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Abstract

Interest in investigating gene–environment (GxE) interactions has rapidly increased over the last decade. Although GxE interactions have
been extremely investigated in large studies, few such effects have been identified and replicated, highlighting the need to develop statis-
tical GxE tests with greater statistical power. The reverse test has been proposed for testing the interaction effect between continuous ex-
posure and genetic variants in relation to a binary disease outcome, which leverages the idea of linear discriminant analysis, significantly in-
creasing statistical power comparing to the standard logistic regression approach. However, this reverse approach did not take into
consideration adjustment for confounders. Since GxE interaction studies are inherently nonexperimental, adjusting for potential confound-
ing effects is critical for valid evaluation of GxE interactions. In this study, we extend the reverse test to allow for confounders. The pro-
posed reverse test also allows for exposure measurement errors as typically occurs. Extensive simulation experiments demonstrated that
the proposed method not only provides greater statistical power under most simulation scenarios but also provides substantive computa-
tional efficiency, which achieves a computation time that is more than sevenfold less than that of the standard logistic regression test. In an
illustrative example, we applied the proposed approach to the Veterans Aging Cohort Study (VACS) to search for genetic susceptibility loci
modifying the smoking-HIV status association.
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Introduction
It is commonly believed that genetic variants can explain a pro-
portion of the risk for most complex human diseases (e.g., cancer,
diabetes, and asthma), where additional unexplained risk could
be explained, in part, by gene–environment (GxE) interactions
(Thomas 2010). Although many studies have attempted to iden-
tify genetic susceptibility loci interacting with environmental
exposures in samples using logistic regression analysis, few such
interactions have been identified and replicated (Aschard et al.
2012). Reasons for the failure to detect GxE interactions may in-
clude: (1) insufficient power for testing interaction effects com-
pared to testing main effects (Smith and Day 1984); (2)
measurement errors in the environmental exposure sacrifice the
power of the statistical test; (3) relatively small interaction effect
sizes compared to the main effect sizes of genetic variants and
environmental exposures, and (4) a large number of interactions
to be tested as compared to a relatively small sample size in epi-
demiological studies. In addition, since GxE research is inherently
nonexperimental, it is important to control for potential con-
founders (Keller 2014). For example, it is important to adjust for
population stratification so that the interaction effects detected
between genetic variants and exposures are not driven by

ethnicity (Witte et al. 1999; Kraft and Hunter 2005; Wang et al.
2006; Wang and Lee 2008). In an attempt to minimize the number
of covariates in the logistic regression model due to the concern
about low power, investigators usually enter the confounders as
covariates into the regression model, and ignore the potential
confounder-environment or confounder-gene interaction effects.
Several authors (e.g., VanderWeele et al. 2013; Keller 2014) sug-
gested to take into consideration the possible confounder-
environment and confounder-gene interactions in order to obtain
a more robust analysis result.

In this study, we focus on statistical methods for testing the
interaction effect between a genetic variant and a continuous en-
vironmental exposure on a binary disease outcome. The genetic
variant can be either binary or ordinal. When the environmental
exposure is a continuous variable, Aschard et al. (2018) proposed
a test that “reverses” the role of the disease status and the contin-
uous exposure in the logistic regression model, i.e., treating the
disease status as an independent variable and the environmental
exposure as the dependent variable. This regression model is
now a linear regression including an interaction term between
the genetic variant and disease status, encoding the GxE interac-
tion effect. When the error term in this linear regression model
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follows a constant-variance normal distribution, both the reverse
test and the standard logistic regression test evaluate the same
null hypothesis (Aschard et al. 2018). The reverse test has several
advantages over the logistic regression approach. First, the re-
verse test approach generally uses less computation time, since
the reverse test statistic has a closed form, in contrast to the iter-
ative optimization procedure used in logistic regression.
Simulation studies and some theoretical analysis that follows in-
dicate that the reverse test tends to achieve a several- to 10-fold
reduction in computation time compared to the logistic regres-
sion test, as the sample size becomes large. Second, in the reverse
test approach, measurement error in the environmental expo-
sure does not cause bias in the point estimates of the regression
coefficients, because the measurement error is adsorbed in the
error term. Third, the reverse test approach exhibits greater sta-
tistical power than the logistic regression approach, especially
when the main effect of the exposure and the GxE interaction ef-
fect are large.

The reverse test in Aschard et al. (2018) did not consider con-
founders except for a brief discussion on this issue, whereas, as
pointed out above, in GxE interaction studies it is usually neces-
sary to control for a set of potential confounders. In this study,
we extend the reverse test to adjust for confounders in the evalu-
ation of the GxE interaction. Specifically, we introduce con-
founder terms into the linear regression model, which include
not only the main effect of confounders but also the interaction
effects between the confounders and gene/disease. In the scenar-
ios where the confounder-environmental exposure relationship
may be nonlinear, spline terms for the confounders can be incor-
porated in model. We perform simulation studies to evaluate the
type I error rate and power of this test and compare it to the stan-
dard logistic regression approach. In an illustrative example, we
apply the reverse test to the Veterans Aging Cohort Study (VACS)
to investigate genetic variants modifying the association of smok-
ing and HIV status.

Materials and methods
The logistic regression approach
In genome-wide association studies (GWAS), the logistic regres-
sion model has been commonly used to estimate the GxE interac-
tion effects and test for their presence. This model has the
following form

logitðPrðD ¼ 1jG;X;ZÞÞ ¼ a0 þmðZÞ þ axXþ agGþ agxGX; (1)

where logitðcÞ ¼ log c
1�c

� �
is the logit function, and X, G, D, and

Z ¼ ½Z1; . . . ;Zp�T denote a continuous exposure, a genetic variant,
a binary disease status and possible confounders, respectively.
We first consider a binary genetic variant, G ¼ f0; 1g, to denote
the risk allele noncarriers and carriers. The ordinal scenario for G
will be considered at the end of this subsection. The confounders,
Zj (j ¼ 1; . . . ; p), can be continuous or binary. Here, eax , denoted as
ORðDjX;G ¼ 0Þ, is the odds ratio (OR) for the disease for a one unit
increase in X at the reference genetic level G¼ 0, eag , denoted as
ORðDjG;X ¼ 0Þ, is the OR for G¼ 1 vs G¼ 0 at the reference expo-
sure level X¼ 0. The parameter of interest is eagx ¼ ORðDjX;G¼1Þ

ORðDjX;G¼0Þ,
which is the ratio of the ORs (ROR) with respect to X for G¼ 1 vs
G¼ 0, representing the effect of the GxE interaction. The null hy-
pothesis, ROR ¼ 1, or equivalently agx ¼ 0, indicates no interac-
tion between the genetic variant and environmental exposure.

Without loss of generality, in the logistic regression model (1),
we assume that the confounders term, mðZÞ, can be written asPp
j¼1

mjðZjÞ. For binary Zj, mjðZjÞ ¼ bzj
Zj. For continuous variable Zj,

we may use the restricted cubic spline (Durrleman and Simon
1989) or other spline functions to model Zj. If using restricted cu-
bic splines, we have mjðZjÞ ¼

PM�1

k¼1
azj ;kBj;kðZjÞ, where fBj;kðZjÞgM�1

k¼1 is
the spline basis based on M knots (Durrleman and Simon 1989). If
M¼ 2, mjðZjÞ includes only a linear term, azj ;1Zj. The knots are of-
ten placed at evenly spaced percentiles over the distribution of Zj.
The confounder term, mðZÞ, can be rewritten as aT

z
~Z, where the

vector ~Z denotes all the terms generated by Z, including all the
possible spline basis, and az are the corresponding coefficients.
Throughout this study, all vectors are column vectors. Generally,
the maximum likelihood estimator of a ¼ ½a0; a

T
z ; ax; ag; agx�T can

be obtained through an iteratively procedure. A 1-df wald test
with respect to the null hypothesis, H0 : agx ¼ 0, can be used to
test the GxE interaction. The wald test statistic is s2

a ¼
â2

gx

V̂arðâgxÞ
,

which follows a 1-df v2-distribution under the null.
In the above, Z-G or Z-X interaction effects have not been in-

cluded in model (1). Vanderweele et al. (2013) and Keller (2014)
pointed out that neglecting Z-G interaction terms could bias esti-
mates of the GxE interaction and inflate the type I error of the
null hypothesis. A similar argument applies to the Z-X interac-
tion terms. Therefore, the Z-G and Z-X interaction terms must
also be included in order to obtain valid GxE interaction esti-
mates and tests. In model (1), it is straightforward to control for
all the main effects and interaction effects of Z by replacing Z in
the term mðZÞ with Z� ¼ ½ZT; ðZXÞT; ðZGÞT�T. Inclusion of these
terms will not change the estimation and test procedure for the
GxE interaction effect.

The genetic variant, G, may also be treated as an ordinal vari-
able with values 0, 1, and 2, corresponding to wild type, heterozy-
gous genotype, and homozygous genotype, respectively. Under
this scenario, eag now represents the OR for one unit increase in G
at the exposure reference level X¼ 0, and eagx , the ROR, represents
the ratio of ORs in X for one unit increase of G. The parameter es-
timation and testing for H0 : agx ¼ 0, or equivalently H0 : ROR ¼ 1,
are similar to those in the binary genetic variant scenario.

The reverse test approach
Aschard et al. (2018) proposed a reverse test that exchanges the
roles of the disease outcome D and continuous exposure X. Now,
taking into account potential confounders, Z, we assume X, con-
ditional on D, G, and Z, follows a normal distribution with con-
stant variance; i.e.,

X ¼ b0 þ hðZÞ þ bgGþ bdDþ bgdGDþ e; (2)

where e � Nð0;r2Þ. Similar to mðZÞ in the logistic regression
model, hðZÞ can be written as

Pp
j¼1

hjðZjÞ with each of hjðZjÞ a linear
form bzj

Zj or a spline function. Estimation of the unknown
parameters in (2), denoted by b, can use ordinary least squares
(OLS). Unlike with the logistic regression model (1), the parameter
estimators for this linear regression model have a closed form.
Thus, this linear regression approach is computationally more ef-
ficient than the logistic regression approach.

Now, we calculate the ROR based on the linear regression
model (2). For notational simplicity, we assume the genetic vari-
ant is binary. The approach for ordinal genetic variants will be
similar. In Appendix A, we show that ORðDjX;G ¼ gÞ ¼ eðbdþbgdgÞ=r2

for g¼ 0, 1. Therefore, ROR ¼ ebgd=r
2
, and testing H0 : ROR ¼ 1 is

equivalent to testing H0 : bgd ¼ 0 in linear model (2). Also, using
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the linear regression model, the ROR can be estimated by
^ROR ¼ expðb̂gd=r̂

2Þ, where b̂gd and r̂2 are the OLS estimates of bgd

and the estimated variance of the error term, r2. The analytic for-
mula for the standard error and estimated confidence interval of

^ROR are shown in Appendix B. In the linear model, we can also
control for possible interaction effects between confounders and
gene/disease by replacing Z in the term hðZÞ with
Z�� ¼ ½ZT; ðZDÞT; ðZGÞT�T. In this linear model including the addi-
tional interactions, ebgd=r

2
also represents the ROR (see

Supplementary Material Appendix A for more detail); therefore,
testing bgd ¼ 0 is also valid for testing ROR ¼ 1. Similar to the lo-
gistic regression test, the reverse test can uses a 1-df wald test
statistic s2

b ¼
b̂

2
gd

^Varðb̂gdÞ
to check for the null hypothesis H0 : bgd ¼ 0.

One of major advantages of the logistic regression approach is
that it can provide valid statistical inference if the data are a
case-control study that is retrospectively sampled from a source
population with known disease status. In Appendix C, we prove
that the reverse test is also a valid approach under such a case-
control sampling design.

Consider the following linear model with Z-G interaction terms,

X ¼ b0 þ h
�
ðZÞ þ h�ðZÞGþ bgGþ bdDþ bgdGDþ e; if G is binary;

X ¼ b0 þ h
�
ðZÞ þ h�ðZÞGþ h��ðZÞG2 þ bgGþ bdDþ bgdGDþ e; if G is ordinal;

8<
:

(3)

where h
�
ðZÞ; h�ðZÞ and h��ðZÞ are functions of Z and e � Nð0;r2Þ as

for (2). Note that model (2) is a special case of (3). As shown in
Supplementary Material Appendix B, the logistic model (1) and linear
model (3) can hold simultaneously, and if both models hold, we can
develop the following parametric relationships between the logistic
regression and linear models: ax ¼ bd

r2 and agx ¼
bgd

r2 . Otherwise, how-
ever, the logistic regression model (1) and linear model (2) cannot
hold simultaneously. In Supplementary Material Appendix B, we
show that models (1) and (2) can also hold simultaneously and the
parametric relationships above still hold. This occurs under the fol-
lowing two conditions. First, the error term in the linear model (2) is
normally distributed with a constant variance. Second,
logitðPrðD ¼ 1jG;ZÞÞ ¼ b0 þ b1Gþ b2G2 þ bzðZÞ þ bzgðZ;GÞ; where G
can be binary or ordinal, and b0, b1, b2, bzðZÞ, and bzgðZ;GÞ are func-
tions of the unknown parameters in models (1) and (2), and the defi-
nitions of b’s are shown in Supplementary Material Equation (S2).

The linear regression model (2) mainly relies on two assump-
tions: (i) the conditional normality assumption; i.e., the error
term in the linear model follows a normal distribution and (ii) the
constant variance assumption; i.e., VarðeÞ ¼ r2 is constant. A nor-
mality test, such as the Jarque-Bera test (Jarque and Bera 1987) or
the Shapiro-Wilk test (Shapiro and Wilk 1965), can be used to
check whether regression residuals, �, satisfy the conditional nor-
mality assumption. If necessary, a transformation on X can be
applied before performing the GxE analysis using the reverse test
approach. Commonly used transformations include logarithm,
square root, Box-Cox (Box and Cox 1964), and Yeo-Johnson trans-
formations (Yeo and Johnson 2000).

The constant variance assumption can be evaluated by imple-
menting Levene’s test (Levene 1961) or the White test (White
1980) on the linear regression model’s residuals. When the con-
stant variance assumption does not hold, i.e., VarðeÞ depends on
Z, D, and G, the OLS estimator of bgd will be consistent but the

variance estimator of b̂gd is invalid, often inflating the type I error

for H0 : bgd ¼ 0. Under heteroskedasticity, the sandwich variance

should be used for ^Varðb̂gdÞ in s2
b ¼

b̂gdffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðb̂gdÞ

p� �2

. This s2
b statistic

also follows a 1-df v2-distribution under the null hypothesis. Sun
et al. (2018) suggested that the sandwich estimator of variance
may be biased downwards in finite samples and cause inflated
type I error in hypothesis testing, and provided a bootstrap-based

method, referred as BICS, to improve the performance of the s2

statistic. It should be noted that, in the presence of heteroskedas-
ticity, testing H0 : bgd ¼ 0 is no longer equivalent to testing

ROR ¼ 1. In the next section, we present alternative definitions of
the GxE interaction and show that testing H0 : bgd ¼ 0 is still a

valid test for GxE interaction, even if the constant variance or the
conditional normality assumption does not hold.

Alternative definitions of the GxE interaction
In the previous two sections, the OR was used to represent the
exposure-disease association; if the exposure-disease association
differs in genetic subgroups, a GxE interaction was identified. In
this section, we present several other parameters that also repre-
sent the exposure-disease association, leading to alternative defi-
nitions for GxE interactions.

The conditional mean difference of X between cases and con-
trols (abbreviated as MD), i.e., EðXjD ¼ 1;G;ZÞ � EðXjD ¼ 0;G;ZÞ,
can be used to represent the exposure-disease association. The
difference of MD between the subgroups of G¼ 1 and G¼ 0, re-
ferred as the difference of mean difference (DMD), can represent the
GxE interaction effect, and DMD ¼ 0 represents no GxE interac-
tion (Aschard et al. 2018). In model (2), we can show the MDs at
the genetic levels G¼ 1 and G¼ 0 are bd þ bgd and bd, respectively,
and therefore DMD ¼ bgd. Noticing that the previous derivation of
MD and DMD only requires that EðXjD;G;ZÞ agrees with what is
presented in (2), it does not place any restriction on the distribu-
tion of the error term in linear model (2). In other words, even if �
in (2) is nonnormally distributed and heteroskedastic, H0 : bgd ¼ 0
is valid for testing for no GxE interaction H0 : DMD ¼ 0.

Alternatively, CorrðX;DjG;ZÞ also measures the exposure-
disease association, and the difference in correlation coefficient
(DCC), defined as CorrðX;DjG ¼ 1;ZÞ � CorrðX;DjG ¼ 0;ZÞ, also
represents GxE interaction. If DCC ¼ 0, there is no exposure-
disease correlation difference across genetic subgroups, and
therefore no GxE interaction. In Supplementary Material
Appendix C, we show that testing for H0 : DCC ¼ 0 is also valid
through evaluating H0 : bgd ¼ 0, under the assumptions of weak
X-G and D-G associations, regardless of whether the normality
assumption holds or not.

Measurement errors in the environmental
exposure
Many environmental exposures are measured with error, includ-
ing data from self-administered questionnaires and laboratory
measurements. In this section, we consider scenario under the
classical additive measurement error model:

X� ¼ Xþ d; (4)

where X� is the measurement of X, and d, independent from X, G,
Z, and D, is the measurement error term following a mean zero
normal distribution with variance r2

d . We can use the regression
calibration method (Rosner et al. 1989, 1990) to obtain the cor-
rected estimator for the interaction coefficient, âgx, in the logistic
regression model (1). Using the regression calibration approach,
we fit the logistic regression model with X replaced by X�:
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logitðPrðD ¼ 1jG;X�;ZÞÞ ¼ a�0 þm�ðZÞ þ a�xX� þ a�gGþ a�gxGX�: (5)

It follows that âgx � â�gx=q̂, where q̂ ¼ V̂arðXÞ
V̂arðXÞþr̂2

d
and q represents

the magnitude of the measurement error, when either (i)
PrðD ¼ 1jX;X�;G;ZÞ ¼ PrðD ¼ 1jX;G;ZÞ, the disease is rare, and
XjG;Z is normal (Rosner et al. 1989); or (ii) PrðD ¼ 1jX;X�;G;ZÞ ¼
PrðD ¼ 1jX;G;ZÞ and VarðXjX�;G;ZÞ is small (Carroll et al. 2006).
Under either of the above conditions, testing H0 : a�gx ¼ 0 in model
(5) is also a valid test for no GxE interaction H0 : ROR ¼ 1, al-
though the point estimator â�gx is attenuated.

It is more straightforward to cope with the measurement
errors in the linear regression model (2). Based on the assumption
that d is independent from D, G, and Z, we can show that
EðX�jG;D;ZÞ ¼ EðXþ djG;D;ZÞ ¼ EðXjG;D;ZÞ and
VarðX�jG;D;ZÞ ¼ VarðXþ djG;D;ZÞ ¼ r2 þ r2

d . Noting that both d

and � are normally distributed, we have

X� ¼ b�0 þ h�ðZÞ þ b�gGþ b�dDþ b�gdGDþ e�; (6)

where e� � Nð0;r2 þ r2
dÞ. All of the coefficients in the conditional

mean (6) equal those in the original linear model (2), including
b�gd ¼ bgd. Now, the parametric relationship b�gd ¼ bgd holds ex-
actly, in contrast to the approximation for logistic regression us-
ing the regression calibration approach. Because ROR ¼ ebgd=r

2
, we

have ROR ¼ eb�gd=r
2
, and testing H0 : b�gd ¼ 0 in linear regression

model (6) is valid for testing H0 : ROR ¼ 1. The ^ROR ¼ eb̂
�
gd=r̂

2

, how-
ever, will be attenuated, because r̂2 tends to be overestimated as
the variance of the error term, r2 þ r2

d , is larger than r2. If the
measurement error term depends on G, D, or Z, i.e.,
VarðdÞ ¼ VðG;D;ZÞr2

d , where VðG;D;ZÞ is an unknown positive
function, the linear model (6) with b�gd ¼ bgd still holds. However,
Varðe�Þ ¼ r2 þ VðG;D;ZÞr2

d is no longer a constant. As discussed
in the section above, in this heteroskedasticity scenario, we can
use the sandwich variance in the test for H0 : bgd ¼ 0.

Simulation studies
To assess the validity of the reverse test approach and its power
compared to the standard logistic regression model approach, we
conducted simulation studies under a range of scenarios. We de-
scribe first the models considered in the simulation study, and
then the data generation procedures.

Specifically, we consider the following logistic and linear re-
gression model:

logitðPrðD ¼ 1jG;X;ZÞÞ ¼ a0 þ a1Z1 þ a2Z2
1 þ a3Z2 þ agGþ axXþ agxGX;

X ¼ b0 þ b1Z1 þ b2Z2
1 þ b3Z2 þ bgGþ bdDþ bgdGDþ e;

(

(7)

where e � Nð0; 1Þ, and Z1 and Z2 are potential confounders. A brief
summary of the data generation process is shown as below and
the detailed information can be found in Supplementary Material
Appendix D. Specifically, we first generate Z1 and Z2, followed by
the genetic variant G. Next the disease D is generated conditional
on Z1, Z2, and G. Finally, the exposure X is generated based on the
linear regression model in (7). Note that the logistic model in (7)
also holds by this generation procedure, since the data generating
process for DjG;Z1;Z2 are carefully manipulated such that the dis-
tribution DjX;G;Z1;Z2 coincides with the linear model in (7). We
now specify the parameter values in (7). Noting that

a0 ¼ log PrðD¼1jG¼X¼Z1¼Z2¼0Þ
1�PrðD¼1jG¼X¼Z1¼Z2¼0Þ

� �
, we choose the values of a0 such that

the baseline disease prevalence ranged from 5% to 50%. In the lo-
gistic regression model, we set ea1 ; ea2 and ea3 as 1.2, and specified

ax, ag and agx over realistic values such that ORðDjX;G ¼ 0Þ �
1:5; ORðDjG;X ¼ 0Þ � 1:5 and ROR � 1:5, each corresponding to a
one unit increase in X and G. In the linear regression model, we
fixed b0 ¼ 0; b1 ¼ 0:03 and b2 ¼ 0:03, and defined b3 and bg for a
series of correlations between the outcome X and independent

variables G, D and Z, with b3 ¼
CorrðX;Z2 jZ1¼G¼D¼0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXjZ1¼G¼D¼0Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðZ2 jZ1¼G¼D¼0Þ
p , and

bg ¼
CorrðX;GjZ1¼Z2¼D¼0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXjZ1¼Z2¼D¼0Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðGjZ1¼Z2¼D¼0Þ
p , where CorrðX;Z2jZ1 ¼ G ¼

D ¼ 0Þ and CorrðX;GjZ1 ¼ Z2 ¼ D ¼ 0Þ were set at a range from
0.01 to 0.2, the conditional variances of X were specified as 1, and
the conditional variances of G and Z2 were set to their correspond-
ing unconditional variances. We specified bd ¼ ax and bgd ¼ agx,

noting that bd ¼ axr2; bgd ¼ agxr2, and r2 ¼ 1.

We first simulated a cohort study with 100,000 subjects using
the parameters and data generation procedure as above, and
then randomly selected 1000 cases and 1000 controls from the
cohort to create a 1:1 matched case-control study. Then, we fit
the logistic model and linear model to obtain âgx and b̂gd, where a
cubic B-spline approach with 3 interior knots was used for Z1 in
each model. Next, we tested H0 : agx ¼ 0 and H0 : bgx ¼ 0 based on
a 1-df wald test. We repeated the above procedure 500,000 times
to evaluate the validity and statistical power of the two tests.
Under measurement error scenarios, we generated X� based on
(4), where the measurement error was set to explain 25–75% of
the variance of X�; that is, q ¼ VarðXÞ

VarðXÞþr2
d

from 75 to 25%. Here, â�gx

and b̂
�
gd were estimated from X� instead of X in two models.

In addition, we compared performance of the two tests when
models (1) and (2) do not hold simultaneously. Specifically, we
considered two scenarios, corresponding to the two conditions
that are required for both models hold simultaneously. In
Scenario I, we used a simple logistic regression model with proba-
bility logitðPðD ¼ 1jG;ZÞÞ ¼ a0 þ a1Z1 þ a2Z2

1 þ a3Z2
2 þ agG to gener-

ate the disease outcome, instead of the more complex expression
given above to generate D in order to ensure both models hold si-
multaneously. In Scenario II, we considered scenarios where er-
ror term in the linear model does not follow normality and set
the error term to follow a rectified Gaussian distribution (Socci
et al. 1998), a right-skewed distribution that resets the negative
elements of a normal distribution to 0. In each of these scenarios,
we considered two data generation procedures, referred as the lo-
gistic data generation procedure and linear data generation procedure,
corresponding to the following two cases: (i) a correctly specified
logistic model but a misspecified linear model and (ii) a correctly
specified linear model but a misspecified logistic model. More
details for the simulation setting-ups in Scenarios I and II are de-
ferred to Supplementary Material Appendix E and F, respectively.

Illustrative example: the VACS
We illustrated the utility of the proposed reverse test by investi-
gating the genome-wide interaction of gene-smoking on HIV sta-
tus from the VACS. VACS is a multi-center, longitudinal
observational study of HIV-infected and -uninfected veterans,
whose primary objective is to understand the risk of substance
abuse in subjects with HIV infection (Justice et al. 2006; Wu et al.
2019). As the GxE interaction effects may vary among different
ethnic groups, we focused on the subgroup of African Americans
in this example. The environmental exposure, smoking, was
measured by cigarettes per day (� 0) in patient surveys collected
at six clinic visits. Previous literature shows that cigarette smok-
ing is a potential risk factor for HIV acquisition as it may be asso-
ciated with high-risk sexual behavior (Burns et al. 1991; Marshall
et al. 2009). For each subject, we defined smoking (cigarettes per
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day) as the average of the smoking data over the six clinic visits.
The distribution of smoking is highly right-skewed with the coef-
ficient of skewness 3.54 (Supplementary Figure S2A). To alleviate
the skewness, a Yeo-Johnson transformation (Yeo and Johnson
2000) was applied. Specifically, the transformed smoking value is
TðxÞ ¼ ðxþ1Þc�1

c , where x is the original smoking values and c is a
tuning parameter which equals c ¼ �0:074 here. Because c is
close to 0, we can make the following approximation by
L’Hopital’s rule: TðxÞ � ðxþ 1Þc 	 logðxþ 1Þ � logðxþ 1Þ.
Therefore, approximately, we can interpret the transformed
smoking values as the logarithm of one plus the number of ciga-
rettes per day. The density plots for the transformed exposure
are shown in Supplementary Figure S2B, which presents that the
transformed smoking variable is barely skewed, with the coeffi-
cient of skewness 0.03. In the reverse test, we used the trans-
formed smoking varible as the response. We also used the
transformed smoking variable in the logistic regression model.

All samples were genotyped on the Illumina OmniExpress
BeadChip, and then imputed using IMPUTE2 (Howie et al. 2009)
with the 1000 Genomes Phase 3 data as a reference panel, which
resulted in a total of 17,092,657 SNPs. In this application study,
we excluded subjects whose environmental exposure or HIV sta-
tus were unavailable, and among that, the proportion of success-
fully imputed SNPs < 95%. Thus, after data cleaning, 1484
subjects were retained in the analysis, with 1403 males and 81
females, of whom 965 were HIV positive and 519 were HIV nega-
tive. The characteristics of the 1484 subjects stratified by the HIV
status are provided in Supplementary Table S1, where the HIV
negative group has lower proportions of males and smokers,
whereas other characteristics are balanced between the HIV posi-
tive and negative groups. SNPs with minor allele frequency (MAF)
> 1% and call rate > 95% were included in the analysis, which
resulted in 10,079,672 SNPs for analysis of their interaction
effects with smoking on the HIV infection. As for the confounders
in the logistic and linear model, we considered age at baseline
(continuous), and gender, as well as top 10 Principal Components
of genotypes to control for population structure. We also consider
alcohol intake (binary, drinkers vs nondrinkers) as a potential
confounder in the smoking-HIV association because evidence
shows that alcohol consumption may be associated with ciga-
rette smoking and is also a potential risk factor for the incidence
of HIV (Shuper et al. 2010). In the analysis, strong nonlinear main
effects of age at baseline were observed. Thus, we used the cubic
spline with 3 interior knots to adjust for the main effect of age in
both models. We also included age-by-smoking and age-by-gene
interactions in the logistic model to control for possible interac-
tion effects between age at baseline and smoking/gene on disease
outcome. Similarly, age-by-gene and age-by-HIV interaction
terms were included in our reverse test.

Results
Type I error
We evaluated the validity of the reverse approach and logistic re-
gression approach for testing GxE interaction by calculating the
nominal type I error rates at 5% and 0.01% significant levels.
Table 1 presents the empirical type I error rates of these tests
over a range of scenarios, with and without measurement error
in X in the circumstance when both the logistic regression and
linear models hold. The null models were simulated by setting
agx ¼ logðRORÞ ¼ 0 in the data simulation procedure. As shown in
Table 1, type I error rates were close to the nominal P-value
thresholds over the full range of design parameters we studied

for both tests, regardless of whether there was a measurement
error.

We evaluated the performance of both tests in Scenarios I
and II where the logistic regression model (1) and linear model
(2) do not hold simultaneously. Table 2 shows the type I error
rates at a 0.01% significant level for both tests in Scenario I
where PðDjG;ZÞ follows a simple logistic regression model. The
reverse test approach had well-controlled type I error rates un-
der both the logistic and the linear data generation procedures,
whereas the logistic regression test exhibited very slight type I
error deflation under the linear data generation procedure. At
the 5% significant level, both approaches always presented sat-
isfactory type I error rates when either the linear or the logistic
regression model did not hold simultaneously (Supplementary
Table S2).

Supplementary Tables S3 and S4 provided empirical type I er-
ror rates in Scenario II where the error term in the linear model
follows a rectified Gaussian distribution. Under the linear data
generation procedure, the reverse test exhibited no inflation or
deflation at any of the nominal threshold considered; in contrast,
the logistic regression test had inflated type I error under most
settings considered, especially when the OR of X was large with-
out measurement error. Under the logistic data generation proce-
dure, the logistic regression test had well-controlled empirical
type I error rates; for the reverse test, while the type I error rates
of the reverse test were almost always below the nominal levels
with occasionally a slight deflation.

Power comparison
We compared the statistical power of the logistic regression test
and reverse test by calculating the ratio v2

rev

v2
log

, simply referring as v2

ratio henceforth, where v2
rev and v2

log are the average v2 test sta-
tistics of the reverse test and logistic regression test over 500,000
repetitions for each simulation study scenario. A v2 ratio greater
than 1 indicates that the reverse test obtained statistical power
than the logistic regression test.

Figure 1 provides the v2 ratio of the reverse test against logistic
regression test in the absence of measurement error in X. We
considered the exposure main effects, i.e., ORðDjX;G ¼ 0Þ, from
1.1 to 1.5, and GxE effects, i.e., ROR, from 1.1 to 1.5, while consid-
ering weak and strong exposure-confounder correlation
(CorrðX;Z2jZ1 ¼ G ¼ D ¼ 0Þ ¼ 0:01, 0.2), weak and strong genetic
variant main effects (ORðDjG;X ¼ 0Þ ¼ 1:1, 1.5), rare and common
disease prevalence (PrðD ¼ 1jG ¼ X ¼ Z1 ¼ Z2 ¼ 0Þ¼0.05, 0.2),
and weak and strong gene-exposure correlation
(CorrðX;GjZ1 ¼ Z2 ¼ D ¼ 0Þ¼0.01, 0.2). As shown in Figure 1, all
the v2 ratios were greater than 1, indicating the reverse test pro-
vided higher statistical power than the logistic regression test.
The power advantage of the reverse test against logistic regres-
sion improved with the increase of the main effect of exposure;
for example, the v2 ratios were generally below 1.25 for
ORðDjX;G ¼ 0Þ ¼ 1:1 and ROR ¼ 1:5 and were greater than 1.45
for ORðDjX;G ¼ 0Þ ¼ 1:5 and ROR ¼ 1:5. As the ROR increased, the
reverse test also tended to have higher statistical power than the
logistic regression test. However, we observed a slight decrease in
the relative efficiency as the association between X and Z2 and
the exposure-gene association increased. The disease prevalence
and disease-gene association had minimal influence on the rela-
tive efficiency of the two tests.

More detailed results for the power comparison between the
reverse and logistic regression test are provided in Table 3, in
which we investigate the impact of exposure measurement error
on the relative efficiency. Typically, the magnitude of the
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measurement error resulted in a decrease in the relative effi-
ciency of the reverse test vs the logistic regression test, but the re-
verse test still provided a power advantage even when q ¼ 0:25.
For example, when ORðDjX;G ¼ 0Þ ¼ 1:5, the v2 ratio decreased
from over 1.4 in the absence of measurement error (q ¼ 1) to be-
low 1.15 for q ¼ 0:25. Supplementary Figure S5 presents the rejec-
tion rates (i.e., power) under the alternative hypothesis that
ROR¼ 1.5 across 50,000 replications for the logistic regression ap-
proach and the reverse test at significance levels of 0.01 and 5%

when the logistic and linear regression models hold simulta-
neously. As expected, the rejection rate raises when measurement
error decreases or significance level increases. The reverse test
exhibits higher rejection rates under nearly all settings in the ab-
sence of measurement error and also provides power advantage
under most simulation settings with a large measurement error
(q ¼ 0:25).

We also investigated relative efficiency when the linear and lo-
gistic regression models did not hold simultaneously. The results

Table 1 Type I error rates of the reverse test and logistic regression test (with ROR ¼ 1, i.e., no GxE interaction effect)

P0ðD ¼ 1Þ ORðDjG;X ¼ 0Þ Corr0ðX;Z2Þ Corr0ðX;GÞ ORðDjX;G ¼ 0Þ¼1.1 ORðDjX;G ¼ 0Þ¼1.5

X X�ðq ¼ 0:25Þ X X�ðq ¼ 0:25Þ

Logistic Reverse Logistic Reverse Logistic Reverse Logistic Reverse

Simulation under 5% type I error threshold
0.05 1.1 0.01 0.01 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.05 0.050 0.049 0.050 0.050 0.049
0.2 0.01 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.05 0.049 0.050 0.050 0.050 0.050
1.5 0.01 0.01 0.050 0.051 0.05 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050
0.2 0.01 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.051
0.20 1.1 0.01 0.01 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050
0.2 0.01 0.051 0.050 0.05 0.050 0.050 0.050 0.051 0.050

0.2 0.050 0.050 0.05 0.050 0.050 0.050 0.051 0.050
1.5 0.01 0.01 0.050 0.050 0.05 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.05 0.050 0.050 0.051 0.050 0.050
0.2 0.01 0.050 0.050 0.05 0.050 0.051 0.051 0.050 0.051

0.2 0.051 0.050 0.05 0.050 0.050 0.049 0.051 0.050
0.50 1.1 0.01 0.01 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.049 0.050 0.050 0.050 0.050 0.050 0.050
0.2 0.01 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

0.2 0.050 0.050 0.050 0.050 0.050 0.049 0.050 0.050
1.5 0.01 0.01 0.050 0.050 0.050 0.050 0.050 0.049 0.050 0.050

0.2 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
0.2 0.01 0.050 0.050 0.050 0.050 0.050 0.049 0.050 0.050

0.2 0.051 0.051 0.050 0.050 0.050 0.050 0.050 0.050
Simulation under 0.01% type I error threshold
0.05 1.1 0.01 0.01 9.8e-05 1.1e-04 1.0e-04 1.1e-04 8.8e-05 1.2e-04 7.8e-05 8.4e-05

0.2 5.8e-05 9.0e-05 9.2e-05 8.8e-05 8.4e-05 8.4e-05 1.0e-04 1.2e-04
0.2 0.01 7.8e-05 1.0e-04 7.4e-05 9.2e-05 7.6e-05 1.5e-04 6.0e-05 7.0e-05

0.2 9.8e-05 9.8e-05 8.4e-05 1.1e-04 8.0e-05 9.8e-05 1.0e-04 1.4e-04
1.5 0.01 0.01 8.2e-05 8.4e-05 9.8e-05 1.2e-04 1.1e-04 1.1e-04 8.6e-05 1.0e-04

0.2 9.2e-05 1.2e-04 7.6e-05 1.1e-04 9.0e-05 8.4e-05 8.6e-05 1.0e-04
0.2 0.01 1.0e-04 1.0e-04 8.0e-05 1.2e-04 1.0e-04 1.1e-04 9.0e-05 1.2e-04

0.2 1.0e-04 8.6e-05 5.8e-05 6.4e-05 9.6e-05 1.1e-04 8.4e-05 8.0e-05
0.20 1.1 0.01 0.01 9.0e-05 1.2e-04 8.8e-05 1.2e-04 7.2e-05 8.4e-05 9.0e-05 1.1e-04

0.2 9.4e-05 1.1e-04 7.8e-05 1.2e-04 1.2e-04 1.2e-04 1.0e-04 1.2e-04
0.2 0.01 8.6e-05 9.6e-05 8.4e-05 1.0e-04 9.6e-05 1.1e-04 7.0e-05 1.1e-04

0.2 9.6e-05 1.2e-04 8.2e-05 9.4e-05 8.6e-05 1.2e-04 7.4e-05 1.1e-04
1.5 0.01 0.01 8.2e-05 7.8e-05 7.6e-05 9.0e-05 1.0e-04 9.8e-05 7.2e-05 8.6e-05

0.2 8.6e-05 9.8e-05 7.2e-05 8.0e-05 7.8e-05 1.3e-04 1.1e-04 1.1e-04
0.2 0.01 9.4e-05 9.2e-05 7.8e-05 1.0e-04 1.0e-04 1.2e-04 1.0e-04 1.2e-04

0.2 8.0e-05 7.6e-05 8.2e-05 1.1e-04 8.4e-05 1.0e-04 9.2e-05 9.8e-05
0.50 1.1 0.01 0.01 6.8e-05 8.8e-05 7.8e-05 8.4e-05 9.0e-05 9.0e-05 7.2e-05 9.6e-05

0.2 6.0e-05 7.4e-05 7.6e-05 1.0e-04 6.2e-05 9.6e-05 7.8e-05 1.0e-04
0.2 0.01 8.2e-05 9.2e-05 7.8e-05 1.0e-04 1.0e-04 1.1e-04 1.2e-04 1.1e-04

0.2 8.4e-05 1.0e-04 9.8e-05 1.2e-04 1.0e-04 1.0e-04 6.8e-05 9.0e-05
1.5 0.01 0.01 8.2e-05 1.1e-04 8.2e-05 1.1e-04 8.0e-05 8.2e-05 7.2e-05 9.2e-05

0.2 8.0e-05 9.2e-05 8.0e-05 9.0e-05 1.1e-04 1.0e-04 8.2e-05 1.1e-04
0.2 0.01 8.8e-05 9.0e-05 1.0e-04 1.1e-04 1.0e-04 1.1e-04 8.2e-05 8.0e-05

0.2 8.2e-05 9.6e-05 9.8e-05 1.1e-04 1.1e-04 1.1e-04 9.2e-05 1.2e-04

In this table, “logistic” and “reverse” represent the logistic regression test and reverse test respectively. P0ðD ¼ 1Þ; Corr0ðX;Z2Þ, and Corr0ðX;GÞ denote
PrðD ¼ 1jZ1 ¼ Z2 ¼ G ¼ D ¼ 0Þ; CorrðX;Z2jZ1 ¼ G ¼ D ¼ 0Þ and CorrðX;GjZ1 ¼ Z2 ¼ G ¼ D ¼ 0Þ respectively. Here, q ¼ VarðXÞ

VarðX� Þ denotes the magnitude of the
measurement error, where X is the true exposure and X� is the observed exposure measured with error. The empirical type I error rates were calculated across

500,000 simulations for each scenario, where the empirical type I error rates outside the 95% confidence boundary, i.e., p61:96	
ffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

B

q
, were highlighted in bold.

Here, p denotes the nominal threshold (5 or 0.01%) and B denotes the number of replication (500,000).
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for Scenario I are shown in Supplementary Table S6. As expected,
the reverse test exhibited a significant power advantage under
the linear model data generation procedure. Under the logistic
data generation procedure, the reverse test still provided power
advantage among 62.5% of the simulation scenarios under a
weak D-X association (ORðDjX;G ¼ 0Þ ¼ 1:1) and 50%, when

ORðDjX;G ¼ 0Þ ¼ 1:5. Among the simulation scenarios where v2

ration <1, only 5 out of 84 (6.0%) had v2 ratio below 0.9.
Supplementary Table S7 presents the relative efficiency for
Scenario II where the error term in the linear model followed a
rectified Gaussian distribution. Under the linear data generation
procedure, the reverse test generally outperformed the logistic

Table 2 Type I error rates at 0.01% significant level of the reverse test and logistic regression test, in Scenario I that PðD ¼ 1jG;ZÞ
follows a simple logistic regression model and the logistic regression model and the linear model do not hold simultaneously

P0ðD ¼ 1Þ ORðDjG;X ¼ 0Þ Corr0ðX;Z2Þ Corr0ðX;GÞ ORðDj;X;G ¼ 0Þ¼1.1 ORðDjX;G ¼ 0Þ¼1.5

X X�ðq ¼ 0:25Þ X X�ðq ¼ 0:25Þ

Logistic Reverse Logistic Reverse Logistic Reverse Logistic Reverse

Linear data generation procedure
0.05 1.1 0.01 0.01 7.8e-05 9.6e-05 7.2e-05 9.8e-05 6.2e-05 8.8e-05 7.8e-05 1.1e-04

0.2 9.6e-05 1.1e-04 6.6e-05 1.0e-04 8.2e-05 1.0e-04 8.6e-05 8.2e-05
0.2 0.01 9.6e-05 1.2e-04 8.6e-05 1.2e-04 8.4e-05 9.6e-05 8.4e-05 1.0e-04

0.2 8.6e-05 7.4e-05 7.4e-05 1.1e-04 1.1e-04 1.2e-04 7.2e-05 9.2e-05
1.5 0.01 0.01 5.8e-05 8.4e-05 7.0e-05 8.6e-05 9.4e-05 1.2e-04 9.0e-05 1.0e-04

0.2 8.2e-05 8.8e-05 8.2e-05 1.4e-04 1.1e-04 1.4e-04 1.1e-04 1.2e-04
0.2 0.01 7.8e-05 9.2e-05 6.0e-05 7.8e-05 9.8e-05 1.0e-04 8.2e-05 8.0e-05

0.2 7.8e-05 1.0e-04 1.0e-04 1.0e-04 1.0e-04 1.1e-04 8.4e-05 8.6e-05
0.2 1.1 0.01 0.01 7.6e-05 1.0e-04 9.0e-05 1.1e-04 8.0e-05 1.0e-04 8.0e-05 9.0e-05

0.2 1.1e-04 1.1e-04 9.0e-05 9.0e-05 1.0e-04 1.1e-04 1.1e-04 1.0e-04
0.2 0.01 7.2e-05 1.2e-04 1.1e-04 1.1e-04 1.1e-04 1.0e-04 1.0e-04 1.1e-04

0.2 7.8e-05 9.6e-05 6.4e-05 1.0e-04 7.2e-05 8.8e-05 8.4e-05 8.4e-05
1.5 0.01 0.01 7.6e-05 9.6e-05 9.8e-05 1.3e-04 7.6e-05 9.6e-05 1.2e-04 1.3e-04

0.2 7.8e-05 9.0e-05 8.6e-05 1.0e-04 8.4e-05 9.4e-05 7.6e-05 1.2e-04
0.2 0.01 8.4e-05 9.0e-05 7.6e-05 8.8e-05 9.0e-05 9.8e-05 8.6e-05 1.1e-04

0.2 7.8e-05 1.1e-04 5.4e-05 7.6e-05 8.2e-05 1.2e-04 9.8e-05 1.2e-04
0.5 1.1 0.01 0.01 1.1e-04 1.0e-04 6.8e-05 9.0e-05 6.8e-05 8.4e-05 7.0e-05 9.0e-05

0.2 8.6e-05 1.0e-04 9.0e-05 9.4e-05 8.0e-05 1.2e-04 8.0e-05 9.6e-05
0.2 0.01 8.0e-05 1.1e-04 8.0e-05 7.0e-05 8.4e-05 9.8e-05 6.8e-05 1.0e-04

0.2 8.8e-05 9.6e-05 8.6e-05 8.8e-05 7.0e-05 1.1e-04 7.4e-05 9.0e-05
1.5 0.01 0.01 7.8e-05 1.1e-04 7.4e-05 9.0e-05 8.6e-05 1.0e-04 8.6e-05 1.1e-04

0.2 8.8e-05 9.0e-05 7.2e-05 9.6e-05 6.0e-05 1.1e-04 1.0e-04 1.0e-04
0.2 0.01 8.2e-05 8.4e-05 1.0e-04 9.0e-05 8.2e-05 9.4e-05 8.0e-05 1.1e-04

0.2 9.2e-05 1.1e-04 5.4e-05 8.4e-05 9.0e-05 1.0e-04 9.2e-05 1.0e-04
Logistic data generation procedure
0.05 1.1 0.01 0.01 7.6e-05 9.4e-05 9.2e-05 1.0e-04 7.6e-05 1.0e-04 9.6e-05 9.8e-05

0.2 8.2e-05 9.2e-05 8.0e-05 9.6e-05 8.2e-05 1.1e-04 7.6e-05 8.4e-05
0.2 0.01 7.2e-05 1.1e-04 6.2e-05 7.8e-05 8.6e-05 1.1e-04 6.6e-05 9.8e-05

0.2 7.6e-05 1.1e-04 8.8e-05 1.0e-04 7.6e-05 9.8e-05 8.4e-05 8.8e-05
1.5 0.01 0.01 7.8e-05 1.1e-04 7.4e-05 8.4e-05 6.0e-05 9.0e-05 9.2e-05 7.2e-05

0.2 9.4e-05 1.2e-04 8.8e-05 1.0e-04 7.8e-05 9.6e-05 8.2e-05 1.0e-04
0.2 0.01 7.4e-05 9.6e-05 8.0e-05 1.1e-04 6.2e-05 9.2e-05 8.8e-05 1.1e-04

0.2 9.0e-05 1.2e-04 1.1e-04 1.1e-04 8.0e-05 9.6e-05 1.0e-04 1.1e-04
0.2 1.1 0.01 0.01 8.0e-05 1.2e-04 7.4e-05 9.4e-05 9.8e-05 1.0e-04 7.4e-05 8.2e-05

0.2 1.0e-04 1.2e-04 8.2e-05 9.4e-05 8.6e-05 1.0e-04 9.0e-05 1.3e-04
0.2 0.01 7.6e-05 9.8e-05 7.6e-05 1.1e-04 8.6e-05 1.0e-04 8.0e-05 8.6e-05

0.2 8.6e-05 1.1e-04 9.0e-05 9.2e-05 8.8e-05 1.0e-04 5.2e-05 9.4e-05
1.5 0.01 0.01 8.8e-05 1.1e-04 8.8e-05 1.1e-04 6.4e-05 8.8e-05 8.2e-05 8.8e-05

0.2 1.0e-04 1.0e-04 7.0e-05 9.4e-05 5.8e-05 6.6e-05 7.8e-05 1.4e-04
0.2 0.01 7.0e-05 8.8e-05 7.6e-05 1.0e-04 9.2e-05 1.0e-04 1.1e-04 9.6e-05

0.2 6.8e-05 1.0e-04 8.2e-05 1.0e-04 8.4e-05 1.1e-04 8.8e-05 1.2e-04
0.5 1.1 0.01 0.01 8.4e-05 9.0e-05 8.2e-05 1.0e-04 1.0e-04 8.8e-05 8.4e-05 9.4e-05

0.2 9.4e-05 1.1e-04 7.4e-05 9.2e-05 7.6e-05 1.4e-04 8.2e-05 1.2e-04
0.2 0.01 8.8e-05 1.1e-04 7.6e-05 9.2e-05 1.0e-04 1.0e-04 6.8e-05 8.4e-05

0.2 9.4e-05 1.1e-04 8.0e-05 9.2e-05 7.6e-05 9.4e-05 6.0e-05 6.4e-05
1.5 0.01 0.01 8.6e-05 1.0e-04 8.6e-05 1.0e-04 6.0e-05 9.2e-05 7.6e-05 1.1e-04

0.2 9.0e-05 9.2e-05 8.0e-05 9.2e-05 7.2e-05 8.6e-05 9.8e-05 8.4e-05
0.2 0.01 7.2e-05 1.0e-04 7.2e-05 6.6e-05 7.6e-05 8.4e-05 7.6e-05 8.6e-05

0.2 8.8e-05 1.1e-04 8.6e-05 1.0e-04 8.8e-05 1.2e-04 8.4e-05 9.8e-05

In this table, “logistic” and “reverse” represent the logistic regression test and reverse test respectively. P0ðD ¼ 1Þ; Corr0ðX;Z2Þ, and Corr0ðX;GÞ denote
PrðD ¼ 1jZ1 ¼ Z2 ¼ G ¼ D ¼ 0Þ; CorrðX;Z2jZ1 ¼ G ¼ D ¼ 0Þ and CorrðX;GjZ1 ¼ Z2 ¼ G ¼ D ¼ 0Þ respectively. Here, q ¼ VarðXÞ

VarðX� Þ denotes the magnitude of the
measurement error, where X is the true exposure and X� is the observed exposure measured with error. The empirical type I error rates were calculated across

500,000 simulations for each scenario, where the empirical type I error rates outside the 95% confidence boundary, i.e., p61:96	
ffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

B

q
, were highlighted in bold.

Here, p denotes the significance level (0.01%) and B denotes number of replication (500,000).
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Figure 1 Power comparison between the reverse test and logistic regression test, where the x-axis is the ROR representing the magnitude of the GxE
interaction, and the y-axis is the average v2 ratio of the reverse test against the logistic regression test. The results were calculated through 500,000
simulations, with increasing the ROR and main effect of X (i.e., ORðXjG ¼ 0Þ) from 1.1 to 1.5. Left column: weak vs strong exposure-confounder
association, of CorrðX;Z2jZ1 ¼ D ¼ G ¼ 0Þ ¼ 0.01 (A) and 0.2 (E); Second column: weak vs strong disease-gene association, ORðGjX ¼ 0Þ¼ 1.1 (B) or 1.5 (F);
Third column: weak vs strong gene-exposure correlation, of CorrðX;GjZ1 ¼ Z2 ¼ D ¼ 0Þ¼0.01 (C) or 0.2 (G); Right column: rare vs common disease
prevalence, of PrðD ¼ 1jG ¼ X ¼ Z1 ¼ Z2 ¼ 0Þ¼0.05 (D) or 0.2 (H).

Table 3 Relative power of the reverse test against logistic regression test, where ROR¼ 1.5

P0ðD ¼ 1Þ ORðDjG;X ¼ 0Þ Corr0ðX;Z2Þ Corr0ðX;GÞ v2 ratio

ORðDjX;G ¼ 0Þ¼1.1 ORðDjX;G ¼ 0Þ¼1.5

q¼1 q ¼ 0:75 q ¼ 0:5 q ¼ 0:25 q¼1 q ¼ 0:75 q ¼ 0:5 q ¼ 0:25

0.05 1.1 0.01 0.01 1.25 1.19 1.14 1.08 1.48 1.36 1.25 1.14
0.2 1.21 1.13 1.06 0.99 1.43 1.30 1.18 1.07

0.2 0.01 1.22 1.15 1.08 1.02 1.45 1.32 1.20 1.09
0.2 1.17 1.09 1.01 0.94 1.40 1.27 1.14 1.02

1.5 0.01 0.01 1.27 1.21 1.16 1.10 1.49 1.38 1.27 1.16
0.2 1.23 1.16 1.09 1.02 1.47 1.34 1.22 1.11

0.2 0.01 1.23 1.17 1.11 1.04 1.46 1.34 1.22 1.12
0.2 1.21 1.12 1.04 0.97 1.44 1.31 1.18 1.07

0.20 1.1 0.01 0.01 1.24 1.18 1.13 1.07 1.46 1.35 1.24 1.13
0.2 1.19 1.12 1.05 0.98 1.42 1.29 1.17 1.06

0.2 0.01 1.21 1.14 1.08 1.02 1.44 1.31 1.19 1.08
0.2 1.17 1.09 1.01 0.94 1.39 1.26 1.14 1.02

1.5 0.01 0.01 1.25 1.20 1.14 1.09 1.47 1.36 1.25 1.15
0.2 1.22 1.15 1.08 1.02 1.44 1.32 1.20 1.10

0.2 0.01 1.22 1.16 1.10 1.04 1.44 1.32 1.21 1.11
0.2 1.19 1.12 1.04 0.97 1.42 1.29 1.17 1.06

0.50 1.1 0.01 0.01 1.23 1.17 1.12 1.06 1.45 1.34 1.23 1.12
0.2 1.19 1.12 1.05 0.98 1.41 1.28 1.17 1.06

0.2 0.01 1.20 1.14 1.07 1.01 1.43 1.30 1.19 1.08
0.2 1.16 1.08 1.01 0.94 1.39 1.25 1.13 1.03

1.5 0.01 0.01 1.24 1.19 1.14 1.08 1.45 1.34 1.24 1.14
0.2 1.21 1.14 1.08 1.02 1.42 1.30 1.19 1.09

0.2 0.01 1.21 1.15 1.09 1.03 1.42 1.31 1.20 1.10
0.2 1.18 1.11 1.04 0.98 1.39 1.27 1.16 1.06

P0ðD ¼ 1Þ; Corr0ðX;Z2Þ, and Corr0ðX;GÞ denote PrðD ¼ 1jZ1 ¼ Z2 ¼ G ¼ D ¼ 0Þ; CorrðX;Z2jZ1 ¼ G ¼ D ¼ 0Þ and CorrðX;GjZ1 ¼ Z2 ¼ G ¼ D ¼ 0Þ, respectively. Here,
q ¼ VarðXÞ

VarðX� Þ denotes the magnitude of the measurement error, where X is the true exposure and X� is the observed exposure measured with error. The relative power

was calculated by v2
rev

v2
log

where v2
rev and v2

rev are the average v2 statistics for the logistic regression test and reverse test based on 500,000 simulation repetitions for

each scenario.
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regression test, the v2 ratio was less than 1 in only 12 out of 192
(6.3%) simulation scenarios. Under the logistic data generation
procedure, the reverse test still provided satisfactory results; the
v2 ratio was less than 0.9 in 49 out of 192 (25.6%) simulation sce-
narios. In addition, we also observed that the reverse test pro-
vided greater statistical power against the logistic regression test
for small main effects of X and weak correlations between expo-
sure and genetic variant.

Computational time
The reverse test is more computationally efficient than the logis-
tic regression test, since it is based on a closed form test statistics,
in contrast to the iterative procedure used by the logistic regres-
sion test. Table 4 displays the computation time of the two tests
using R software on a single desktop computer (3.7 GHz CPU and
16 GB RAM) for GxE analysis of 1,000,000 SNPs with the sample
sizes from 1000 to 200,000. We can see that the reverse test out-
performed the logistic regression test in all scenarios.
Furthermore, as the sample size increased, the ratio of the com-
putation time of the logistic regression test comparing to the re-
verse test increased. With a sample size of 200,000, an
approximately 7.5-fold reduction in computation time was ob-
served for the reverse test.

Illustrative example: gene-smoking interactions
in VACS
Interaction effects between genetic variants and smoking in rela-
tion to HIV status was considered among 10,079,672 SNPs in 1484
African Americans in VACS, using both the reverse test and logis-
tic regression approach, adjusting for age, sex, alcohol intake,
and the top 10 Principal Components. Quantile–Quantile (Q–Q)
plots and Manhattan plots for both tests are presented in Figure
2. The reverse test displayed no evidence of P-value inflation in
the QQ plot (Figure 2B), with a genomic inflation factor, k, close to
1, while the logistic regression test showed some evidence of in-

flation in the QQ plot (Figure 2D), with k ¼ 1:07 We observed a
strong correlation between the P-values of the logistic and re-
verse tests, with the correlation coefficient 0.82.

Table 5 presents the results for SNPs where at least one of the
reverse and logistic regression tests provided a P-value below
1	 10�6. We can see the top-ranked SNPs largely overlapped be-
tween the two approaches. No SNPs showed genome-wide signifi-
cance (P-value < 5	 10�8) for the interaction under the logistic
regression approach. However, the reverse test presents that two
SNPs, rs10744166 and rs10773060, have significant interaction
effects (P-value ¼ 3:71	 10�8 and 3:42	 10�8). Both SNPs are lo-
cated at gene ZNF664 in chromosome 12, which was previously
identified to be associated with clubfoot (Zhang et al. 2014). The
minor allele frequencies (MAFs) of the two SNPs were 45.6 and
45.4% in the study sample, and were slightly higher as compared
to the 1000 Genomes (with MAF 37.5 and 37.4%, respectively). In
order to illustrate interactions across genotypes, averages of the
smoking values (cigarettes per day) between the HIV-infected
and -uninfected veterans stratified by different genotypes of
rs10744166 are visualized in Supplementary Figure S3A. As can
be seen from the figure, an increase in the number of minor
alleles of rs10744166 indicates a larger mean difference between
the smoking values in the HIV-infected and -uninfected individu-
als, such that the mean difference for the genotype with two mi-
nor alleles is at nearly 3.5 times the mean difference for the
genotype with no minor alleles. In other words, the minor allele
in rs10744166 is associated with a stronger smoking-HIV infection
relationship. A similar pattern between genotypes and mean dif-
ferences were also found in rs10773060, as visualized in
Supplementary Figure S3B. A linkage disequilibrium analysis
shows evidence that rs10744166 and rs10773060, along with the
other four SNPs located at ZNF664 shown in Table 5, are in link-
age disequilibria spanning a 1.5 kb length (Supplementary Figure
S3C), where the squared allele frequency correlations R2 for each
pair of SNPs are ranged between 0.95 and 0.99. It is of note that

Table 4 Comparison of computation time

Sample size Computation time in hours

(CasesþControls) Reverse test Logistic regression test Ratio

1,000 0.34 1.19 3.54
2,000 0.44 2.10 4.78
10,000 2.76 20.64 7.47
40,000 5.47 41.18 7.53
200,000 30.79 236.58 7.68

We compared the computation time for the reverse and logistic regression test for GxE interaction, in hours for 1,000,000 SNPs.

Table 5 SNPs with P-value < 1	 10�6 in at least one of the reverse and logistic regression test in the analysis gene-smoking
interaction effects in relation to HIV infection (VACS African Americans, n 5 1484)

Chromosome Gene SNP name Major allele Minor allele MAF Logistic test Reverse test

8 AC018953.1 rs72649207 C G 0.08 2.79e-06 2.88e-07
9 SH3GL2 rs77236711 G A 0.05 5.01e-06 2.54e-07
12 ZNF664 rs10773059 T C 0.44 1.36e-06 3.40e-07

rs10744166 T C 0.46 2.25e-07 3.71e-08
rs10773060 G A 0.45 1.88e-07 3.42e-08
rs10744167 C T 0.44 5.87e-07 1.51e-07
rs7315555 G A 0.45 1.52e-06 3.84e-07
rs7303161 T C 0.45 1.82e-06 4.03e-07

14 SLC35F4 rs10145503 G A 0.25 4.47e-07 4.08e-05
rs10148287 G A 0.25 2.87e-07 3.09e-05
rs12432123 G A 0.27 6.60e-07 4.46e-05
rs7146231 T C 0.27 6.74e-07 4.66e-05

The smaller P-value between the two tests was highlighted in bold.
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there was limited information on the detected SNPs given the
small sample size of this illustrative example. Replication in an
independent dataset is needed to confirm those associations.

We further performed a separate analysis for gene-smoking
interactions in the subgroup of smokers (n¼ 905). The QQ and
Manhattan plots of both tests are visualized in Supplementary
Figure S4. We observed no SNPs exhibiting genome-wide signifi-
cance based on either logistic regression test or reverse test. This
is not surprising as the sample size is relatively small. Although
rs10744166 and rs10773060 show genome-wide significance pre-
viously, both SNPs do not appear to be significant in the smokers
subgroup by either the reverse test (P-value¼ 0.08 and 0.09) and
the logistic regression test (P-value¼ 0.02 and 0.02).

Discussion
In this study, we propose a reverse test for interaction between
an environmental exposure and a genetic variant on a binary dis-
ease status, adjusting for confounding. Comparing with the stan-
dard logistic regression test for interaction with a continuous or
binary environmental exposure, the reverse test only applies to a
continuous environmental exposure. This reverse test leverages
the spirit of linear discriminant analysis by reversing the roles of
the environmental exposure and disease status, and obtains a
closed form of the GxE test statistic. Our analysis shows that
when the error term in the linear model follows a normal distri-
bution with constant variance, both the reverse and standard lo-
gistic regression approaches are valid for testing H0 : ROR ¼ 1.
Compared to the logistic regression approach, the reverse test
has a larger statistical power. As a trade-off, the reverse test ap-
proach additionally assumes that the exposure is continuous.

The logistic regression approach has a wider range of applica-
tions, in which the exposure can be continuous, binary, count,
and categorical variables.

The reverse approach can be extended to test for interactions
between a genetic marker set and a continuous environmental
exposure with a binary disease outcome. The standard approach
is based upon the logistic regression model logit½PrðD ¼ 1jX;
G;ZÞ� ¼ a0 þ aT

z Zþ aT
g Gþ axXþ aT

gxS, where G ¼ ½G1;G2; . . . ;Gp�T

denotes a genetic marker set containing p genetic variants and
S ¼ ½G1X;G2X; . . . ;GpX�T denotes the interaction terms between
the genetic marker set and exposure. The null hypothesis for the
interaction is H0 : agx ¼ 0. Following reverse approach, we assume
a linear model for X, X ¼ b0 þ bT

z Zþ bT
g Gþ bdDþ bT

gdUþ e, where
e � Nð0;r2Þ and U ¼ ½G1D;G2D; . . . ;GpD�T is the interaction terms
between the genetic set and disease status. We can also build a
parametric relationship such that agx ¼

bgd

r2 . Then, testing for H0 :

agx ¼ 0 in the logistic model can be evaluated through testing for
H0 : bgd ¼ 0 in the linear model. Based on the theory of linear dis-
criminant analysis (Efron 1975), it is expected that the reverse ap-
proach outperforms the reverse test with respect to the statistical
power if linear model is correctly specified and the error term fol-
lows a homoskedastic normal distribution.

We conducted simulation studies across a wide range of sce-
narios to evaluate the performance of the proposed approach.
Several observations followed from our simulation experi-
ments. First, the reverse test produces correct type I error rates,
both for standard or very small P-value threshold of 5 and
0.01%, whether or not there is exposure measurement error.
Second, the reverse test generally exhibited greater statistical
power than the standard logistic approach, and its relative sta-
tistical power improved when the magnitude of the GxE

Figure 2 Manhattan plots and Quantile-Quantile plots for the test of interaction effect between 10,079,672 common SNPs and smoking (cigarettes per
day) using the reverse test (upper panel) and standard logistic regression test (lower panel). In the Quantile-Quantile plots, k denotes the genomic
inflation factor. Red line: genome-wide significance level (P-value¼ 5	 10�8). Blue line: suggestive level (P-value¼ 1	 10�5).
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interaction effect or the main effect of exposure increased.
Although measurement error in the exposure tended to dimin-
ish the power advantage of the reverse test, the reverse test
still provided some power gain even under very severe mea-
surement error of q ¼ 0:25. Third, the reverse test is substan-
tially more computationally efficient. It achieves a
computation time that is more than sevenfold less than that of
the logistic regression test, a great advantage in coping with
large-scale genomic studies with millions of SNPs. Fourth, the
proposed approach performed reasonably well when the error
term is not normal. In summary, the reverse test provided a
valid, powerful, and computationally efficient alternative for
investigating GxE interactions in large-scale genomic research.

Does the relative computational advantage of the reverse
test change as sample size increases? In fact, the ratio of the
computation time of the logistic regression test and the reverse
test is likely bounded by a constant when the sample size is
sufficiently large. Specifically, fitting a linear model with an
OLS algorithm has Oðnp2Þ computational complexity in general
(Drineas et al. 2011; Iyer 2015), where n is the sample size and p
is the number of unknown coefficients . The computational
complexity of logistic regression model depends on the optimi-
zation algorithm used. One popular algorithm is iteratively
reweighted least squares (IRLS), which is also the default algo-
rithm for fitting generalized linear models in many statistical
softwares (such as R). As an iterative algorithm, the IRLS solves
a weighted least squares (WLS) subproblem at each iteration,
and the running time of this WLS subproblem is comparable
with the OLS algorithm if they share same number of sample
size and unknown coefficients (see Supplementary Material
Appendix G for more details). In other words, the additional
computational burden of the logistic regression test compared
to the reverse approach mainly depends on the number of the
IRLS iterations, when both tests adjusted for same number of
covariates. Although the number of IRLS iterations is affected
by initial values, as discussed in Komarek (2004), it is typically
around 5 or 10 in most of the scenarios and barely larger than
30. It follows that the computation time of the logistic regres-
sion test based on IRLS tends to be several to 10 times longer
than the reverse test when the sample size is sufficient large.
These sorts of gains in computational efficiency can become
quite important when whole-genome scanning, involving 6.4
billion SNPs, are to be undertaken.

In conclusion, given its power advantages and substantial
benefits in computing time, the reverse test can be quite a useful
tool in investigating GxE interactions, permitting whole-genome
scans over many exposures simultaneously, measured with or
without measurement error.

Data availability
The authors state that all data necessary for confirming the con-
clusions of the article are present within the article. A tutorial for
implementing the proposed methods in R software is available at
https://github.com/chaochengstat/GxE2020. The R codes for rep-
licating the simulation studies and analysis of the VACS illustra-
tive example are available at https://github.com/chaochengstat/
GxE2020/tree/main/Rcode_Genetics. Supplementary Material for
this manuscript is attached at the end of the article, which
includes Supplementary Material Appendix A–G, Supplementary
Figures S1–S3, and Supplementary Tables S1–S7.

Supplementary material is available at G3 online.
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Appendix

Appendix A: Derivation of OR ðDjX;G ¼ gÞ
based on the linear regression model
First, by definition,

ORðDjX;G ¼ g;Z ¼ zÞ

¼ PrðD ¼ 1jX ¼ xþ 1;G ¼ g;Z ¼ zÞ=PrðD ¼ 0jX ¼ xþ 1;G ¼ g;Z ¼ zÞ
PrðD ¼ 1jX ¼ x;G ¼ g;Z ¼ zÞ=PrðD ¼ 0jX ¼ x;G ¼ g;Z ¼ zÞ ;

g ¼ 0; 1:

Using the Bayes’ theorem,

PrðDjX;G ¼ g;Z ¼ zÞ ¼ f ðXjD;G ¼ g;Z ¼ zÞPrðDjG ¼ g;Z ¼ zÞ=f ðXjG
¼ g;Z ¼ zÞ;

where f ð:Þ denotes the probability density func-
tions (p.d.f’s). It follows that

ORðDjX;G ¼ g;Z

¼ zÞ¼ f ðX ¼ xþ 1jD ¼ 1;G ¼ g;Z ¼ zÞ=f ðX ¼ xjD ¼ 1;G ¼ g;Z ¼ zÞ
f ðX ¼ xþ 1jD ¼ 0;G ¼ g;Z ¼ zÞ=f ðX ¼ xjD ¼ 0;G ¼ g;Z ¼ zÞ :

(8)

Since XjD;G;Z follows a normal distribution with
mean EðXjD;G;ZÞ and variance r2, we have

ORðDjX;G ¼ g;Z ¼ zÞ ¼

1ffiffiffiffiffiffi
2p
p

r
e�
ðxþ1�ðb0þhðzÞþbg gþbdþbgd gÞÞ2

2r2 =
1ffiffiffiffiffiffi
2p
p

r
e�
ðx�ðb0þhðzÞþbg gþbdþbgd gÞÞ2

2r2

)

1ffiffiffiffiffiffi
2p
p

r
e�
ðxþ1�ðb0þhðzÞþbg gÞÞ2

2r2 =
1ffiffiffiffiffiffi
2p
p

r
e�
ðx�ðb0þhðzÞþbg gÞÞ2

2r2

)

¼ eðbdþbgdgÞ=r2
:

As result, ROR ¼ ORðDjX;G¼1;Z¼zÞ
ORðDjX;G¼0;Z¼zÞ ¼ e

bgd

r2 :

Appendix B: Inference about the ROR based
on linear model (2)
From Appendix A and linear model (2), the
logðRORÞ can be estimated by b̂gd=r̂

2, where b̂gd is
obtained by the standard OLS theory and r̂2 by the
empirical variance of the residuals in model (2).
We now use subscript i to index the ith subject.

Specifically, hðZiÞ can be represented as ~Z
T
i bz,

where ~Zi is a vector containing all the variables
generated from Zi, including all spline terms. With
n subjects, linear model (2) can be rewritten as
X ¼ bþ e, where X is a n-column vector containing
all subjects’ environmental variables, M is a n	 p

design matrix with the ith row ½1; ~Z
T
i ;Gi;Di;GiDi�T;

b ¼ ½b0; bz; bg; bd; bgd�T is the unknown p	 1 param-

eters. Then, b̂gd is the last element of

b̂ ¼ ðMTMÞ�1MTX, and r̂2 ¼ S2

n�p, where S2 is the sum

of the squared error, i.e., S2 ¼ jjX�Mbjj2. The vari-
ance of b̂gd=r̂

2 can be derived based on the delta

method; that is, varðb̂gd=r̂
2Þ ¼ 1

r̂2 ;�
b̂gd

r̂4

h i
R̂ 1

r̂2 ;�
b̂gd

r̂4

h iT

,
where R is the variance-covariance matrix of
½b̂gd; r̂

2�T.
We can use the sandwich method to estimate

variance-covariance matrix R, based on the follow-
ing system of estimating equation:

MTðX� bÞ ¼ 0; ðX� bÞTðX� bÞ
n� p

� r2 ¼ 0:
�

The point estimate and 95% confidence interval
of ROR can be obtained by expðb̂gd=r̂

2Þ and

expðb̂gd=r̂
261:96	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
^varðb̂gd=r̂

2Þ
q

Þ respectively.

Appendix C: Validity of the reverse test
under a case-control study design
Consider a source population for which we can use
the reverse approach to specify the conditional dis-
tribution f ðXjD;G;ZÞ, and a case-control study is
formed based on this source population. The sam-
pling probability for selecting a subject into a case-
control study does not depend on the exposure X,
mathematically, we have that
PrðI ¼ 1jD;X;G;ZÞ ¼ PrðI ¼ 1jD;G;ZÞ, where I is an
indicator that equals 1 if this subject is selected
into the case-control study and 0 otherwise. In the
derived case-control study, the reverse test speci-
fies the following distribution f ðXjD;G;Z; I ¼ 1Þ. By
Bayes’ formula, we have that

f ðXjD;G;Z; I ¼ 1Þ ¼ f ðX; I ¼ 1jD;G;ZÞ
PðI ¼ 1jD;G;ZÞ ;

¼ PðI ¼ 1jX;D;G;ZÞf ðXjD;G;ZÞ
PðI ¼ 1jD;G;ZÞ ;

¼ PðI ¼ 1jD;G;ZÞf ðXjD;G;ZÞ
PðI ¼ 1jD;G;ZÞ ;

¼ f ðXjD;G;ZÞ:

This indicates f ðXjD;G;Z; I ¼ 1Þ ¼ f ðXjD;G;ZÞ and
therefore the case-control sampling scheme does
not affect the validity of the reverse test.
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