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Article Summary Line

We report 119 sequences of SARS-CoV-2 across all Ecuadorian provinces, 20 different

lineages were found until January 17%, including B.1.1.7.

Running Title

Genomic surveillance of SARS-Cov-2 across Ecuador.

Abstract

SARS-CoV-2, the etiological agent of COVID-19, was first described in Wuhan, China
in December 2019 and has now spread globally. Ecuador was the second country in South
America to confirm cases and Guayaquil was one of the first cities in the world to
experience high mortality due to COVID-19. The aim of this study was to describe the
lineages circulating throughout the country and to compare the mutations in local
variants, to the reference strain. In this work we used the MinlON platform (Oxford
Nanopore Technologies) to sequence the whole SARS-CoV-2 genomes of 119 patients
from all provinces of Ecuador, using the ARTIC network protocols. Our data from lineage
assignment of the one hundred and nineteen whole genomes revealed twenty different
lineages. All genomes presented differences in the S gene compared to the Wuhan
reference strain, being the D614G amino acid replacement the most common change. The
B.1.1.119 lineage was the most frequent and was found in several locations in the Coast
and Andean region. Three sequences were assigned to the new B.1.1.7 lineage. Our work
is an important contribution to the understanding of the epidemiology of SARS- CoV-2

in Ecuador and South America.


https://doi.org/10.1101/2021.03.19.21253620
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.03.19.21253620; this version posted March 24, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Highlights

e All 119 genomes showed mutations compared to the reference strain, which could be

important to understand the virulence, severity and transmissibility of the virus.

e Until January 17, three sequences were assigned to the new B.1.1.7 lineage.

e Our findings suggest that there were at least twenty independent introductions of

SARS-CoV-2 to Ecuador.

Key words: SARS-CoV-2, MinlON sequencing, COVID-19, whole genome

sequencing, Ecuador.

INTRODUCTION

SARS-CoV-2, the etiologic agent of COVID-19, has spread globally reaching all
continents (1). Ecuador was the second country in South America, after Brazil, to report
its first confirmed case, on February 29, 2020 (2). The number of cases has grown ever
since, reaching 241,567 laboratory qPCR confirmed cases and 14,668 deaths by Jan 28,
2021 (3). The pandemic has had a severe impact in the Ecuadorian population. It is
suggested that up to 838.35 people per million inhabitants may have died since the first
COVID-19 case. Despite of this being the official data, mortality rate could be bias due

to scarce testing.
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Understanding the local epidemiology of SARS-CoV-2 can be greatly enhanced
from understanding the viral evolution, establish the origin of variants (4), transmission
of variants across different regions (5), the genetic diversity of variants in the population
and to identify notable mutations (6). Additionally, key biological aspects such as
virulence, transmissibility and infectivity of the circulating lineages can be investigated,
when combined with clinical data from the patients (5). The importance of genomic
surveillance is underscored with the current emergence of variants with potential
increased transmission or disease severity like the B.1.1.7, P.1 and B.1.351. As a global
effort, over 751,513 genome sequences of SARS-CoV-2 have been reported to date
globally and are available in GenBank and the GISAID (Global Initiative on Sharing All

Influenza Data) repositories (7).

Previous to this work there is no information about the SARS-CoV-2 lineages circulating
in Ecuador. Here, we report one hundred and nineteen SARS-CoV-2 whole genome
sequences sampled from every province of the country in the coastal, Andean and
Amazonian regions plus the Galapagos archipielago. We identify lineages that circulated
among the population from March 2020 through January 2021. We also describe the
mutations present in these genomes as they could influence virulence, transmission and
infectivity. The sequencing was performed using the portable MinION platform (Oxford

Nanopore Technologies).

MATERIALS AND METHODS

Epidemiological information and sample collection

Nasopharyngeal swabs (NS) or broncho-alveolar lavage (BAL) samples were collected
from patients in public third-level hospitals located in different provinces of Ecuador.

Sample positivity for SARS-CoV-2 using standard RT-qPCR protocols, was officially
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92  reported to hospitals by the Ecuadorian Ministry of Public Health (MSP) and National
93 Institute of Public Health and Research (INSPI). The use of samples was approved by the
94  Bioethics Committee of Universidad San Francisco de Quito (CEISH No. 1234). The
95 BAL samples were collected in a sterile tube with 2X DNA/RNA Shield (Zymo), and NS
96 were immersed in 1X DNA/RNA Shield (Zymo), to ensure virus inactivation and
97  preservation of the genetic material. Samples were transported immediately at 4°C to the
98 Institute of Microbiology at USFQ (IM-USFQ) in a sealed container with all the

99  biosecurity and containment measures recommended by the CDC of the USA

100  (https://www.fda.gov/media/134922/download).

101 RNA extraction

102  The genetic material from samples was extracted in a biosafety type II chamber with
103  HEPA filters in the Virology Laboratory at IM-USFQ. The SV Total RNA Isolation
104  System (Promega, USA) and Quick RNA viral, w/zymo-Spin IC (Zymo, USA) kits were
105  used to extract RNA from samples for whole genome sequencing. A pre-digestion step
106  was added to the RNA extraction protocol of the BAL samples as follows. Before nucleic
107  acid extraction, 280 pul of the BAL samples were predigested with 360 pl of PureLink™
108  Genomic Lysis Buffer and 20 pl of proteinase K. The mix was incubated at 55°C for 10
109  minutes vortexing every 5 minutes (Life Technologies, USA). All RNA extractions were
110  performed following manufacturer instructions. Retro-transcription was carried out using
111 the Protocol of the Public Health England Genomics Lab (8,9) at the USFQ

112 Bioinformatics Center and ARTIC protocol (10).

113 Viral whole genome sequencing

114  The Primer Scheme (V1 and V3) developed by the ARTIC network for nCoV-2019 was

115  employed to generate an amplicon tiling path across the viral genome (10,11). The final
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116  product of multiplex PCR was quantified using Qubit dsSDNA HS (High Sensitivity)
117  Assay Kit (Thermo Scientific, Invitrogen, Carlsbad, CA, USA). cDNA MinlION library
118  preparation was performed using the Rapid Barcoding kit (SQK-RBKO004), native
119  barcoding kit (NB-114) with ligation sequencing kit (LSK-109) following manufacturer
120  instructions and then loaded into a MinlON flow cell (FLO-MIN 106). Basecalling of
121 FASTS files was performed using Guppy (version 3.4.5) (12) (Oxford Nanopore
122 Technologies). Also, the RAMPART software (v1.0.5) from the ARTIC Network

123 (https://github.com/artic-network/rampart) was used to monitor sequencing in real-time.

124  Sequence quality scoring, demultiplexing and adapter removal was performed with the
125  NanoPlot (13) and Porechop (version 0.2.4) algorithms, respectively

126 (https://github.com/rrwick/Porechop). The ARTIC Network bioinformatics pipeline was

127  used for variant calling, and the reads were mapped against the reference strain Wuhan-
128  Hu-1 (GenBank accession number MN908947), to generate consensus genomes. Tablet

129  alignment viewer (version 1.19.09.3) (https://ics.hutton.ac.uk/tablet) was used to

130  visualize the mapped sequence. The online tool NextClade (14) was used to determine
131  the genomes clades. Then, genomes were uploaded to the CoV-GLUE resource (15), to
132 determine the mutations, epidemiological linkage of circulating SARS-CoV-2 variants
133  and primer mismatches. Lineage classification was carried out with Pangolin online

134  software (https://github.com/cov-lineages/pangolin). Visualization of sequences in a

135  phylogenetic tree was performed using the following strategy. The 119 Ecuadorian SARS
136 COV 2 genomes of the present study were aligned with eight hundred and sixty one
137  genomes from GISAID using NextAlign tool. A maximum likelihood phylogenetic
138  reconstruction was performed with GTR substitution model and 1000 bootstrap

139  resampling using IQtree 2.1.1. The phylogenetic tree was visualized with iTOL tool.

140
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141 RESULTS

142  Complete genome sequencing revealed multiple entries of the virus to Ecuador

143 Sequencing results demonstrated that there were numerous SNPs in the ORF1a, ORF3a,
144 ORF 7a, ORF7b, ORFS, S, M and N genes (Figure 1 and Supplementary Table 1);
145  interestingly, the number of SNPs in the E gene was null. Our results confirmed the
146  presence of several hotspot mutations in different viruses infecting the Ecuadorian
147  communities. Phylogenetic analysis showed that Ecuadorian genomes were clustered
148  with genomes from other countries, suggesting multiple entries (Supplementary figure

149 1)

150  Twenty lineages were identified in which the dominant lineages were: B.1 (n=31)
151  followed by B.1.1.119 (n=30), B.1.1.1 (n=10), B.1.1.207 (n=8), B.1.1.10 (n=6) and
152 B.1.1.67 (n=5) (see Table S1 for all lineages). Interestingly some lineages were found
153  only in 4 of the 24 provinces: A.1, B.1.9, B.1.371, B (Pichincha), A (Santo Domingo),
154  B.1.308 (Zamora-Chinchipe) and B.1.6, B.1.325 (Imbabura). Lineages B.1.1.119 and B.1
155  were found in Awa and Waorani Amazonian indigenous communities respectively

156  (Table 1), (Supplementary Table 1).

157  Three of the analyzed sequences showed the aminoacid changes T1831, A890D, 11412T,
158  P323L, L493F, N501Y, T5531, A570D, D614G, P681H, T7161, S982A, D1118H, Q27,
159  R52I, Y73C, D3L, R203K, G204R and S235F placing them in the B.1.1.7 lineage. All
160  sequences showed mutations at the S gene, being the most prevalent A23403G (95.79%
161  sequences) conferring the D614G aminoacid change. (Supplementary Table 1) (Table

162 2).
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163  Primer mismatches were analyzed with seven COVID-19 diagnostic kits. All sequences
164  showed changes at RARP gene of Charité RT-PCR kit in positions 15469-15494, 15505-
165 15530, and15431-15452 Mismatches were also found for the National Institute of
166  Infectious Diseases Japan, CDC USA and CDC China RT-PCR diagnostic Kkits,

167  Supplementary Table 2.

168

169  DISCUSSION

170 Ecuador is one of the countries that has been severely affected by SARS-COV2
171 (1). Despite of the non-pharmaceutical interventions for preventing its dissemination, the
172 virus continued to spread in all provinces. As most Latin American countries, Ecuador
173 has had limited success in lowering transmission curves, mostly due to limited testing and
174  socio-economic reasons(16). Public and private hospitals in Ecuador have continuously
175  been flooded with patients with severe COVID-19 during the last year. In this study, we
176  analyzed 119 SARS-CoV-2 whole genome sequences from all 24 provinces, using the
177  third-generation sequencing MinlON platform (Oxford Nanopore).

178

179 A total of twenty lineages were found in the 24 provinces. Unique lineages were
180  detected only in Pichincha, Imbabura (Andes), Santo Domingo (Foothills) and Zamora-
181  Chinchipe (Southern Amazon) provinces, however we cannot stablish that these lineages
182  are not present in other provinces due to the limited genomic surveillance in the country
183  Additionally, HGSQ-USFQ-007 and HGSQ-USFQ-010 genomes showed a distinct set
184  of mutations. A mutation which may be increasing the virulence due to inhibition of the
185 interferon response in vitro was found in these genomes (17)

186 SARS-COV2 is constantly changing through mutations, that led to the

187  occurrence of new variants. Mutations in the S gene that confer a selective advantage to
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188  the virus had become more common. An example is A23403G mutation (D614G amino
189  acid change) which was present in 95.79% of sequences from this study (18).
190
191 However, from all the variants that have been detected worldwide, only a small
192  number are of public health concern. Three variants of concern (VOC) had emerged:
193 B.1.1.7 in England, B.1.351 in South Africa, and P.1 in Brazil considering their
194  improvements in viral replication mechanisms, transmissibility, and capacity to evade the
195 immune host response. All these factors could have a direct impact on the efficacy of
196  vaccines (18,19). In Ecuador B.1.1.7 was identified in three sequences from Los Rios
197  province, introduced by travelers from other countries Currently local authorities have
198  reported that this variant is showing community-acquired transmission (20).
199
200 The presence of multiple lineages of SARS-COV-2 in Ecuador could be explained
201 by independent introductions from different countries. The genomic surveillance results
202  offer a high-resolution picture of the virus spread in the community probably due to the
203  frequent movement of people between provinces. The current pandemic is unlikely to be
204  thelast, and it is, therefore, essential to improve the response capacity of our public health
205  systems and to implement and strengthen continuous scientific research programs. Only
206  in this way, we will be able to better understand these types of threats, act based on
207  evidence, and thus reduce their impact. Community-acquired transmission is widespread
208  in Ecuador and more samples from community-acquired infections are needed to inform
209  analyses of the local epidemiology of the virus.
210  Medical and scientific efforts throughout the country made possible to compile at least
211 one sequence from each province, however we must join efforts with other universities

212 and state laboratories to increase genomic surveillance in the country
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213 We are aware that the small number of samples reported in this study might not capture
214  the full picture of what is happening in Ecuador. However, revealing the information
215  contained in the SARS-CoV-2 virus genome sequences is a robust tool to understand the
216  epidemiology of COVID-19 locally. The present study is a steppingstone to understand

217  the importance of carrying local genomic surveillance for infectious diseases circulating

218  in the country.
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Figure 1. Genome annotation and frequency of the amino acid changes identified in at

least 4% of the sequences. The amino acid changes are defined in comparison with the

Wuhan-Hu-1 reference genome (GenBank accession number MN908947).

Table 1. Lineages distribution in the 24 provinces of Ecuador.

D3G (18.5%)

V70F (6.7%)

Total
Province
population*

Total

confirmed

cases**

Cases per

100,00 hab

Lineages identified*

R203K (53.8%)

G204R (53.8%)

ORF10

9755
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Azuay 881,394 15,383 1,745.30 |B.1.1.1, B.1.223, B.1 (n=4)

Bolivar 209,933 2,866 1,36520 |B.1.1.1, B.1.1.119 (n=3)

Cafar 281,396 3,321 1,180.19 |B.1.1.119 (n=1)

Carchi 186,869 4,725 2,528.51 |B.1.1.119 (n=1)

Cotopaxi 488,716 4,076 777.86 B.1, B.1.197 (n=2)

Chimborazo |524,004 6,84 1,399.59  |B.1.1.207 (n=3)

Esmeraldas |643,654 10,023 1,400.35 |B.1.223,B.1.1.119, B.1 (n=6)

El Oro 715,751 5,361 832.90 B.1.1.1, B.1 (n=4)

Galapagos 33,042 1,211 3,665.03 B.1 (n=1)

Guayas 4,387,434 703.87 B.1.1.1,B.1.1.119,B.1.1.10, B.1
30,882 (n=6)

Imbabura 476,257 1,509.27 |B.1.1.207,B.1,B.1.67,B.1.1.119,

B.1.223, B.1,B.1.1.1, B.1.6,

7,188 B.1.1.31, B.1.1.10, B.1.325 (n=23)
Loja 521,154 8,694 1,668.22 |B.1,B.1.1, B.1.1.119 (n=5)
Los Rios 921,763 619.79 B.1.1.119, B.1.1.207, B.1, B.1.67,
5,713 B.1.223, B.1.1.1, B.1.1.7 (n=14)
Manabi 1,562,079 16,94 1,084.45 |B.1.1.119, B.1 (n=3)
Morona 196,535 2,092.25 |B.1.1.119, B.1.1 (n=2)
Santiago 4,112
Napo 133,705 1,888 1,412.06 |B.1.1.119, B.1 (n=3)
Orellana 161,338 2,167 1,343.14 |B.1.223,B.1 (n=4)
Pastaza 114,202 2,501 2,189.98 |B.1.1.119, B.1 (n=2)

Pichincha 3,228,233 84,367 2,613.41 B,B.1.1.119, B.1.14, B.1.371, B.1,
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B.1.67, A.1, B.1.223, B.1.9, (n=14)
Santa Elena |401,178 2,979 742.56 B.1 (n=1)
Santo 1,441.41 A,B.1.1.31,B.1.1.10, B.1.1.159
Domingo de (n=7)
los Tsachilas (458,58 6,61
Sucumbios {230,503 3,183 1,380.89 |B.1,B.1.1.159 (n=3)
Tungurahua |590,6 8,775 1,485.78 |B.1.1.119, B.1.197, B.1.1.10 (n=3)
Zamora 120,416 1,463.26  |B.1, B.1.308, B.1.223 (n=4)
Chinchipe 1,762
Total 17,510,643 (241,567 1,379.54 20 lineages (N=119)

*Data based on the last estimations for 2020 from INEC (Instituto Nacional de

Estadisticas y Censos), **Data from the official Ecuadorian portal

CoronavirusEcuador.com on January, 3 2021

https://www.coronavirusecuador.com/datos-provinciales/

Table 2. Amino Acid replacement in gene S found in SARS-CoV2 genomes from

Ecuador.

Aminoacid replacement in |no. of genomes with replacement
S protein (%)

A288S 2 (1,68)

D614G 114 (95.80)

E1207V 1(0.84)

L18F 1(0.84)

N1187S 1(0.84)
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AS570D 3(2.52)
DI118H 3(2.52)
GI167A 4 (3.36)
N501Y 3(2.52)

Non-codon-aligned deletion (3 (2.52)

P681H 3(2.52)
S982A 3(2.52)
T5531 3(2.52)
T7161 3(2.52)

343

344  Supplementary table 1. Mutations found in four SARS CoV2 Genomes from Ecuador

345  compared to Wuhan-Hu-1 (GenBank accession number MN908947)

346  Supplementary table 2. Primer mismatches analyzed with seven COVID 19

347  diagnostic kits.

348  Supplementary figure 1. Phylogenetic analysis of SARS-COV2 genomes. The
349  phylogenetic tree was generated using the software IQ tree 2.1.1 and was visualized and

350 annotated using the iTOL tool. Ecuador sequences are highlighted in red.

351
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