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Abstract

Activity in the primary auditory cortex (A1) is known to be essential for normal sound localization 

behavior, yet previous studies of the spatial sensitivity of neurons in A1 have found surprisingly 

broad spatial tuning. We tested the hypothesis that spatial tuning sharpens when an animal 

engages in an auditory task. Cats performed a task that required evaluation of the locations of 

sounds and another that required active listening but in which sound location was irrelevant. Some 

26–44% of the units recorded in A1 showed significantly sharpened spatial tuning during the 

behavioral tasks compared to idle conditions, with greatest sharpening during the location-relevant 

task. Spatial sharpening occurred on a scale of tens of seconds and could be replicated multiple 

times within ~1.5-hr test sessions. Sharpening resulted primarily from increased suppression of 

responses to sounds at least-preferred locations. That and an observed increase in latencies suggest 

an important role of inhibitory mechanisms.

Introduction

In a typical auditory scene, a listener can focus auditory attention toward the location of any 

target. The dynamic nature of spatial listening has been demonstrated by psychophysical 

studies showing that: localization or identification of a target is more efficient when the 

target is presented at a cued or attended location1–5; prior knowledge of the location of a 

target enhances spatial release from masking6–8; and localization judgments can be biased 

by a preceding distracter9. The present study is a first attempt to explore cortical 

mechanisms underlying task-dependent modulation of auditory spatial sensitivity.

Lesion studies and reversible inactivation have demonstrated that activity in the primary 

auditory cortex (A1) is necessary for normal sound-localization behavior10–11. Also, A1 

projects to the dorsal zone (DZ) and the posterior auditory field (PAF) in which reversible 
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inactivation produces localization deficits11–13. One might speculate, therefore, that task-

dependent modulation of activity in A1 contributes to dynamic aspects of spatial hearing. 

Single-unit studies in anesthetized animals have demonstrated quite broad spatial tuning, 

with most spatial receptive fields ranging from 180° to 360° in width14–16. Spatial tuning is 

sharper in awake animals, although most neurons still exhibit spatial receptive fields 

spanning more than a hemifield of space17. We tested the hypothesis that the spatial tuning 

of neurons in A1 is modulated according to an animal’s behavioral state and, specifically, 

that tuning is sharpened when an animal engages in a spatial task.

In the current study, cats were trained to perform two tasks. “Periodicity Detection” required 

the cat to attend to sounds in order to receive a food reward, but reward was not contingent 

on sound location. “Localization” required the cat to evaluate the locations of sound to 

distinguish targets from background probe sounds. We recorded unit activity in A1 during 

performance of both tasks as well as during off-task “Idle” conditions. Many neurons 

sharpened their spatial tuning significantly during both on-task conditions, especially during 

the Localization task. Several characteristics of the spatial sharpening suggest a role for 

inhibitory mechanisms.

Results

We recorded unit activity from A1 under Idle, Periodicity Detection, and Localization 

conditions. In all conditions, the cat heard a background of brief noise bursts intended to 

probe the spatial sensitivity of cortical units. Those probe sounds were presented at ~1.25-s 

intervals from varying locations in the horizontal plane. In the Idle condition, the cat 

refrained from the task. The Periodicity Detection and Localization conditions required the 

cat to initiate a sequence of trials by pressing and holding a response key. If it held the key 

during subsequent probe sounds and released it upon presentation of a target sound, it 

received a food reward. The target in the Periodicity Detection task was a 200/s click train 

that varied in location among trials. In that condition, the target sound was associated with 

reward, but its location was irrelevant to reinforcement. The target in the Localization task 

was a broadband noise burst, identical to the probe sounds except that it was presented from 

a variable elevation 40°-80° above the horizontal plane and at varying azimuths. The 

Localization task required the cat to evaluate the location of each sound in order to detect 

the change in elevation. This localization was accomplished covertly, in that the cats 

typically did not make orienting movements of the head or external ears towards the sounds. 

The physiological recordings reported here reflect responses only to the broadband probe 

sounds, not to the targets.

Spatial selectivity and firing patterns

Units in A1 responded to the probe sounds with a variety of temporal firing patterns and 

spatial sensitivities. The responses of many units also varied among task conditions. The 

example unit shown in Fig. 1 fired a burst of spikes after stimulus onset with little or no 

tonic activity following the onset burst. In the Idle condition, this unit responded to probe 

sounds at all locations with little discrimination among stimulus azimuths (Fig. 1a; also 

supplemental Fig. 1). When the animal engaged in the Periodicity Detection task, however, 
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responses became more selective, showing suppression of responses to ipsilateral stimuli 

while maintaining responses to contralateral stimuli (Fig. 1b). During the Localization task, 

responses became even more selective, responding best to stimuli located between 

contralateral 10° and 50° (Fig. 1c).

Changes in spatial selectivity among task conditions could be replicated within single ~1.5-

hr recording sessions, as in the example shown in Fig. 2. Onset responses of this unit were 

largely restricted to frontal stimuli during the initial block of trials in the Localization 

condition (Fig. 2a). The tuning broadened during a subsequent Idle condition (Fig. 2b), 

sharpened during the second block of Localization trials (Fig. 2c), and finally broadened 

again during the last Idle condition (Fig. 2d). The sharpness of spatial tuning generally was 

similar between repeated tests of the same behavioral conditions. Forty three units were 

tested with two blocks of the Periodicity Detection condition or of the Localization 

condition within the same session, each separated by a contrasting condition. Of those 43 

units, 31 showed no significant change in sharpness of tuning between the initial and 

repeated block (according to a Receiver-Operating-Characteristic, ROC, test described in 

Methods), 6 showed significant broadening, and 6 showed significant narrowing.

About 63% of units in our sample resembled those in Figs. 1 and 2 in that they responded 

primarily with a burst of spikes at stimulus onset and were omnidirectional in the Idle 

condition. Many of those onset-only units showed on-task sharpening of spatial sensitivity 

like that illustrated in Figs. 1 and 2. Another 26% of units in our sample showed more 

complex temporal firing patterns, consisting of an onset response followed by a period of 

suppression followed by additional bursts of spikes. In the Idle condition, units with 

complex firing patterns typically showed sharper spatial tuning than did onset-only units, 

often with spatial tuning restricted to a hemifield. In contrast to the onset-only units, those 

with complex firing patterns tended to show smaller differences across behavioral 

conditions. We quantify the between-task modulation of spatial sensitivity in the next 

section.

About 8% of the units in our sample showed prominent responses that followed stimulus 

offset by ~15 to 20 ms. We interpreted these as “offset”, rather than “late”, responses 

because a similar stimulus-offset-to-response delay was observed in units tested with 80- or 

150-ms stimulus durations. In these units, the ratio of offset to onset responses increased 

from Idle to Periodicity Detection to Localization conditions; examples of two units are 

shown in Fig. 3. In the Idle condition (Figs. 3a,d), these units responded strongly to the 

stimulus onset with or without an offset response. During the behavioral tasks, however, the 

onset response weakened or disappeared and was replaced by a strong offset response (Figs. 

3b,c,e,f). Of the six units that showed strong offset responses, four showed this transition 

from onset to offset when the animal engaged in the behavioral tasks. Because of the lack of 

consistent excitatory responses, we excluded these six units and an additional two units that 

showed only suppression of spontaneous activity after stimulus onset from quantitative 

analysis of the task dependence of spatial tuning. The remaining ~89% of units all 

responded with excitation during the first 40 ms after the stimulus onset. It was the onset 

response of those units that typically showed the greatest task-dependent modulation, and 

some units showed late or offset responses for which the spatial sensitivity was qualitatively 
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different than that of the onset response (as in Fig. 2). For those reasons, we restricted 

quantitative analyses of spatial tuning to onset responses.

Quantitative measures of spatial sharpening

We quantified the spatial tuning of units using a measure inspired by the “Equivalent 

Rectangular Bandwidth” introduced by Moore and Glasberg18. Here, we first computed 

rate-azimuth functions consisting of mean spike rates as a function of stimulus azimuth. We 

then computed the area under the rate-azimuth-function and re-shaped the function to form 

an equivalent rectangular receptive field (ERRF) having equal peak spike rate and equal 

area; see Supplemental Fig. 1. Generally, ERRFs were somewhat narrower than simple 

receptive fields, because ERRFs were influenced both by the spatial extent of tuning and by 

the location-related modulation of spike rates. In the Idle condition, for example, median 

ERRF widths and spatial tuning widths were 185° and 294°, respectively. For comparison, 

we previously have observed a median spatial tuning width of 340° in anesthetized 

conditions19; comparisons of tuning widths with our previous unanesthetized A1 study17 

are difficult, because of differences in computations of spatial tuning.

In the idle condition, spatial tuning was relatively broad, with ERRF widths ranging from 

100° to 270°. The effect of behavioral condition on tuning varied among units, with some 

ERRFs narrowing and others broadening. In the scatter plots in Fig. 4, ‘+’ and ‘x’ signs 

represent the ERRF widths of units that showed statistically significant narrowing or 

broadening between task conditions according to an ROC test (see Methods). On average, 

ERRFs narrowed significantly between Idle and Periodicity Detection conditions (median 

ERRF widths 185° and 176°, respectively; p <0.005). Across the population, there was no 

significant difference in ERRF widths between the two on-task conditions (median ERRF 

widths 176° and 165° for Periodicity and Localization conditions; p =0.18), although many 

units showed a substantial narrowing of ERRFs as indicated by the ‘+’ signs below the 

diagonal line. The greatest contrast in spatial tuning was between Idle and Localization 

conditions, with ERRF widths narrowing from medians of 185° to 165° (p <0.0005); ERRF 

widths in the Localization condition ranged from 41.3% to 136.3% of the widths measured 

in the Idle condition (median =92.7%).

We evaluated the percentages of units that showed significant changes in spatial tuning as a 

function of task condition. That analysis employed an ROC procedure that tested for 

sharpening or broadening of ERRFs across conditions based on trial-by-trial-variation in 

spike counts of individual units (see Methods). In every 2-way comparison between task 

conditions (Fig. 5), more units showed significant sharpening of spatial tuning than showed 

broadening in the conditions that required active listening (either behavioral task versus 

Idle) or greater attention to sound locations (Localization versus Periodicity Detection). The 

contrast between the Periodicity Detection and Localization conditions (middle bar; 24% of 

the total sample) was especially interesting because both conditions required active listening 

but only the Localization task required the cat to evaluate sound locations. The units 

identified in that contrast included 24% of the units that showed significant sharpening in 

the Idle-versus-Periodicity contrast, which showed further significant sharpening in the 

Localization condition (6% of the total population). Additional units in this Periodicity-

Lee and Middlebrooks Page 4

Nat Neurosci. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



versus-Localization contrast showed significant sharpening only in the Localization 

condition. As expected, the largest percentage of units showing significant sharpening was 

observed in the contrast between Idle and Localization, in which 44% of units showed 

significantly narrower ERRFs. That group contained nearly all of the units that showed 

significant narrowing in the Idle-versus-Periodicity contrast plus an additional 18% of the 

population that showed significant narrowing only in the Idle-versus-Localization contrast.

We have demonstrated previously in anesthetized animals that a substantial proportion of 

stimulus-related information can be transmitted by first-spike latencies20, although that 

proportion is somewhat smaller in awake conditions17. Here we investigated the influence 

of task condition on first-spike latencies at each unit’s preferred location. Surprisingly, 

median first-spike latencies averaged somewhat longer in the Localization condition 

compared to the Idle condition (20.1 vs. 18.8 ms, p <0.05) but were similar between the two 

behavioral conditions (p =0.84, Fig. 6).

Increased suppression by least-preferred stimuli

The sharpening of spatial sensitivity observed in the behaving conditions might have 

represented an enhancement of the responses to stimuli at “preferred” locations (as defined 

in Methods), or it might have resulted from increased suppression of the responses stimuli 

from “least-preferred” locations. Among the units that showed significant sharpening of 

spatial tuning between Localization and Idle (Fig. 5), the overall mean spike rate was 

significantly lower during the Localization compared to during the Idle condition (p <0.005) 

and also slightly lower in the Localization than in the Periodicity Detection condition (n.s., p 

=0.08, Fig. 7a).

We tested whether the reduction in responses by those units was general, or whether it 

reflected differential suppression of responses to stimuli at particular locations. The Idle-to-

Localization contrast showed no significant differences among responses to sounds at 

neurons’ preferred locations (Fig. 7b; p =0.88, Localization versus Idle). In contrast, nearly 

every neuron showed a reduction in response to sounds at least-preferred locations (Fig. 7c; 

p <0.05). Spike rates elicited by sounds at intermediate locations between preferred and 

least-preferred locations showed intermediate amounts of modulation, depending on the 

spatial tuning of each unit. These results indicate that the task-dependent sharpening of 

spatial sensitivity acted primarily by enhanced suppression of responses to stimuli located 

away from units’ preferred locations.

Time course of modulation of spatial tuning

If the sharpening of spatial tuning is a result of top-down control, unit responses should 

change whenever an animal engages or disengages in a task. To test this hypothesis, we 

investigated the time course of changes in spike rates for the single location for each unit 

that showed the greatest task-dependent modulation. We identified blocks of trials in which 

that location was tested either in four consecutive hit trials followed by four consecutive 

non-hit trials (Fig. 8a) or vice versa (Fig. 8b). Blocks of “Hit” trials were those in which the 

response key was depressed and held until being released correctly upon presentation of the 

target. Blocks of “non-hit” trials included Idle trials (i.e., the key was not pressed) plus a 
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small number of false alarms (the key released early), and misses (the key released late). For 

the cases that matched these criteria (N=51 hit to non-hit; N=35 non-hit to hit), we 

normalized spike rates by the mean rate across the contiguous 4 hit and 4 non-hit trials. The 

time between each presentation at a particular location averaged about 33 s, varying among 

cases because of the random order of testing of various stimulus locations. As seen in Fig. 

8a, the normalized spike rate averaged about 0.5 per trial for the last four hit trials and did 

not differ significantly among those trials. The rate for the first non-hit trial, however, 

showed an immediate increase to about 1.8 per trial. The mean rate for each of the four non-

hit trials was significantly higher than the mean across all the hit presentations (p <0.0001 to 

p <0.01, depending on trial). Essentially the reverse was seen in the transition from non-hit 

to hit condition (Fig. 8b). The rate for each of the first three non-hit trials was significantly 

higher than the mean of the later four hit presentations (p <0.001 to p <0.005). Interestingly, 

the rate for the last non-hit trials averaged about 0.82 (4th column; Fig. 8b), which was 

intermediate between the rate for the preceding three non-hit presentations and that of the 

following hit trials, as if these trials represented a transition period in which the animals 

were preparing to engage in the task. These results indicate that task-dependent changes in 

the spatial sensitivity of units occur on a scale no slower than some tens of seconds.

Discussion

The results demonstrate sharpening of spatial tuning in the auditory cortex during active 

listening and further sharpening when the task requires localization. Many of the recorded 

units sharpened their spatial tuning significantly when the animal engaged in the Periodicity 

Detection task. We interpreted that sharpening as a generalized effect of arousal or of active 

listening. In a similar number of units, however, addition of a spatial component to the task 

resulted in significant sharpening of spatial tuning beyond that associated merely with active 

listening. The narrower spatial tuning during Localization compared to Periodicity Detection 

was not likely a result of differences in arousal or motivation, since both tasks required 

active listening and both required timely releases of the response key. Changes in pinna 

position were not likely the cause for sharpening of spatial tuning, since neurons that 

showed significant sharpening of ERRFs were recorded simultaneously with units that 

showed no significant change or even significant broadening of ERRFs. The latter argument 

also applies to any possible effects of eye positions or gaze directions on auditory responses; 

also pertinent to eye-position effects, the recordings were done in the dark. Our 

interpretation is that many A1 neurons responded to the spatial demands of the Localization 

task by sharpening their spatial tuning throughout the sound field.

Our experimental design differed from those that have sought changes in neural responses to 

a particular target sound21 or changes in the cortical topographical representation of such a 

sound22. Had we trained a cat to associate reward with a particular sound location, we think 

it likely that it would have adopted a posture with its head and pinnae oriented toward that 

location. Such a change in acoustic gaze would have increased stimulus levels at the two 

ears, confounding any changes that might be due to central auditory processing. In our 

Localization condition, the location of the reward-associated target varied among trials, and 

the reward location was not among the locations used to probe spatial selectivity. In that 
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condition, we observed a global sharpening of spatial tuning that could not be attributed 

merely to acoustical focusing.

A recent study21 demonstrated task-dependent changes in the frequency tuning of auditory 

cortical units. In that study, ferrets detected tones at particular target frequencies in the 

presence of broadband sounds. During task performance, responses to target frequencies 

increased and/or responses to non-target frequencies decreased. Those results were similar 

to ours in that neural tuning was modulated by behavioral state. In the previous study, 

however, the ferrets’ behavioral performance presumably was enhanced by sharpening of 

frequency tuning around the target frequency. An analogous change, sharpening of spatial 

tuning around a particular target location, would have been maladaptive for our Localization 

task and, indeed, was not observed. The overall sharpening of spatial tuning, regardless of 

neurons’ preferred locations, was an appropriate adaptation to our task, which required the 

cat to evaluate the locations of sounds throughout a broad range of locations. Another 

difference between the two studies is that the previous study demonstrated changes in 

frequency tuning that persisted for hours after cessation of the task, whereas we observed 

changes in spatial tuning within the tens-of-seconds time resolution afforded by our 

experimental design. The persistent effect observed previously might have resulted from the 

aversive conditioning paradigm that was used, in contrast to the positive reinforcement in 

our paradigm.

We are aware of two previous studies that addressed effects of an animal’s behavioral state 

on the sensitivity in auditory cortical neurons to sound locations23 or on sensitivity to 

interaural-phase-difference cues for sound location24. In both of those studies, spike rates 

tended to increase in the on-task condition. Those studies differed from ours in that the 

responses of interest were those to target sounds, whereas we measured spatial sensitivity to 

non-target probe sounds. The enhancement of excitatory responses to the target stimuli 

observed in these studies could coexist with our observation of global suppression at least-

preferred locations. There were no indications of changes in spatial (or spatial-cue) tuning in 

the previous studies, but those studies tested only 5 locations or 2 phase differences, whereas 

we routinely probed 18 loudspeaker locations.

The on-task sharpening of spatial tuning that we observed was most evident in units that 

showed primarily onset responses. Units with more complex responses tended to show 

relatively sharp spatial tuning regardless of task condition. In unanesthetized marmosets25, 

cortical neurons show only onset responses to non-optimal sounds, but many respond 

tonically to stimuli of “optimal” spectral and temporal complexity. It might be that the onset 

responses in the present study reflect a non-optimum spectrotemporal quality of the 

Gaussian-noise-burst probe stimuli. Nevertheless, when offered only Gaussian noise bursts, 

our cats made accurate localization judgments, and the majority of A1 units showed onset 

responses to those stimuli. The sharpening of spatial tuning observed in the onset response 

might reflect a neural mechanism for optimizing the representation across a neuronal 

population to accommodate the task demands regardless of the optimality of the stimulus.

Plasticity in the functional organization of area A1 in regard to frequency representation has 

been demonstrated by a number of groups, generally in association with conditioned 
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association26 or sensory discrimination22,27 paradigms. Generally, such studies have 

shown increases in the responses to the conditioned (i.e., target) frequencies21. It has been 

proposed that behaviorally relevant stimuli might activate the cholinergic or dopaminergic 

neurons in the basal forebrain, in addition to the sensory cortex, through a sensory cortex-to-

prefrontal cortex-to-basal forebrain circuit28–29. Direct electrical stimulation of cholinergic 

neurons in nucleus basalis30 and dopaminergic neurons in ventral tegmental area31 of basal 

forebrain enhances the representation of the paired stimuli in the sensory cortex and 

thalamus32. It remains to be seen whether those same modulatory systems underlie the 

short-term task-dependent changes in cortical sensitivity that we have observed.

Several lines of evidence suggest that the sharpening of spatial tuning that we observed 

during on-task conditions reflects largely inhibitory mechanisms. First, the sharpened spatial 

tuning resulted from increased suppression of least-preferred responses during the 

Localization condition, compared to the Idle condition. Second, in a small number of units 

that showed primarily offset responses, onset responses were increasingly suppressed and 

offset responses strengthened during transitions from Idle to Periodicity Detection to 

Localization conditions. Third, the first spike latency was significantly longer during the 

Localization compared to the Idle condition. Inhibitory mechanisms have been proposed to 

play an important role for perceptual learning in sensory cortex33–34. An increase in 

inhibition has been reported to correlate positively with improvement of behavioral 

performance35–37, with increase of task difficulty38 or engagement in a behavioral task 

that required more global attention39. It has been suggested that attention or the effect of 

learning may first induce change in the prefrontal cortex, which in turn activates the 

GABAergic reticular nuclei in the thalamus40–41. The reticular nuclei then would send 

inhibitory input to medial geniculate body (MGB) to modulate its activity42–43 and further 

change response properties in the primary auditory cortex44–45. In the present study, we 

observed not only a decrease in responsiveness of the A1 units during behavioral conditions, 

but changes in first-spike latencies: latencies for the preferred location were delayed in the 

Localization condition (Fig. 6) relative to the Idle condition. Even in the Idle condition, the 

median of the first spike latency was longer than the latency in anesthetized A1 (17.6 ms19), 

which is consistent with a previous report46. These results suggest that inhibitory 

mechanisms, driven by top-down control, could account for task-dependent modulation of 

neuronal activity, either by increasing the depolarization threshold or by delaying the 

spiking when the animals are engaged in the behavioral tasks.

Previous electrophysiological studies of A1 and other auditory cortical areas have failed to 

identify a point-to-point map of auditory space15–17,19–20. Instead, we have argued that 

auditory space is represented in a highly distributed manner. The location of any particular 

sound source would be represented by the activity of populations of more-or-less 

panoramically sensitive neurons widely distributed within particular cortical areas and 

among multiple cortical areas. The task-dependent modulation of spatial sensitivity observed 

in the present study is consistent with that view. The present results suggest that sound-

source locations are represented by dynamic cortical populations, the responses of which are 

modulated to optimize the representation for the demands of any particular task. We have, 

so far, tested only a single localization task and a single non-spatial auditory task. One might 

imagine that distinct modes of spatial tuning might emerge during tasks requiring 
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discrimination of closely separated sources, compared to tasks requiring panoramic 

localization, compared to spatial stream-segregation tasks requiring segregation of multiple 

sequences of sounds. Also, one might expect to see greater modulation of responses to target 

sounds than to non-target probe sounds, as tested in the present study. Specific analysis of 

the relationship between task demands and cortical neuronal sensitivity potentially offers a 

fruitful means of understanding aspects of the cortical mechanisms of the dynamics of 

auditory spatial perception.

Methods

All animal procedures were approved by the University of Michigan Committee on Use and 

Care of Animals. Stimulus presentation and data acquisition utilized instruments from 

Tucker-Davis Technologies (Alachua, FL) and custom MATLAB software (The 

Mathworks, Natick, MA).

Stimulus generation

Sounds were presented under free-field conditions in a sound-attenuating chamber that was 

lined with 2-inches Pinta Sonex foam to suppress sound reflection. Small loudspeakers were 

positioned on a horizontal hoop, 1.2 m in radius, in 20° increments of azimuth. A vertical 

arc, 1.1 m in radius, held speakers in 20° increments of elevation. The vertical arc could be 

rotated in azimuth from contralateral 50° to ipsilateral 50°. The loudspeakers were calibrated 

to equalize their levels and to flatten their broadband spectra 47. Independent Gaussian noise 

bursts were 80 or 150 ms in duration with abrupt onsets and offsets. Click trains consisted of 

80- or 150-ms trains of 10-µs impulses at a rate of 200/s. Sound levels were 50 dB SPL (for 

66 units) or 30 dB SPL (for 4 units).

Behavioral tasks and training

Data were obtained from four spayed female and one neutered male purpose-bred domestic 

cats that had clean external ears and no obvious hearing deficits. The cat sat or stood on a 

small platform centered within the arrays of loudspeakers. A harness retained the cat on the 

platform, but permitted it to move its head and limbs freely. Cats were monitored by video-

camera from outside the chamber. A feeder mounted on a pneumatic cylinder was raised to 

provide behavioral reinforcement (liquefied canned cat food) and was lowered during data 

collection.

Each cat learned two behavioral tasks: Periodicity Detection and Localization. In all 

conditions, noise-burst probe stimuli were presented continuously at intervals of 1.25 s, 

jittered by 0.2 s, varying in azimuth from trial to trial. The noise bursts probed the spatial 

sensitivity of neurons. The two tasks differed in the nature of the targets. The Periodicity 

Detection target was a click train, a distinct “buzz”, which was presented from randomly 

varying azimuths and elevations. The Localization target was a Gaussian noise burst, 

identical to the probe stimuli except for its location. The Localization targets were presented 

from varying elevations 40° to 80° above the horizontal plane with azimuths that varied 

daily within a range of contralateral 50° to ipsilateral 50° azimuth; trial-by-trial differences 

in the cat’s head position introduced additional variance in the proximal acoustic cues 
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associated with the targets. Probe stimuli also were presented during Idle periods, which 

were defined by an absence of key-pressing and occurred interspersed with periods of task 

performance or near the end of a session when the cat was satiated. Frequent movements of 

the head and body indicated that the cats were awake during Idle periods.

Behavioral sessions lasted ~1.5-hr and were conducted once or twice daily for each cat. All 

the behavioral sessions were conducted in the dark. The cat began each block of trials by 

pressing the response key with a forepaw to start a “hold” period, during which probe 

stimuli were presented. Hold periods were varied randomly in duration from 10–20 s and 

terminated with presentation of a target sound. If the key was released within 1.5 s after the 

target onset, the trial was scored as a “hit”, the feeder was raised, and the cat was rewarded. 

Early release was scored as a “false alarm” and triggered a 2-s timeout period. Late (or no) 

release was scored as a “miss”, and no food was delivered. The next block of trials began 

immediately if the key was still depressed or when the cat pressed the key again.

Training lasted 4 to 10 months, depending on the animal. Three cats were first trained in the 

Periodicity Detection task followed by the Localization task, and the other two cats started 

with Localization followed by Periodicity Detection. Criteria for completed training were 

median hit rates of ≥ 80% for the Periodicity Detection task or ≥ 70% for the Localization 

task. The reaction time for the behavioral responses averaged 0.63 second (STD: 0.19 s) 

across five animals. After reaching criteria for one task, each cat practiced that task daily for 

two weeks in order to consolidate its behavior and then began training in the second task. 

Once both tasks were learned and consolidated, each cat was trained to switch between the 

two tasks within single sessions. Within each session, each block of trials of a particular task 

was signaled by presentation of five of the targets from that task. After each cat learned to 

switch tasks in this way, it usually could perform one or more blocks of each task within 

each session. The order of the behavioral tasks for each daily behavioral session was 

determined pseudo-randomly.

Surgery

After training, a skull fixture and recording electrodes were implanted under aseptic 

conditions in an approved surgical suite. The skull fixture provided points of attachment for 

the recording head stage and for the electromagnetic sensor that tracked the head orientation. 

Recording electrodes were silicon-substrate multi-site chronic probes from NeuroNexus 

(Ann Arbor, MI). Each probe had 16 recording sites located along a single shank, spaced in 

100- or 150-µm intervals. Two to four probes were placed in A1 or other cortical areas in 

each surgical procedure. Responses were attributed to cortical area A1 on the basis of 

cortical landmarks, frequency tuning, and spike latency. The number of sites with responsive 

units in area A1 ranged from 1 to 16 per probe (median =6). After placing the electrodes, the 

dura opening was covered with calcium alginate48, and the craniotomy was filled with 

SILASTIC, a silicone elastomer (World Precision Instruments, Sarasota, FL) and sealed 

with dental acrylic. After one week of recovery, cats began performing daily behavioral 

sessions with physiological recordings for a period of several weeks to several months. After 

sufficient data were obtained from each set of probes, or after the quality of recording 

deteriorated, probes were removed and new probes were implanted under similar aseptic 
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surgical procedures. Each animal received a total of 3 to 10 sets of probes. Two cats 

received probe placements in both right and left hemispheres, whereas penetrations were 

restricted to the right hemisphere in the other three cats. Across the 5 animals, usable single- 

or multi-unit activity was recorded at a total of 70 A1 sites on 15 of the 16-site probes. 

Characteristic frequencies of units often were ambiguous, in contrast to the sharp frequency 

tuning usually encountered under anesthetized conditions, but those characteristic 

frequencies that could be measured ranged from 2 to 22 kHz.

Physiological recording

Behavioral conditions during physiological recording were identical to those during training, 

except that a headstage and a head-tracker receiver were mounted on the skull fixture. The 

neural waveform at each probe site was amplified, digitized, and stored on the computer 

hard disk for later analysis.

The possible influence of pinna movements on neural spatial sensitivity was a concern for 

this study. Video monitoring of the cats, however, indicated that pinna movements were 

minimal during recording sessions, consistent with our previous observations17. Moreover, 

significant sharpening, broadening, and/or no change in spatial sensitivity could be recorded 

from a set of units recorded simultaneously, which could not easily be attributed to a change 

in pinna position.

Data analysis

Extracellular action potentials (“spikes”) were identified offline from the stored neural 

waveforms using custom software based on principal component analysis of spike shape19. 

We encountered well-isolated single units and, more often, spikes from multiple unresolved 

units. We observed no systematic differences between single units and multi-unit recordings 

and therefore referred to both as “unit activity”, consistent with our previous reports and 

those of others. Unit activity was recorded at a total of 70 sites. Spike times were expressed 

relative to the sound onset at the loudspeaker; therefore, latencies include 3.5 ms of acoustic 

travel time. Unit activity at each site typically varied day to day, suggesting that the probe 

was moving relative to the brain or that the electrode-neural interface was changing. For that 

reason, we compared task-dependent characteristics of unit responses only within single 

~1.5-hr recording sessions, during which spike shapes and spike count statistics tended to be 

stable.

The cat’s head was free to move, resulting in a variable alignment of the head relative to the 

fixed loudspeakers. The location and orientation of the head at the time of each stimulus 

onset was given by an electromagnetic head tracking system (Polhemus Fastrak, Colchester, 

VT). Offline, each stimulus location was expressed in head-centered coordinates based on 

the relative positions of the stimulus and the head. Head-centered stimulus azimuths were 

quantized into 18 20°-wide bins, centered at contralateral170 to ipsilateral 170° with 20° 

intervals. Very few stimuli fell into the bins centered at contra/ipsilateral 90° because the 

nearest loudspeakers fell precisely on the edges of those bins and because the cats seldom 

held their heads precisely horizontal. For that reason, we omitted from analysis the bins at 

contra/ipsilateral 90°, leaving 16 bins of head-centered azimuth.
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The stimulus-location-dependent responses of units are represented by two-dimensional 

post-stimulus-time histograms, as in Figs. 1, 2 and 3, which show mean spike rate as a 

function of peri-stimulus time; plots were smoothed in the time domain with a 3-point 

Hanning window. White gaps crossing the plots correspond to the bins centered at contra- 

and ipsi-lateral 90°, which were excluded from analysis. Spatial sensitivity of units was 

quantified by rate-azimuth functions, which plotted mean spike counts within the first 40 ms 

after stimulus onset as a function of azimuth. Rate-azimuth functions for Periodicity and 

Localization conditions were compiled only from responses to probe stimuli on “hit” trials 

in which the response key was depressed and held until the cat correctly released the key in 

response to presentation of a target. Early or late releases of the key were scored as “false 

alarms” or “misses”, respectively. Note that comparison of spike counts elicited by a 

particular stimulus during hits or misses was not meaningful because a hit, miss, or false 

alarm was defined by the behavioral response to a target presented on a later trial. Rate-

azimuth functions in the Idle condition were compiled during periods in which the key was 

not pressed. For some units, the rate-azimuth-functions for one condition were combined 

from more than one block of trials of the same condition during the same experimental 

session. The number of trials used to compute spike rates varied among stimulus locations 

and behavioral conditions from 3 to 105 trials (average 28.1). The Equivalent Rectangular 

Receptive Field (ERRF) of each unit was computed by computing the area under the rate-

azimuth function and reshaping to form a rectangle of equivalent peak rate and area (see 

Supplementary Fig. 1).

We used a bootstrap procedure49 to estimate the trial-by-trial variation in ERRF widths of 

individual units. Each bootstrapped ERRF width was computed from a rate-azimuth 

function formed from the mean of a random sample of spike rates at each azimuth, sampled 

with replacement. The bootstrap sample size for each unit was the mean number of trials 

across locations for that unit. Comparisons of spatial selectivity between two task conditions 

were made by forming a Receiver Operating Characteristic (ROC) curve50 based on 1000 

such computations for each condition. The area under the ROC curve yielded the proportion 

of trials in which spatial selectivity was sharper (or broader) in a particular task condition. A 

proportion of 0.76 (corresponding to a discrimination index of 1.0) was used as the criterion 

indicating that an individual unit showed significant sharpening or broadening.

For the purpose of comparing spike rates and first-spike latencies among behavioral 

conditions, we first smoothed rate-azimuth functions in each condition with a three-point 

Hanning window. Next, average rate-azimuth functions were formed by the means of 

functions for Idle, Periodicity, and Localization conditions. Finally, the “preferred” and 

“least-preferred” locations were given by the maxima and minima, respectively, of the 

average rate-azimuth functions. For each unit, the same preferred and least-preferred 

locations were used across all three behavioral conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task-dependant modulation of spatial sensitivity. (a) Post-Stimulus-Time-Histogram 

(PSTH) showing activity as a function of time (horizontal axis) and head-centered stimulus 

location (vertical axis) for one example unit in A1 in the right hemisphere during the Idle 

condition (Equivalent Rectangular Receptive Field, ERRF, width =217°). Colors indicate 

mean spike activity. The thin white lines at the bottom of the plots indicate the 80-ms 

stimulus duration. White gaps crossing the plot corresponded to the spatial bins centered at 

ipsi-/contra-lateral 90°, which were omitted from analysis. (b) PSTH of the same unit during 

the Periodicity Detection condition (ERRF width =173°). (c) PSTH of the same unit during 

the Localization condition (ERRF width =143°). (d) Average spike rates during the onset 

response [10–40ms] as functions of azimuth. Black, blue, and red lines plot rate-azimuth-

function in Idle, Periodicity Detection, and Localization conditions, respectively. The data 

for three conditions were obtained within a single behavioral session, which lasted about 

100 min. For the demonstration of the computation of the ERRF width, see Supplemental 

figure 1.
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Figure 2. 
Modulation of spatial sensitivity in sequential conditions. (a) PSTH of an example unit from 

the left hemisphere recorded during the first block of localization trials from the beginning 

of the recording (0 min) to the first 13 minutes. (b) The same unit recorded during a 

subsequent idle period (13 to 18 min). (c) Rate-azimuth-function of the onset responses for 

the first Localization (red trace) and the subsequent Idle condition (black trace). (d) A 

second block of localization trials (25 to 34 min). (e) A second Idle period (34 to 39 min). 
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(f) Rate-azimuth-function of the onset responses for the second Localization (red trace) and 

the subsequent Idle condition (black trace). Plot conventions are the same as in Fig. 1.
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Figure 3. 
PSTH plots in three task conditions from two units recorded from the left hemisphere that 

showed offset-dominant responses to 150 ms stimuli. Figure a–c were PSTHs from one unit 

recorded across three conditions (a: Idle, b: Periodicity Detection, c: Localization) within a 

105 min session. Figure d–f were PSTHs from another unit recorded across three conditions 

(d: Idle, e: Periodicity Detection, f: Localization) within a 120 min session. For each unit, 

the ratio of offset to onset responses increased from Idle to Periodicity Detection to 

Localization conditions. Plot conventions are the same as in Fig. 1.
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Figure 4. 
Comparisons of ERRF width across conditions for all units that showed excitatory responses 

within first 40ms after stimulus onset. (a–c) Each symbol represents one unit, with the value 

in horizontal and vertical axes corresponding to its ERRF width in two different conditions. 

The symbols lying below the diagonal line represent units for which spatial tuning 

sharpened (and the ERRF width narrowed) for the condition indicated on the ordinate. “o” 

symbols represent the units that did not show significant sharpening or broadening of ERRF 

widths. “+” symbols represent the units that showed significant sharpening and “x’ symbols 

represent the units that showed significant broadening according to the ROC test described 

in relation to Fig. 5. (d) Cumulative distributions of ERRF widths across three conditions. 
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The horizontal dashed line crosses the curves at the median values. The percentages of the 

distributions to the left of the vertical dash line had ERRF widths narrower than a hemifield 

(i.e., ≤ 160°).
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Figure 5. 
Percentage of units that showed significant sharpening or broadening of spatial tuning 

between condition pairs. Portions of the bars above or below 0 % line represent the 

percentage of units for which the ERRF width sharpened or broadened significantly for each 

two-way comparison. The upper portions of the middle and right bars are divided to 

represent units that sharpened their tuning significantly in the Periodicity-versus-Idle 

contrast (dark shading) or those that did not (light shading).
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Figure 6. 
First spike latency for preferred locations was longer during behavioral conditions. 

Distributions of the trial-by-trial medians of first-spike latencies for preferred locations are 

plotted for three conditions. Analysis of variance (ANOVA) showed a significant effect of 

condition for the median first spike latency (p <0.05). Differences were significant in two-

way comparison between Idle and Periodicity Detection conditions (t test, p < 0.01) and 

between Idle and Localization conditions (t test, p <0.01) but not between Periodicity 
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Detection and Localization (t test, p =0.83). Each box shows the upper and lower quartile 

and median as horizontal lines. The plus signs indicate points beyond the quartiles.
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Figure 7. 
Spike rates decreased in the Localization condition primarily for stimuli at least-preferred 

locations. (a) Distributions of spike rates averaged across all stimulus locations for units that 

showed significant sharpening in the bootstrap analysis (Fig. 5). Mean spike rates decreased 

significantly across task conditions (Kruskal-Wallis test, p <0.01). (b) Mean spike rates for 

stimuli at preferred locations showed no significant difference between Localization and Idle 

conditions (Wilcoxon rank sum test, p =0.88). (c) Mean spike rates for least-preferred 

locations were suppressed significantly for Localization compared to Idle conditions (p 

<0.05).

Lee and Middlebrooks Page 25

Nat Neurosci. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Time course of the task-dependent modulation of the response at single location that showed 

strongest suppression when compared Localization to Idle conditions. Hit and non-hit trials 

are represented by light and dark bars, respectively. (a) Normalized spike rates during four 

consecutive hit trials (1–4) followed by the four consecutive non-hit trials (5–8). The mean 

normalized spike rate for each of the four non-hit trials was significantly higher than the 

mean of all the hit presentations (Wilcoxon rank sum test, p <0.0001 to p <0.01, depending 

on trial). (b) Four non-hit trials (1–4) followed by four hit trials (5–8). The normalized spike 

rate for each of the first three non-hit trials was significantly higher than the mean of all the 

hit presentations that followed (p <0.001 to p <0.005). Error bars showed the standard errors 

of the means.
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