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Abstract

Motivation: Intracellular communication is crucial to many biological processes, such as differentiation, develop-
ment, homeostasis and inflammation. Single-cell transcriptomics provides an unprecedented opportunity for study-
ing cell-cell communications mediated by ligand–receptor interactions. Although computational methods have been
developed to infer cell type-specific ligand–receptor interactions from one single-cell transcriptomics profile, there is
lack of approaches considering ligand and receptor simultaneously to identifying dysregulated interactions across
conditions from multiple single-cell profiles.

Results: We developed scLR, a statistical method for examining dysregulated ligand–receptor interactions between
two conditions. scLR models the distribution of the product of ligands and receptors expressions and accounts for
inter-sample variances and small sample sizes. scLR achieved high sensitivity and specificity in simulation studies.
scLR revealed important cytokine signaling between macrophages and proliferating T cells during severe acute
COVID-19 infection, and activated TGF-b signaling from alveolar type II cells in the pathogenesis of pulmonary
fibrosis.

Availability and implementation: scLR is freely available at https://github.com/cyhsuTN/scLR.

Contact: yu.shyr@vumc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cells constantly communicate with each other to orchestrate their
behaviors, ensuring normal functions of tissues, organs and bodies.
One important mode of intercellular communication is ligand–re-
ceptor interactions, where ligands from a ‘sender’ cell bind to recep-
tors in a ‘receiver’ cell that triggers response inside the cell. The
recent advance of single-cell RNA sequencing technology provides a
powerful way to study ligand–receptor interactions at an unprece-
dented scale and depth (Almet et al., 2021; Armingol et al., 2021).
Deciphering ligand–receptor interactions from single-cell transcrip-
tomics has become routine for understanding the biological systems
(Martin et al., 2019).

Computational methods have been developed rapidly to infer
cell-cell communications mediated by ligand–receptor interactions
from single-cell transcriptomics (Browaeys et al., 2020; Cabello-
Aguilar et al., 2020; Efremova et al., 2020; Hou et al., 2020; Hu
et al., 2021; Jin et al., 2021; Noel et al., 2021; Solovey and
Scialdone, 2020; Zhang et al., 2021). Ligand–receptor interactions
are detected and quantified based on the pairwise expression of

ligands and receptors between single cells or cell clusters. Some
methods, such as ICELLNET (Noel et al., 2021), determine the
interaction strength by the product of ligands and receptors expres-
sions. Other methods, such as CellChat (Jin et al., 2021) and
SingleCellSignalR (Cabello-Aguilar et al., 2020), calculate the inter-
action by a non-linear transformation of the product of ligands and
receptors expressions. The significance of cell type-specific interac-
tions is estimated based on a null distribution generated by shuffling
cluster labels of all cells. These methods have been successfully
applied in a number of single-cell transcriptomics datasets, which
uncovered key signaling mechanisms controlling cell fate and state
transitions (Bassez et al., 2021; Cheng et al., 2021; Gong et al.,
2021; Hildreth et al., 2021; Tian et al., 2021).

Existing methods focus primarily on the inference of ligand–re-
ceptor interactions between cells/cell clusters in one condition. The
identification of dysregulated communications across conditions,
however, is even more important for revealing potential driving sig-
nals. iTalk and CellChat predict up- (gained) or down-regulated
(loss) interactions based on the differentially expressed ligands and/
or receptors, where upregulated/gained interactions are defined
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based on upregulated ligands and/or receptors and vice versa. The
differential analysis compares expressions from pooled cells between
two conditions, which fail to consider inter-sample variances in each
condition. Moreover, identification of dysregulated ligand–receptor
interactions based on expression changes of ligands or receptors
alone would result in false positives and false negatives. For ex-
ample, a ligand–receptor interaction with an upregulated ligand but
a downregulated receptor is probably not a strong candidate.

We developed scLR to identify dysregulated ligand–receptor
interactions across conditions. scLR not only models the distribution
of the product of ligands and receptors expressions, but also
accounts for inter-sample variances, small sample sizes and dropout
events. scLR achieved high recall (sensitivity) and specificity in four
simulation datasets. scLR revealed important cytokine signaling be-
tween macrophages and proliferating T cells in severe COVID-19 in-
fection, and activated TGF-b signaling from alveolar type II cells in
the pathogenesis of pulmonary fibrosis.

2 Materials and methods

2.1 Data preprocessing
The inputs of scLR are one raw gene–cell count matrix along with
the cell cluster and the sample information (sample ID and condi-
tion) from single-cell RNA-seq data. The sample represents a repli-
cate, such as one patient. For example, the sample size is 20 if the
single-cell RNA-seq dataset is generated from10 tumor patients and
10 controls. scLR first sums gene counts in each cell cluster in each
sample to estimate gene expression in the cluster and in the sample.
Then scLR normalizes the summed data using a median normaliza-
tion method in DESeq2, which assumes expression profiles have the
same median value (Anders and Huber, 2010) (details in
Normalization in the Supplementary File). After normalization,
scLR transforms the data by log2 (xþ1) to obtain expression abun-
dances for the ligand yc;s

L and the receptor yc;s
R in the cluster c of sam-

ple s, where c 2 c1; c2 . . . cmf g and s 2 fs1; s2 . . . sng. m is the
number of clusters and n is the number of samples.

2.2 The distribution of the product of ligand and

receptor expressions
We assume yci ;s

L and y
cj ;s
R follow a bivariate normal distribution with

correlation q, where yci ;s
L and y

cj ;s
R denote the expression of ligand

and receptor in the cluster ci and cj of sample s, respectively. To sim-
ply the equation, we use yL and yR to represent yci ;s

L and y
cj ;s
R

(Equation 1).
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yLyR; the product of yL and yR, can be expressed as (Equation 2).
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, respectively. As shown in (2), the

distribution of yLyR is equal to that of the difference of two inde-
pendent non-central chi-square random variables (regardless of con-
stants), which depends on rLrR, a, b, and q. The expectation
E yLyRð Þ ¼ lLlR þ qrLrR.

2.3 Differential analysis of ligand–receptor interactions
scLR is aimed to identify cell-type specific dysregulated interactions
between two conditions. It first calculates the interaction strength of
each ligand–receptor pair between two cell clusters (the ‘sender’

and ‘receiver’) and then assesses its alteration between two con-
ditions statistically. The interaction strength of ligand–receptor
between clusters ci and cj in sample s is measured by the product

of the ligand and receptor in the corresponding cluster ci and cj

of sample s: yci ;s
L y

cj ;s
R . Assume there are nA samples from condition

A and nB samples from condition B, where n ¼ nA þ nB. The
mean interaction strength of ligand and receptor between clusters
ci and cj across all the samples under condition A can bedenoted

as yci ;A
L y

cj ;A
R ; where yci ;A

L y
cj ;A
R ¼ 1

nA

P
sk2A yci ;sk

L y
cj;sk

R . Similarly,

yci ;B
L y

cj ;B
R ¼ 1

nB

P
sk2B yci ;sk

L y
cj;sk

R . We compare the mean interaction

strengths of ligand–receptor interactions under two different
conditions.

The null hypothesis is that the mean of ligand–receptor inter-
action strengths are the same under two conditions. The alternative
hypothesis is that they are not the same.

H0 : jEðyci ;A
L y

cj ;A
R Þ � Eðyci ;B

L y
cj ;B
R Þj ¼ 0

H1 : jEðyci ;A
L y

cj ;A
R Þ � Eðyci ;B

L y
cj ;B
R Þj 6¼ 0

If the difference dj j ¼ yci ;A
L y

cj ;A
R � yci ;B

L y
cj ;B
R

��� ��� > c1�a for some
specified c1�a, we reject the null hypothesis and conclude that ligand
and receptor interactions are significantly altered between two
conditions.

We use Monte Carlo simulation to estimate the null distribu-
tion of dj j. We first estimate the means and standard deviations of
the ligand and receptor expressions in clusters ci and cj under two
conditions A and B, denoted by ^lL;A , ^lL;B , ^lR;A , ^lR;B , ^rL;A , ^rL;B

and ^rR;A , ^rR;B . To assess inter-sample variances accurately when
the sample size is small, we use a Bayesian method to shrink the
estimated variances toward a pooled estimate (Smyth, 2004),
which is performed by eBayes in the R package limma. Moreover,
we assume q ¼ 0 based on the observation of a very low percent-
age of significant non-zero correlations in real datasets, e.g. only
0.05% of ligand–receptor pairs in the COVID-19 data, 0.6% pairs
were found in the IPF data and 0.03% were detected in AVP data
at adjusted P-value<0.05. The scLR package also provides a
function to estimate q (default¼0) in case there are a number of
significant non-zero correlations. When the null hypothesis is

true, E yci ;A
L y

cj ;A
R

� �
� E yci ;B

L y
cj ;B
R

� ���� ��� ¼ 0; which can be simplified as

E yA
LyA

R

� 	
� E yB

LyB
R

� 	�� �� ¼ 0 between clusters ci and cj, we can as-

sume rL;ArR;A ¼ rL;BrR;B, aA ¼ aB and bA ¼ bB based on

Equation (2), where aA, aB, bA and bB are the non-central parame-
ters of non-central chi-square distributions in conditions A and B.
We let ^rLrR ¼ w ^rL;A ^rR;B þ ð1�wÞ ^rL;A ^rR;B , â ¼ wâA þ ð1�wÞâB

and b̂ ¼ wb̂A þ 1�wð Þb̂B , where w ¼ nA=ðnA þ nBÞ. Based on

^rLrR , â and b̂, we simulate the distribution of yLyR based on the
Equation (2). We randomly choose nA samples to estimate

yci ;A�

L y
cj ;A�

R and nB samples to derive yci ;B�

L y
cj ;B�

R . The difference be-

tween two conditions d� ¼ yci ;A�

L y
cj ;A�

R � yci ;B�

L y
cj ;B�

R . When we repeat

the simulation K times, we have fd�1; . . . ;d�Kg. The c1�a required is

the 100 1� að Þ% percentile of fjd�1j; . . . ; jd�Kjg and the P-value is

given by the proportion of fd�1; . . . ; d�K : jd�i j > jdjg.
A decent number of simulations is needed to obtain an accurate

estimation of the significance of dysregulated ligand–receptor inter-
actions. It is very time consuming, however, if a large number of
simulations are conducted for every ligand–receptor pair between
any two cell clusters since there are thousands of ligand–receptor
pairs and tens of cell clusters. To address this problem, we estimate
the density of fd�1; . . . ; d�Kg using a kernel density approach with the
Gaussian kernel and a large data-driven bandwidth h in each lig-
and–receptor pair comparison. The bandwidth h controls smooth-
ness of the estimated density. A small h gives very rough estimates
while a large h gives smoother estimates but weakens local features,
for example, smoothing tails but weakening the mode(s) of the dens-
ity. The main purpose here is to obtain an accurate tail probability
rather than an overall density estimate. We use a data-driven
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approach to estimate h via the R function density (parameters: bw ¼
‘SJ’ and adjust¼3).

Based on the estimated density

f̂ xð Þ ¼ 1
K

PK
i¼1

1ffiffiffiffi
2p
p

h
exp �1

2

x�d�i
h

� �2

 �

, �1 < x < 1, the P-value

is estimated by two times the tail probability beyond the d.

2.4 Pseudo-counts for reducing false positives
The prevalence of dropout events is one of the greatest challenges in
single-cell RNA sequencing data analysis, which introduces exces-
sive number of zeros and unwanted technical variability. There is a
close relationship between dropout rate and expression level, where
genes with high dropout rate indicate low expression (Qiu, 2020).
The excessive number of zeros make ligand–receptor interaction
analysis even more difficult. The product would be zero if the ligand
or the receptor expression in one condition are undetected, which
leads to many false positives especially when sample sizes are small.
To reduce the number of false positives caused by dropout events,
we add pseudo-count of 1 to the zero values. Comparing scLR with
and without pseudo-counts using simulation data, we found that
scLR with pseudo-counts achieved higher precision and specificity
(i.e. lower false positive rates) (Supplementary Fig. S1). The scLR
package also provides a parameter (zero.impute, default¼TRUE) to
turn off pseudo-counts.

2.5 Single-cell RNA-seq datasets
We used three single-cell RNA-seq datasets to evaluate the perform-
ance of scLR, including data generated from patients with and with-
out COVID-19 infection (Grant et al., 2021), pulmonary fibrosis
lungs (PF) and non-fibrotic controls (Habermann et al., 2020), and
patients with Anterior vaginal prolapse (AVP) and controls (Li
et al., 2021). Three datasets were all generated by 10X platform.
The COVID-19 data were downloaded from GSE155249, including
five patients with severe COVID-19 infection and two COVID-19
negatives. There were 33 000 cells with 18 337 genes, clustered into
six cell types, macrophages, dendritic cells (DC), T cells, proliferat-
ing T cells, ciliated and alveolar cells. The PF data were downloaded
from GSE135893, consisting of 11 PF patients and nine controls.
There were 70 512 cells with 33 694 genes, classified into 12 cell
types. The AVP data were downloaded from GSE151202, involving
16 AVP patients and five controls. There were 53 133 cells with
20 328 genes, categorized into seven cell types. Multivariate normal-
ity test showed that only 2.1% of ligand–receptor pairs were signifi-
cant different from bivariate normal distributions in the COVID-19
data, 12.1% pairs in IPF data and 1.6% in AVP data at an adjusted
P-value<0.05. These results suggested that a small percentage of
ligand–receptor pairs might be modeled poorly by bivariate normal
distributions. For those pairs violating normality assumption, we
found that rectified normal distributions and gamma distributions
fitted the data well, especially rectified normal distributions.

3 Results

3.1 Simulation
3.1.1 Simulation settings

We designed four scenarios to evaluate the performance of scLR
(Table 1). Each scenario has three samples in each of two

conditions. Both ligands and receptors are upregulated in the first
setting, whereas only ligands or receptors are upregulated in the se-
cond scenario. The third setting is challenging, where ligands and
receptors are overexpressed complementarily, e.g. highly upregu-
lated ligands but slightly or non-upregulated receptors in one sample
and vice versa in the other sample, leading to increased products of
ligand and receptor expressions. Upregulated interactions in this
scenario are not driven by ligands or receptors alone, but the com-
plementary increase of ligands and receptors. We simulated comple-
mentary increase by upregulation of ligands but slight
overexpression of receptors in the samples 1 and 3, and upregulation
of receptors but slight overexpression of ligands in the sample 2.
The fourth scenario is a special case, where ligands are upregulated
but receptors are downregulated, resulting in unchanged ligand–re-
ceptor interactions. There are 2000 ligand–receptor pairs in each
setting. There are 500 significant and 1500 non-significant pairs in
the first three scenarios. There are no true positives but 2000 non-
significant pairs in the fourth scenario. Every sample in the simula-
tion studies consists of 16 672 genes and 11 cell clusters. The expres-
sion abundances were generated from normal distributions, where
the parameters of means and standard deviations for each gene in
each cell cluster were derived from real single-cell RNA-seq datasets.
The normalized counts were increased/decreased to simulate the
upregulation/downregulation on the expression abundances (see
Simulation Settings in the Supplementary File). Ten simulated data-
sets were generated for each scenario.

3.1.2 Performance on simulation studies

We compared scLR with Welch’s t-test and differential gene expres-
sion analysis by limma under four simulation settings. Welch’s t-test
was used to compare the mean difference of the product of ligands
and receptors expressions between two conditions based on the as-
sumption that the product follows a normal distribution. Limma
was performed to identify differential expression in ligands or recep-
tors, where ligand–receptor pairs with either ligands or receptors
differentially expressed between two conditions were considered as
dysregulated ligand–receptor interactions.

We evaluated the performances based on the following metrics:
(i) the F1 score curve at different thresholds; (ii) the recall (sensitiv-
ity) and specificity curve at different thresholds; and (iii) the number
of true positives (TP), precision (TP/TPþFP), recall (TP/TPþFN),
specificity (TN/TNþFP) and F1 score at the threshold of adjusted P-
value < 0.01.

In the first scenario where dysregulated ligand–receptor interac-
tions were caused by both upregulation in the ligand and receptor
expressions, scLR showed the best performance. scLR achieved
much higher F1 score and recall than the other two methods at dif-
ferent thresholds (Fig. 1A). The three methods obtained similar spe-
cificity (Fig. 1A). At the threshold of adjust P-value < 0.01, scLR
recovered �430 out of 500 significant ligand–receptor pairs (84%
recall), while t-test only identified �100 pairs (20% recall) and
limma detected �330 pairs (66% recall) (Supplementary Fig. S2).
When there were an increasing percentage of pairs (ranging from
0% to 90%) violating the normality assumption (either from
Gamma or rectified normal distributions), the specificity of scLR
was controlled well but the recall decreased (Supplementary Fig.
S3). scLR showed much better performance in terms of recall and F1
scores than limma and t-test when there were 50% of non-normal
pairs (Gamma or rectified normal distributions), indicating the
power of scLR decreased less than limma and t-test as the percent-
age of non-normal pairs increased (Supplementary Fig. S4).

In the second scenario where dysregulated ligand–receptor inter-
actions were driven by either the ligand or the receptor alterations
alone, scLR had slightly inferior performance than limma
(Supplementary Fig. S5). The F1 and recall curve at different thresh-
olds showed that scLR obtained better performance at rigorous cut-
offs (0.001< adjusted P-value < 0.01), while limma had better
performance at relaxed cutoffs (0.01� adjusted P-value < 0.1)
(Fig. 1B).

The third scenario is challenging, where dysregulated ligand–re-
ceptor interactions are driven by complementary ligand and receptor

Table 1. Simulation settings in four scenarios

Ligand Receptor

Scenario 1 (", ", ") (", ", ")
Scenario 2 (", ", ") (–, –, –)

(–, –, –) (", ", ")
Scenario 3 (", ", ") (", ", ")
Scenario 4 (", ", ") (#, #, #)

Note: Three samples in each condition.
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alterations. scLR achieved the best performance, which had much
higher F1 score and recall than t-test and limma at different thresh-
olds (Fig. 1C). limma, relying on differential expression of either
ligands or receptors alone, showed poor performance. scLR identi-
fied �330 interacting pairs with 64% recall, whereas t-test and
limma both failed to detect any ligand–receptor pairs at the thresh-
old of adjusted P-value < 0.01 (Fig. 1C and Supplementary Fig. S6).

The fourth scenario simulated a special case where none of dys-
regulations exist due to opposite changes in ligands and receptors
expression. In this case, scLR and t-test performed better than
limma, which obtained much lower false positives rates
(Supplementary Fig. S7).

The simulation studies demonstrated that scLR overall
achieved higher performance than limma and t-test. Similar
results were also obtained in the same four scenarios with five
samples in each condition (Supplementary Figs S8–S11). Since
dysregulated ligand–receptor interactions involve both ligands
and receptors, methods considering ligands or receptors alone
like limma are not effective, such as in scenarios 1, 3 and 4. T-test
considers ligand–receptor interactions in terms of their products,
but it is conservative due to both large estimates for the standard
deviations of the products and the inappropriate normal distribu-
tion assumption for non-normal products (see Equation 2). scLR
directly models the distribution of the product of ligands and
receptors expressions, therefore, it achieved much better perform-
ance than t-test.

3.2 Identification of dysregulated ligand–receptor

interactions in severe COVID-19
We applied scLR on single-cell RNA-seq data on BAL fluid collected
from patients with severe SARS-COV-2 pneumonia and two control
patients, one with bacterial pneumonia and one non-pneumonia
control (Grant et al., 2021). The integrated analysis of five patients
with severe SARS-COV-2 pneumonia and two patients without
SARS-COV-2 pneumonia resolved multiple clusters corresponding

to macrophages, dendritic cells, T cells, proliferating T cells, ciliated
and alveolar cells.

Using the curated ligand–receptor database (LRdb) compiled
by SingleCellSignalR (Cabello-Aguilar et al., 2020), scLR identi-
fied 1313 dysregulated ligand–receptor interactions in SARS-
COV-2 infection compared to non-SARS-COV-2 infection
(adjusted P-value < 0.01) (Supplementary Table S1), of which
938 upregulated and 375 downregulated pairs. Among them,
16% of interactions did not have significantly altered ligands or
receptors even at a loose cut off (adjusted P-value<0.1)
(Supplementary Fig. S12). Those interactions generally ranked
lower than those with significantly altered ligands or receptors
(ranking by adjusted P-values). Macrophages have the most dis-
rupted autocrine ligand–receptor interactions (128), followed by
88 altered interactions from proliferating T cells to macrophages
and 81 from macrophages to proliferating T cells, suggesting ac-
tive communications between macrophage and proliferating T
cells during SARS-COV-2 infection. The most upregulated lig-
and–receptor pairs involve several cytokines and chemokines that
are important for T cell and monocytes recruitment and alveolar
macrophage maturation, such as CCL2, CCL3, CCL4, CCL5,
CCL7, CCL8, CXCL13, CXCL10, CXCL11 and CXCL16.
Macrophages is the major source of dysregulated interactions
involving CCL2, CCL7 and CCL8, while proliferating T cell is
the source for CCL4, CCL3 and CCL5 (Fig. 2A). CCL2-CCR1
interaction is most upregulated across all cell type pairs, especial-
ly between macrophage itself. In the CXC family, CXCL10-
CXCR3 is most upregulated in the macrophage-proliferating T
cells communication (Fig. 2B). Recent studies reveal that innate
immune interferons dysregulation is key to determine SARS-
COV-2 pathogenesis. scLR detected the dysregulated IFNG-
IFNGR1 and IFNG-IFNGR2 between proliferating T cells and
other immune cells, especially between proliferating T and mac-
rophages (Fig. 2C). These findings are consistent with recent stud-
ies reporting that macrophages drove the inflammatory response
to SARS-COV-2 infection (Speranza et al., 2021) and macro-
phages and T cells form a positive feedback loop that derives per-
sistent alveolar infection (Grant et al., 2021). In addition, scLR
found that it is proliferating T cells that produce IFNG to induce
inflammatory cytokine release from macrophages, such as CCL2,

Fig. 2. Dysregulated ligand–receptor interactions in SARS-COV-2 infection com-

pared to control. Dysregulated CC chemokine interactions (A), CXC chemokine

interactions (B) and IFNG interactions (C). �LR is the difference of expression

products of ligands and receptors between two conditions

Fig. 1. Performance evaluation in simulation studies. Performance in the first scen-

ario (A), the second scenario (B) and the third scenario (C).
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CCL7, CCL8, CXCL10 and CXCL16, which further promote T
cell activation and proliferation.

We compared scLR with CellChat and iTALK. Instead of consid-
ering ligands and receptors simultaneously, CellChat and iTALK de-
tect dysregulated interactions based on expression changes of either
ligands or receptors alone. Additionally, scLR calculates the differ-
ence at the sample-level, while CellChat and iTALK pool cells from
all samples in one condition together to estimate the difference,
which ignore sample-level variances and might lead to biased results.
Using the same ligand–receptor database LRdb (Cabello-Aguilar
et al., 2020), CellChat identified 1720 dysregulated interactions
(jlog2FCj>0.2 & P-value<0.01) (Supplementary Table S2) and
iTALK discovered 4385 interactions (jlog2FCj>0.2 & adjusted P-
value<0.01) (Supplementary Table S3). We focused on major find-
ings from the original study to further investigate those interactions,
which revealed that T cells produce IFNG to induce inflammatory
cytokine release and further promote T cell activation (Grant et al.,
2021). We listed IFNG-related interactions between immune cells
by scLR, CellChat and iTALK in the Supplementary Figure S13,
along with differential expression results of ligands and receptors at
the patient-level (scLR) and at the cell-level (CellChat and iTalk).
scLR found IFNG-related interactions all upregulated after COVID-
19 infection, including IFNG-IFNGR1 between proliferating T and
all other cell types and IFNG-IFNGR2 between proliferating T and
macrophages/DC. The upregulated interactions were mainly due to
IFNG overexpression in proliferating T cells after COVID-19 infec-
tion (log2FC¼5.1 & adjusted P-value¼0.002, Supplementary Fig.
S14). To be noted, the interaction of IFNG-IFNGR1 was detected to
be significantly upregulated between proliferating T and T cells,
whereas IFNG-IFNGR2 was not due to large variances of IFNGR2
in T cells (Supplementary Fig. S15). The same phenomena were
observed for IFNG-IFNGR2 in the autocrine proliferating T interac-
tions (Supplementary Fig. S16). CellChat and iTALK, in contrast,
performed differential expression at cell-level by pooling cells,
resulting in biased results toward patients with large number of cells.
They detected upregulation of IFNGR1 and IFNGR2 in macro-
phages, and even their downregulation in proliferating T cells,
which were not true at the patient-level (Supplementary Fig. S14).
The downregulation of receptors (IFNGR1 or IFNGR2) led to un-
determined/wrong directions of interaction changes. Another ex-
ample about important CCL8-CCR5 interactions was described in
the Supplementary File. In summary, the analysis strategy employed
by scLR enables to find more biologically meaningful results than
CellChat and iTALK. First, differential analysis at patient-level is
able to find consistent changes across patients, such as IFNG upre-
gulation in proliferating T cells. In contrast, differential analysis at
cell-level by pooling cells together (CellChat and iTALK) was likely
to be dominated by patients with large number of cells, resulting in
biased results, such as false downregulation of IFNGR1 and
IFNGR2 in proliferating T cells. Second, the strategy of considering
ligands and receptors simultaneously helps remove false positives
and false negatives. Although IFNG was strongly upregulated in
proliferating T cells, scLR detected a non-significant change of
IFNG-IFNGR2 between proliferating T and T cells due to large var-
iances of IFNGR2 in T cells, which would be a false positive if only
consider IFNG alone. Moreover, 16% of 1313 interactions did not
have significantly altered ligands or receptors even at a loose cutoff
(adjusted P-value<0.1) (Supplementary Fig. S12), which would be
missed if only consider ligands or receptors alone (false negatives).
Third, scLR is able to rank dysregulated interactions by their statis-
tical results, which is very useful to find the most important cell-type
specific interactions. For example, the most dysregulated IFNG-
interaction was found between proliferating T and macrophages
(Supplementary Fig. S17).

3.3 Identification of dysregulated ligand–receptor

interactions in PF and AVP
We applied scLR on two additional single-cell RNA-seq datasets
generated from patients with pulmonary fibrosis (PF) (Habermann
et al., 2020) and Anterior vaginal prolapse (AVP) (Li et al., 2021).

The PF data contained 12 cell types, such as type II alveolar cells
(AT2), fibroblasts, endothelial cells. Using the curated ligand–recep-
tor database (LRdb) compiled by SingleCellSignalR (Cabello-
Aguilar et al., 2020), scLR identified 567 dysregulated ligand–recep-
tor interactions in IPF patients compared to controls (adjusted P-val-
ue<0.01) (Supplementary Table S4). The most upregulated
interactions all involve TGF-b1 signaling from AT2 cells, such as
TGFB1-ITGB6, TNC-ITGAV, TGFB1-ITGB1 and TGFB1-
TGFBR1/TGFBR2. TGF-b1 is a master regulator of ECM accumu-
lation and a key driver of lung fibrosis (Fernandez and Eickelberg,
2012; Yue et al., 2010). Integrins aVb3, aVb5, aVb8 and aVb6 play
vital roles in TGF-b activation in fibrotic disorders (Dong et al.,
2017; Fernandez and Eickelberg, 2012; Yue et al., 2010).
Expression of TNC, an extracellular matrix protein, is significantly
upregulated in fibrotic lungs, which is induced by TGFB1 and con-
tributes to TGF-b mediated lung fibrosis (Estany et al., 2014). One
recent study found that sustained elevated mechanical tension, the
most common driver of lung fibrosis, activates a TGF-b signaling
loop in AT2 cells and then leads to the periphery-to-center progres-
sion of lung fibrosis (Wu et al., 2020). This is consistent with our
results, which discovered strong TGF-b activation between AT2
cells and other cell types.

The AVP dataset involved seven cell types, endothelial cells,
fibroblasts, lymphatic endothelial, macrophages, myoepithelial cells
(MEP), smooth muscle cells and T cells. scLR detected 34 dysregu-
lated ligand–receptor interactions in AVP patients compared to con-
trol samples (adjusted P-value<0.01) (Supplementary Table S5).
Endothelial cells and fibroblast participate in the highest level of
changes in ligand–receptor interactions. The most upregulated inter-
actions are mainly related to ECM organization, such as APP-LRP1
and HSPG2-LRP1 between fibroblasts and endothelial cells, auto-
crine A2M-LRP1 in endothelial cells, autocrine ECM1-CACHD1 in
fibroblasts. LRP1 regulates ECM remodeling (Gaultier et al., 2010),
while its partner A2M and APP are all involved in ECM organiza-
tion. Heparan sulfate proteoglycan 2 (HSPG2), also known as perle-
can, is a large multi-domain extracellular matrix proteoglycan.
ECM1, extracellular matrix protein 1, is known to be upregulated
in pelvic organ prolapse (Cecati et al., 2018). This agrees with previ-
ous findings that POP is an acquired disorder of extracellular matrix
(Budatha et al., 2011).

4 Discussion

We presented scLR, a statistical method for differential analysis of
ligand–receptor interactions on single-cell transcriptomics data.
scLR models the distribution of the product of ligand and receptor
expressions and takes the inter-sample variances, small sample sizes
and dropout events into account. Overall, scLR achieved the best
performance than other methods in four simulation settings, espe-
cially when the ligand and receptor are both dysregulated, or they
have complementary alterations. Applied on single-cell RNA-seq
datasets from severe SARS-COV-2 infection, scLR revealed the im-
portant dysregulated interactions between macrophages and prolif-
erating T cells that lead to persistent infection. Moreover, scLR
discovered activated TGF-b signaling from alveolar type II cells con-
tributing to the pathogenesis of pulmonary fibrosis.

scLR is designed for single-cell RNA-seq datasets with small
sample sizes, which assesses sample variances by shrinkage of the
estimated variances toward a pooled estimate using a Bayesian
method. It can work for data with only one sample in either one of
the two conditions based on the additional assumption that varian-
ces of ligand/receptor expressions in the two conditions are the same
(Smyth, 2004). When there are enough samples, model-free meth-
ods, such as permutation, might be better for estimating the back-
ground distribution of expression products of ligands and receptors
rather than assuming bivariate normal distributions. However, it is
difficult to determine the exact number of sufficient sample sizes.
The sample size depends on the number of permutations needed to
generate an accurate P-value, whereas the minimum number of per-
mutations is subject to the total number of ligand–receptor pairs
and pair-wise cell types combinations.
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The current version of scLR only compares ligand–receptor
interactions between two conditions. If there are any batch effects,
they should be removed by single-cell RNA-seq batch correction
methods (Tran et al., 2020) before the application of scLR. We plan
to extend scLR for experiments with complex designs, which would
broaden its applicability and also remove potential biases from con-
founders such as batch effects. Moreover, scLR only models the
interactions between ligands and receptors without considering
other stimulatory and inhibitory cofactors. Combining ligands,
receptors and cofactors together would require new modeling
framework. Identification of dysregulated LR interactions from sin-
gle-cell RNA-seq alone would introduce false-positive results since
cells only communicate within a certain distance. Integrating single-
cell RNA-seq with spatial transcriptomics would further narrow
down the important communications between cells.

Data availability

Data from COVID-19, pulmonary fibrosis and anterior vaginal pro-
lapse can be accessed through the Gene Expression Omnibus (GEO)
with accession numbers GSE155249, GSE135893, and GSE151202
respectively.
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