Detailed descrip-
tions of the classification performances are provided in the
Supplement.

Brain aging

Compared to controls, we found higher BrainAGE in patients
with schizophrenia at the NFBC1966 baseline (+1.3 years in
schizophrenia, t(46) =3.0, Cohen’s d=0.7, P value =0.005),
which was more pronounced at the follow-up (+7.7 years in
schizophrenia, t(62) = 4.4, Cohen’s d =0.95, P value < 0.0001),
which is shown in Supplementary Fig. 9. We also detected a
group by timepoint interaction on BrainAGE (F(1,88) =4.0017, P
value = 0.049). The BrainAGE predicted SVM decision scores for
schizophrenia over the follow-up (Fig. 3a) in schizophrenia.
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However, annual increases in brainAGE did not relate to annual
SVM decision score change between the timepoints (Fig. 3b).
Across the brain, CV-ratios of the SZ-HC classifier correlated
with the brain aging regressor (p=0.35, P<0.0001, Supple-
mentary Fig. 15).

The prediction of patterns’ expressions trajectory with clinical
variables

Figure 4a, Supplementary Tables 2-3, and Supplementary Figs. 10-
11 presents the relationships between the clinical variables with
the SVM decision scores and BrainAGE. Across the two timepoints,
SVM decision scores had a positive relationship with the number
of hospitalizations, disorder duration, and Chlorpromazine dose
years, and negatively with the CVLT performance. Of these
relationships, only the associations between CVLT and SVM
decision scores and BMI and SVM decision scores remained
significant after adjusting the model for BrainAGE effects. Post hoc
regression analyses revealed the annual decrease in CVLT and
increased BMI related to increased SVM decision scores.

Across the two timepoints, total symptoms, negative symp-
toms, general symptoms, number of hospitalizations, disorder
duration, and CPZ dose years had a positive relationship with
BrainAGE. These relationships remained significant even when

Published in partnership with the Schizophrenia International Research Society
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Fig. 3 The relation of the SZ-HC model and brain aging over time. a The relationship between SVM decision scores and BrainAGE as a
coefficient of determination from a linear mixed model. b The relationship between the annual change in BrainAGE and annual change in
SVM decision scores. ¢ The brain regions of which atrophy over time contributes to the corresponding increment in BrainAGE (Threshold-Free

Cluster Enhancement-corrected P value < 0.05).

we adjusted the models with SVM decision scores. However, we
found that these clinical factors’ annual changes did not relate
to annual changes in BrainAGE.

The prediction of future outcomes using baseline patterns’
expressions

Low SVM decision scores at baseline predicted symptomatic
remission at follow-up (FDR-corrected P value = 0.020). The same
was true for functional recovery at follow-up (FDR-corrected
P value = 0.034) and being (vs. not being) without antipsychotic
medication (FDR-corrected P value = 0.019). Conversely, baseline
BrainAGE does not predict any of these outcomes at follow-up.
(see Fig. 4b and details in the Supplement).

Univariate brain analyses

In the NFBC1966 sample, we found that the SVM decision score
difference*timepoint related to the decreases in the hippo-
campus and medial prefrontal cortex, and increases that were
located mainly in the periventricular white matter and pre- and
post-central regions (Fig. 2). The analyses on other tissue types
(details in the Supplementary Results) revealed that the SVM

Published in partnership with the Schizophrenia International Research Society

decision score difference * timepoint interaction reflected white
matter atrophy in the regions that showed increased grey
matter density (Supplementary Fig. 19). We found that the
BrainAGE difference*timepoint interaction related to wide-
spread decreases in the cortical and subcortical grey matter
(Fig. 3c), and no positive interactions were found. The analyses
on the global effects of the two multivariate patterns
(Supplementary Fig. 12) revealed that the annual SVM decision
score change over time did not relate to the annual change in
global grey matter volume (R*=0.0006, P value =0.81).
However, the annual change in BrainAGE related to annual
decreases in the global grey matter volume (R*> = 0.18, P value
<0.0001). This effect was even more pronounced in schizo-
phrenia (R? = 0.28, P value = 0.003).

Supplementary results on the effect of disorder duration

We found an increment in the SVM decision scores over time in
the NFBC1966 schizophrenia patients when we applied both the
“short” (paired T-test, Cohen’s d =0.47, t(28) =2.53, P value =
0.017) and the “long” (Cohen’s d =0.83, t(28) =4.5, P value =
0.0001) disorder duration models to the NFBC1966. Similar
findings were observed when we applied both the “short”

npj Schizophrenia (2021) 32

np)j



npj

J. Lieslehto et al.

SVM decision scores

BrainAGE

SOFAS

PANSS total
PANSS positive
PANSS negative
PANSS generalized
CaGl

|l

Number of hospitalizations - | * ;l *
Disorder duration * I *
Cumulative CPZ dose years - :l I *
BMI - | *

AIM- 4 :|

AIM+ A

VOLT - ]

cvit 4 ] * ]

00 01 02 03 00 01 02 03
Variance Explained (R%) Variance Explained (R?)
b SVM decision scores (Baseline) == BrainAGE (Baseline)

Symptomatic Remission

Without Antipsychotics

Functional Recovery

(Follow-up) (Follow-up) (Follow-up)
1.00 4 1.004 1.00
0.75 0.754 0.75
2 2 2
2 = =
% 0.50 % 0.504 % 0.50
I S c
& ] 3
0.254 0.25 4 0.25
0.00 ¢ : ' : T 0.00 7 . . . Y 0.004 Y , . '
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
1 - specificity 1 - specificity 1 - specificity

Fig. 4 The relation of the two neuroanatomical patterns and clinical and outcome variables. a The relationships between the two
neuroanatomical patterns’ expressions and clinical variables as coefficients of determinations from linear mixed models. Yellow presents
positive and blue presents a negative association. The asterisk presents FDR-corrected P value < 0.05. CGI global clinical impression, CPZ
chlorpromazine equivalent, AIM- Abstraction, Inhibition and Working Memory without memory part, AIM+ Abstraction, Inhibition and
Working Memory with memory part, VOLT Visual Objective Learning Test, CVLT California Verbal Learning Test, BMI body mass index. b The
performance of baseline SVM decision scores and BrainAGE to predict the follow-up outcomes using the NFBC 1966 schizophrenia (N = 29).

(F(1, 88)=11.1, P value =0.001) and the “long” (F(1, 88) =114,
P value = 0.001) disorder duration models to the NFBC1966. Last,
the CV-ratios of the “long” and “short” SZ-HC classifiers correlated
across the brain (p = 0.55, P value < 0.0001).

DISCUSSION

We showed that a disorder-specific multivariate pattern expres-
sion magnifies in schizophrenia but not in controls leading to
greater separation of patients with schizophrenia from controls as
a function of time. This finding was not explained by longitudinal
changes in non-disorder-specific brain aging, which possibly
reflects co-occurring, albeit distinct, morphological brain pro-
cesses in patients with schizophrenia. Our longitudinal setting in a
prospective birth cohort demonstrated that our findings did not
result from selection bias in recruiting patients with different
disorder durations.

Our SZ-HC pattern trained on 144 COBRE individuals general-
ized to the NFBC1966 and two validation samples. This is in line
with a previous study suggesting a minimum of 130 subjects to
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train a generalizable schizophrenia classifier’?. The model did
not generalize to MDD as these patients were mainly classified
as controls, which implicates that the classifier is relatively
disorder-specific. These findings are in line with previous
studies reporting a separability between schizophrenia and
depression®° and schizophrenia and bipolar disorder®'. Future
studies should extend our investigations on the cross-disorder
generalizability of SZ-HC classifiers as many psychiatric and
neurological disorders share similar brain network abnormal-
ities®> and partly overlapping genetic underpinnings®*. For
example, future studies should explore whether the SZ-HC
classifier generalizes to disorders with psychotic-like symptoms
(e.g., a subgroup of frontotemporal dementia®?).

The longitudinal magnification of SZ-HC pattern expression
potentially reflects its progressive nature. The idea of schizo-
phrenia as a progressive brain disorder has been controversially
discussed since Kraepelin®® and is supported by widely-reported
findings of chronic schizophrenia patients depicting more
structural abnormalities than first-episode psychosis®’. An alter-
native interpretation may be that our findings reflect the

Published in partnership with the Schizophrenia International Research Society



accumulation of secondary chronicity-related factors (e.g., cumu-
lative antipsychotics exposure®?®), given the fact that the COBRE
represented relatively chronic schizophrenia. Although our data
cannot fully address this possibility, our supplementary analyses
revealed that employing a model trained in a sample with a mean
disorder duration of six years showed a similar divergence pattern
of schizophrenia from controls over time compared to a training
sample with a mean disorder duration of 27 years. Furthermore,
we also found that this “short” disorder duration model used a
brain pattern to classify schizophrenia from controls akin to the
“long” disorder duration model. These findings might indicate that
the schizophrenia brain pattern is qualitatively similar, at least to
some extent, across schizophrenia patients of different ages, but
its magnitude varies as a function of time.

The greater separation of schizophrenia from controls over time
did not result from concomitant acceleration of brain aging in
schizophrenia, although both patterns weighted some of the
same brain regions. Specifically, although we replicated the
previous finding of an association between schizophrenia
patients’ expression of SZ-HC pattern and brain aging'® and
acceleration of brain aging in schizophrenia over time compared
to controls'’, the change in brain aging between the baseline and
the follow-up did not explain changes in SZ-HC pattern
expression. Also, the progressive trajectory of schizophrenia
patients’ disease fingerprint expression over time was present
even after adjusting the statistical analysis for the effects of
concurrent brain aging.

The increment in both patterns’ expression between the
baseline and the follow-up reflected concomitant grey matter
atrophy in the temporal and frontal lobe that are well-known
structures to be affected over time in schizophrenia®?°~3",
Despite these similarities, our results indicate that these
patterns differ in terms of the magnitude of longitudinal grey
matter atrophy. Specifically, we found that the annual incre-
ment in brain aging between the baseline and the follow-up
explained up to 28% of the variance in annual grey matter
volume reduction in schizophrenia, indicating that this pattern
captures a large proportion of the global grey matter
alterations. The longitudinal grey matter alterations leading to
increment in SZ-HC pattern expression encompassed, conver-
sely, only a few brain structures mainly located in the medial
prefrontal cortex and hippocampus. Unlike brain aging, the
expression increment in the SZ-HC pattern is also related to a
progression in periventricular white matter atrophy that might
encapsulate the well-reported progressive ventricular enlarge-
ment in schizophrenia over time>3%32  Altogether, these
findings suggest that the progressive brain changes in
schizophrenia may relate in part to one multivariate pattern
capturing circumscribed and relatively disorder-specific long-
itudinal brain changes, while another pattern captures global
but non-disorder-specific longitudinal grey matter alterations.

Over time, the increment in schizophrenia detection over time
was associated with the concurrent decline in verbal cognition
and weight gain in schizophrenia. The SZ-HC pattern expression
was also related to the number of hospitalizations and disorder
duration, but further analyses revealed that concurrent brain
aging effects explained these relationships. Surprisingly, the
trajectory of psychotic symptoms or treatment-related factors
had no significant association with SZ-HC pattern expression over
the follow-up but were related to alterations in non-disorder-
specific brain aging. Our findings of a negative association
between SZ-HC pattern expression and poor cognitive perfor-
mance are in line with the literature on wide-spread cognitive
deficits in schizophrenia®*** and the previous machine learning
studies finding similar associations®>*°. The positive relationship
between BMI and SZ-HC pattern expression could reflect a high
prevalence of obesity in schizophrenia®” but also disinhibition®®, a
common trait in schizophrenia®. Lastly, our data showed that
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misclassification of schizophrenia in baseline predicted sympto-
matic remission and functional recovery and being without any
antipsychotic medication at the follow-up. Conversely, we found
that brain aging at the baseline did not predict future disorder
outcomes.

These findings might indicate that the schizophrenia brain
pattern does not capture the course of primary schizophrenia
symptoms and factors related to their treatment, as these
variables were mainly linked to longitudinal changes in brain
aging. The latter observation is keeping up with the accumulating
evidence that brain aging captures the overall brain health, which
in the present work could reflect exposure to antipsychotics and
their effect on psychotic symptoms. Importantly, however, our
results suggest that variations in SZ-HC pattern expression predict
neurocognitive and outcome-related disease trajectories. The
broad prognostic value of the SZ-HC pattern for these factors is
in keeping with clinical evidence showing that cognitive
performance is one of the strongest outcome predictors in
schizophrenia®®™2, Lastly, the divergence in the associations with
the clinical variables between the two pattern expressions is in
line with the clinical observation that cognitive deterioration is
mostly separate from schizophrenia symptoms as alleviating these
symptoms with antipsychotics does little for restoring cognitive
deficits*?,

Our study has several limitations. First, all machine learning
models reflect their underlying sample. A training sample with
different cumulative exposure to antipsychotics or cognitive
profile might have resulted in slightly different findings. Second,
our longitudinal NFBC1966 sample size was small. Future long-
itudinal large-scale studies are therefore needed to replicate our
findings. The third limitation is that the analyses were conducted
on established schizophrenia and, hence, do not apply to first-
episode psychosis or clinical high-risk. Future longitudinal studies
should extend our work by exploring the pattern trajectories in
these groups. The fourth limitation is that an extensive
neuropsychological battery was not available in the NFBC1966,
limiting our conclusions regarding a broader multidimensional
concept of neurocognition. Lastly, more timepoints in the
longitudinal analysis would have enabled a more accurate
characterization of the two multivariate patterns’ trajectories.

Despite these limitations, our research underlines the impor-
tance of taking account of longitudinal progression in disorder-
specific pattern expression in schizophrenia when developing
imaging-based machine learning classifiers to diagnose schizo-
phrenia in different age groups. Consequently, care needs to be
taken in future studies when aiming to develop one normative
schizophrenia model for a sample with a wide age range.

METHODS

Study samples

A detailed description is provided in the Supplement. The local ethical
committees of each dataset have approved the data usage in the present
study. The study participants of each dataset gave written informed
consent. We chose the Centre for Biomedical Research Excellence (COBRE)
of 70 schizophrenia and 74 controls as our model discovery dataset
(Fig. 1a) due to its usage in previous schizophrenia-related neuroimaging
studies and a wide age range®>****, Briefly, the dataset was collected by
the Mind Research Network and the University of New Mexico.
Schizophrenia diagnoses were defined using the Structured Clinical
Interview for DSM-IV.

We used the Northern Finland Birth Cohort 1966 (NFBC1966)** to
explore the neuroanatomical separability of schizophrenia (N =29) from
controls (N=61) as a function of time, using the COBRE-trained models.
The NFBC1966 comprised the individuals born in 1966 in the two
northernmost provinces in Finland*. Schizophrenia cases in the cohort
were identified using nationwide registers. The controls were randomly
selected individuals from the cohort without a psychotic disorder.
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We used the Consortium for Neuropsychiatric Phenomics (CNP)*®® and

the Neuromorphometry by Computer Algorithm Chicago (NMorphCH;
http://nunda.northwestern.edu/nunda/data/projects/NMorphCH)*® as vali-
dation samples to further assess the generalizability of the COBRE-trained
models. The CNP was downloaded from the https://www.openfmri.org and
the NMorphCH from the http://schizconnect.org. The CNP is a cross-
sectional study, including individuals of different diagnoses: schizophrenia,
bipolar disorder, and ADHD. In the present study, we used only
schizophrenia (N =18) and controls (N =52). The NMorphCH (44 Schizo-
phrenia, 43 controls) is a longitudinal study with a two-year follow-up.

To assess the cross-disorder performance of the schizophrenia classifier,
we utilized two German Major depressive disorder (MDD) samples, one
from Munich (103 MDD, 103 controls') and the other from Miinster®®”’
(100 MDD, 100 controls).

We trained our brain aging model using the Information eXtraction from
Images (IXl) (Fig. 1b), which includes 600 normal healthy individuals
(https://brain-development.org/ixi-dataset/) from three sites in the UK.

Processing of the structural MRI

The structural MRI (sMRI) data were analyzed using VBM provided by the
CAT12 toolbox version 1364 (Structural Brain Mapping Group, Jena
University Hospital, Jena, Germany http://dbm.neuro.uni-jena.de/cat12/)
on SPM12 in MATLAB r2017a. T1-weighted images were processed using
the standard pipeline implemented in the toolbox, including denoising,
skull stripping, spatial normalization to the Montreal Neurological Institute
(MNI-152) space using the DARTEL algorithm, and segmentation into grey
matter (GM), white matter, and cerebrospinal fluid. We conducted quality
control by visually inspecting the processed images. Participants with MRI
overall image quality worse than level C (i.e., satisfactory) from the CAT12
output were excluded from further analyses.

Due to differences in scanner types, we standardized each dataset using
healthy control-based Z-normalization. In each dataset, each subject’'s GM
map was standardized using the Eq. (1):
= Xi — Muc 1)

OHc
where x; = individual subject’s GM map; uyc = average GM map based on
controls; oyc = standard deviation GM map based on controls.

Schizophrenia vs. Controls (SZ-HC) classifier

We used the NeuroMiner (version 1.0, https://github.com/neurominer-git/
NeuroMiner-1) running on MATLAB r2017a to train the SZ-HC classifier
using support vector machines (SVMs) in a repeated, nested cross-
validation framework consisting of an outer 10 x 10 -fold cross-validation
cycle (CV2) and an inner 10 x 5-fold cross-validation cycle (CV1) (Fig. 1a). In
the CV1, we used the following preprocessing steps: smoothing of the
modulated GM maps with a full-width by half maximum (FWHM)
smoothing kernel across a range of 4, 6, and 8 mm; correction for age
and sex using a regression model computed in the healthy controls;
principal component analysis for dimensionality reduction (80% variance
retained); and scaling [0,1]. The training of the preprocessed features was
conducted using a linear support vector machine (SVM; LIBSVM 3.1240;
http://www.csie.ntu.edu.tw/~cjlin/libsvm). The winning models based on
maximal balanced accuracy (i.e, the mean of sensitivity and specificity)
across a range of SVM hyperparameters (0.0039, 0.0156, 0.0625, 0.25, 1, 4,
16, 64, and 256) in the CV1 cycle were applied to the respective out-of-
training CV2 test subjects.

Next, without any in-between retraining, we applied the SZ-HC classifier
to the NFBC1966, the replication data (the NMorphCH and the CNP), and
the MDD data (MUC and Miinster data). We determined a ROC-curve using
SVM decision scores in the pooled out-of-training schizophrenia vs.
controls samples and compared it to the MDD samples’ ROC-curves. The
combined schizophrenia vs. controls sample consisted of the NFBC1966
(mean of SVM decision scores between the baseline and the follow-up),
NMorphCH, and CNP. An Individual's SYM decision score measures the
distance from the decision boundary and can be viewed as denoting the
degree of the classifier’s certainty of an individual's class membership. We
used SVM decision scores as a proxy of the magnitude of multivariate
SZ-HC pattern expression.

Brain aging regressor

We used support vector regression (SVR) in the IXI to estimate
chronological age from sMRI. We used the same setup of repeated,
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nested cross-validation as in the above SZ-HC classification. In the CV1, we
used the following preprocessing steps: smoothing of the modulated VBM
images with an FWHM smoothing kernel of 8 mm; correction for sex and
field strength (in Teslas) using a regression model; principal component
analysis for dimensionality reduction (80% variance retained); and scaling
[0,1]. Then, within each CV1 cycle, the preprocessed features were
projected into a linear kernel space, where the SVR algorithm determined
an optimal age-fitting function at a fixed C (regularization) parameter of 1
and a v-parameter in the range of 0.2, 0.5, and 0.7. The winning models
based on the lowest average Mean Absolute Error (MAE) in the CV1 cycle
were applied to the respective out-of-training CV2 test subjects. In order to
correct for the over- and underestimation of age in the lower and upper
tails of the distribution, we calculated detrending parameters by fitting the
CV2 subjects’ age residuals with their chronological age.

Next, we applied these brain aging models to the NFBC1966 baseline
and follow-up data (Fig. 1b). Lastly, we calculated the brain age gap
estimation (BrainAGE) score by subtracting chronological age from the
estimated brain age. We used BrainAGE as a proxy of brain aging pattern
expression.

Clinical and outcome variables

A detailed description is provided in the Supplement. Cognition was
assessed using the California Verbal Learning Test (CVLT)***3, Abstraction,
Inhibition and Working Memory task (AIM)**, and The Visual Object
Learning Test (VOLT)>>. Lifetime antipsychotic medication usage was
converted to Chlorpromazine (CPZ) equivalents®. Positive and Negative
Syndrome Scale (PANSS)*” was used to measure symptom dimensions.
Social and Occupational Functioning Assessment Scale (SOFAS)® and the
clinical global impression (CGl) were assessed via interviews. The duration
of the disorder and the number of hospitalizations were acquired from the
medical records and nationwide healthcare registers.

We used the following disorder outcomes at the follow-up: being in
remission, functional recovery (i.e., working or studying), being without
antipsychotic medication. For symptomatic remission, we used the
Andreasen criteria®® with modified duration criteria (no psychiatric hospital
treatments six months before the follow-up).

Statistical analyses

We used R version 3.6.1 (https://cran.r-project.org) accompanied with
“pROC™®, “ggplot2”®’, “Ime4"®?, “ImerTest’®®, and “car®® packages.
Demographic characteristics were compared using the T-test, Mann-
Whitney U-test, x>-test, and Fisher's exact test as specified in the Results
section. Statistical outliers were defined as+3SD. Missing data were
imputed using the K-nearest neighbor imputation. The two models’
predictive performances were compared using DeLong'’s test of the area
under curve® as specified in the Results section.

We used linear mixed models to investigate group by timepoint
interaction on the SVM decision scores and BrainAGE. Also, we used linear
mixed models to assess the relationships between the clinical variables
with the two patterns’ expressions. The subject was modelled as random
intercepts in the models. The coefficient of determination for the mixed
effect model was calculated according to Jaeger et al. in the linear mixed
models®®. We used False Discovery Rate (FDR) Correction®” to control for
false positives. Post hoc linear regression analyses on the clinical variable’s
annual change on the change of a given pattern expression were
performed in relationships where linear mixed-effects analyses showed a
main effect.

We used a nonparametric permutation test to evaluate the statistical
significance of the performance of a given multivariate pattern expression
(i.e., SVM decision scores or BrainAGE) to predict future disorder outcomes.
Specifically, we randomly resampled a given group label (e.g., remitted vs.
non-remitted) and assessed the performance of predicting this resampled
group label using the given pattern expression. Prediction performance
was assessed with the area under curve (AUC). This procedure was
performed 5,000 times, and the resulting values were used to make up the
empirical null distribution. Finally, the observed AUC was compared
against this null distribution using a two-sided test. FDR-correction was
used to control false positives. The results are shown in Supplementary
Figs. 13-14.

Univariate brain analyses

For schizophrenia and brain aging patterns, we investigated the expression
difference (i.e., between the timepoints) * timepoint interaction on the
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grey matter density using FSL version 6.0.1. Before the analysis, sex and TIV
were regressed out from the GM using FSL's GLM function. The regressed
VBM maps were also spatially smoothed with 8 mm FWHM. In the FSL's
GLM, we modelled the interaction between SVM decision score differences
and timepoint by using 2-way Mixed Effect ANOVA, where the within-
subject effect was modelled as a random effect. We conducted a voxel-
wise test to assess for statistical significance using the FSL's®® randomise
tool® using 5000 iterations, applying threshold-free cluster enhancement
(TFCE)’°, and a family-wise error (FWE) correction to account for multiple
voxel-wise comparisons. Statistical significant clusters were considered at
P value < 0.05 (FWE-corrected).

Last, we investigated the effect of annual change in the expression of
the SZ-HC and brain aging pattern expressions on the annual global grey
matter volume reduction. Global grey matter volumes were acquired from
the CAT12 processing output. The annual grey matter volume change was
calculated using the difference in global grey matter volume between the
timepoints divided by each individual's exact length of follow-up. The
association between the annual change in the expression of a given
pattern and annual change in grey matter volume was assessed using
linear regression.

Data visualization

Multivariate GM patterns characterizing the decision boundaries (SZ vs. HC
and brain aging) were visualized by back projecting each SVM/SVR model’s
feature weight vector from PCA to MNI space, as described in Koutsouleris
et al. (2015)%°. The reliability of predictive voxels in the models was
measured using a cross-validation ratio map with a threshold of + 3. The
CV-Ratio reflects the sum of the median weights across all CV1 folds
divided by the standard error. Neuroimaging data were visualized using
MRIcroGL  (http://www.cabi.gatech.edu/mricrogl/). Statistical data were
visualized using the “ggplot2”®' package in R version 3.6.1.

Supplementary analyses

We investigated the possibility that the SZ-HC pattern trajectory in the
NFBC1966 patients relates to the training sample’s disorder duration. This
was done to partially address the possibility that our SZ-HC classifier
mainly captures the disorder duration-related secondary factors, such as
the well-replicated effects of cumulative antipsychotics on brain struc-
tures>?®, We trained, by using the same nested cross-validation design as
in the primary analyses, one classifier with disorder duration below the
median (“short,” i.e., below 13 years [Mean = 5.85, SD = 2.99], N = 68) and
one with above the median (“long”, Mean =26.82, SD=9.66, N =70)
disorder duration in the COBRE. Controls were matched for sex and age for
both schizophrenia subsamples. The two models were then applied to the
NFBC1966.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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