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ORIGINAL RESEARCH

Computerized Analysis of the Ventricular 
Fibrillation Waveform Allows Identification of 
Myocardial Infarction: A Proof-of-Concept 
Study for Smart Defibrillator Applications in 
Cardiac Arrest
Jos Thannhauser , MSc; Joris Nas , MD; Dennis J. Rebergen, MSc; Sjoerd W. Westra , MD;  
Joep L. R. M. Smeets, MD, PhD; Niels Van Royen, MD, PhD; Judith L. Bonnes, MD, PhD; Marc A. Brouwer, MD, PhD

BACKGROUND: In cardiac arrest, computerized analysis of the ventricular fibrillation (VF) waveform provides prognostic informa-
tion, while its diagnostic potential is subject of study. Animal studies suggest that VF morphology is affected by prior myocar-
dial infarction (MI), and even more by acute MI. This experimental in-human study reports on the discriminative value of VF 
waveform analysis to identify a prior MI. Outcomes may provide support for in-field studies on acute MI.

METHODS AND RESULTS: We conducted a prospective registry of implantable cardioverter defibrillator recipients with defibrilla-
tion testing (2010–2014). From 12-lead surface ECG VF recordings, we calculated 10 VF waveform characteristics. First, we 
studied detection of prior MI with lead II, using one key VF characteristic (amplitude spectrum area [AMSA]). Subsequently, we 
constructed diagnostic machine learning models: model A, lead II, all VF characteristics; model B, 12-lead, AMSA only; and 
model C, 12-lead, all VF characteristics. Prior MI was present in 58% (119/206) of patients. The approach using the AMSA of 
lead II demonstrated a C-statistic of 0.61 (95% CI, 0.54–0.68). Model A performance was not significantly better: 0.66 (95% 
CI, 0.59–0.73), P=0.09 versus AMSA lead II. Model B yielded a higher C-statistic: 0.75 (95% CI, 0.68–0.81), P<0.001 versus 
AMSA lead II. Model C did not improve this further: 0.74 (95% CI, 0.67–0.80), P=0.66 versus model B.

CONCLUSIONS: This proof-of-concept study provides the first in-human evidence that MI detection seems feasible using VF 
waveform analysis. Information from multiple ECG leads rather than from multiple VF characteristics may improve diagnostic 
accuracy. These results require additional experimental studies and may serve as pilot data for in-field smart defibrillator stud-
ies, to try and identify acute MI in the earliest stages of cardiac arrest.

Key Words: amplitude spectrum area ■ cardiac arrest ■ machine learning ■ myocardial infarction ■ ventricular fibrillation

Ventricular fibrillation (VF) is the presenting heart 
rhythm in about 30% of out-of-hospital cardiac 
arrests (OHCAs), with dismal survival despite im-

provements in the chain of care.1,2 With the emerging 
applications of artificial intelligence, new strategies 
have been suggested to try and improve cardiac arrest 

care, involving computerized VF waveform analysis of 
the paddle ECG.3

The amplitude spectrum area (AMSA) of the 
VFwaveform has become the key characteristic of in-
terest in prognostic studies on defibrillation success 
and neurological outcome.3–6 Moreover, a current 
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international randomized trial studies the impact of a 
smart defibrillator that provides real-time AMSA analy-
sis and guides defibrillation timing, with the aim to im-
prove outcomes.7

Another application of the VF waveform could be 
identification of the underlying arrest cause. With the 
introduction of advanced resuscitative therapies (eg, 
mechanical cardiopulmonary resuscitation, extracor-
poreal life support), early transportation and inter-
vention has become possible.8 Such “early invasive” 
strategies in particular may be beneficial for patients 
with an underlying acute myocardial infarction (MI).9–11

For such strategies, very early recognition of acute 
MI is crucial, while at present the diagnosis of acute MI 
is restricted to patients who (eventually) achieve return 
of spontaneous circulation.12,13 Studies in animals have 
shown that the appearance of the VF waveform is af-
fected by ischemia14 and by prior MI, and that changes 
are even more impressive in acute MI.14–16 In human 

studies in the setting of OHCA, it has been shown that 
AMSA values were lower in patients with than without 
ST-segment–elevation MI.17,18

In follow-up on these observed associations, we 
sought to assess whether VF waveform analysis of 
the surface ECG may also facilitate detection of an MI. 
Given the logistical challenges of an in-field study on 
the diagnostic performance of acute MI, we designed 
a proof-of-concept study in the setting of defibrilla-
tion testing after implantable cardioverter defibrillator 
(ICD) implantations and focused on detection of a prior 
MI.16,19,20 First, we assessed the feasibility of MI iden-
tification using the AMSA of lead II, which has been 
used as a proxy for the paddle ECG signal in previous 
VF waveform studies.21–23 Moreover, we investigated 
whether the diagnostic accuracy could be improved 
by combinations of VF characteristics or the use of ad-
ditional ECG leads, using machine learning discrimina-
tive models.

METHODS
Data Transparency Statement
Requests to access the anonymized data set from 
qualified researchers trained in human subject confi-
dentiality protocols may be sent to the corresponding 
author of this article.

Patient Population
From our prospective registry of first ICD implan-
tations at the Radboud University Medical Center 
(Nijmegen, The Netherlands), we identified all pa-
tients who underwent defibrillation testing between 
2010 and 2014, which was the hospital protocol dur-
ing that period. For the present analyses, we included 
patients with an analyzable 12-lead surface ECG of 
induced VF. Exclusion criteria were age <18  years, 
congenital heart disease, right-sided ICDs, and sub-
cutaneous ICDs. In line with our previous publication, 
patients were excluded in case of a history of MI that 
did not involve the anterior or inferior wall.20 Given the 
observational design of the study, written informed 
consent was not necessary to obtain according to 
the Dutch Act on Medical Research Involving Human 
Subjects.

ICD Implantation and Testing
The devices implanted were Medtronic (Minneapolis, 
MN), St Jude Medical (St. Paul, MN), or Biotronik 
(Berlin, Germany) ICD or cardiac resynchronization 
therapy defibrillator systems with transvenous sin-
gle-coil leads. Defibrillation testing was performed 
after ICD implantation to test the ability of the im-
planted device to sense, detect, and terminate VF 

CLINICAL PERSPECTIVE

What Is New?
• Computerized analysis of the ventricular fibrilla-

tion (VF) waveform can be used for prognosti-
cation, but its diagnostic utility has so far been 
investigated only in animal studies.

• This is the first in-human VF waveform study 
that demonstrates the diagnostic performance, 
in terms of detection of underlying prior myocar-
dial infarction (MI).

• With use of machine learning models, we 
showed that the diagnostic accuracy was better 
with multiple ECG leads than with a single-lead 
approach.

What Are the Clinical Implications?
• Animal studies have demonstrated that acute 

MI results in more apparent changes in VF mor-
phology than prior MI.

• Therefore, this in-human study on prior MI 
provides pilot data for future in-field studies, 
to detect acute MI with defibrillator-guided VF 
waveform analysis.

• If proven feasibile, in-field detection of an acute 
MI during VF could optimize triage and treat-
ment in the earliest stages of cardiac arrest.

Nonstandard Abbreviations and Acronyms

AMSA amplitude spectrum area
DFA detrended fluctuation analysis
OHCA out-of-hospital cardiac arrest
SVM support vector machine
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appropriately. Following our hospital protocol, pa-
tients were sedated with propofol, after which VF 
was induced using T-wave shock, direct current 
pulses, or 50-Hz burst pacing. The presence of VF, 
defined as a rapid (around 300 bpm) grossly irregu-
lar ventricular rhythm with marked variability in QRS 
cycle length, morphology, and amplitude, was con-
firmed on surface ECG recordings. ICDs were pro-
grammed to deliver sequential shocks (15–25–35 J) 
until VF was terminated. In case of persisting VF after 
3 shocks, external defibrillation was performed.

Aim of the Study
The primary aim of this study was to discriminate be-
tween patients with and without a prior MI with VF 
waveform information from lead II, using either an 
AMSA-only approach or a combination of VF features. 
Subsequently, we assessed and compared the dis-
criminative performance of VF waveform analysis with 
data input of 12 ECG leads, using either the AMSA or 
combined VF features.

Study Groups
Patients were divided in 2 groups, either with or 
without a history of MI. For the present analyses, we 
used the study groups as reported on previously.20 
In short, MI was defined according to the criteria of 
the European Society of Cardiology.24 Evidence for 
the presence or absence of a prior MI was based on 
reports in the medical charts.20,24 Infarct localization 
was based on information obtained from ECGs (eg, 
area with ST-segment elevation or pathological Q 
waves) and coronary angiographies, and confirmed 
by imaging reports.24,25 Imaging was performed and 
analyzed as part of daily clinical practice, following 
recommendations of the prevailing guidelines for ICD 
therapy.20,26

VF Waveform Analysis
ECG Recordings

During defibrillation testing, a standard 12-lead surface 
ECG was recorded (sampling frequency, 1000 Hz; 16-
bit analog-to-digital converter) with BARD LabSystem 
(Lowell, MA).

VF Waveform Characteristics

All definitions, mathematical descriptions and VF wave-
form calculations are described in more detail in Data 
S1. Signal analysis was performed using Matlab (ver-
sion R2018a, The Mathworks Inc, Natick, MA). A VF 
segment of 4.1 seconds (4096 samples) directly before 
the first ICD shock was selected for waveform analy-
sis. Signals were preprocessed with a fourth-order 

Butterworth 1- to 48-Hz bandpass filter, after which 
VF waveform characteristics were calculated. We ana-
lyzed 10 different VF waveform characteristics, which 
can be categorized into time domain characteristics, 
frequency domain characteristics, and signal organiza-
tion characteristics.

1. Time domain: From the filtered ECG segment in 
the time domain, we determined the amplitude of 
the VF signal,27 more specifically defined as the 
mean absolute amplitude.20 Moreover, we calcu-
lated the median slope,28 which can be regarded 
as a measure of the overall steepness of the VF 
signal.

2. Frequency domain: After conversion of the ECG 
segment to the frequency domain using a fast 
Fourier transform, the AMSA29 was calculated as 
the summed product of individual frequencies and 
their corresponding amplitudes over an interval of 2 
to 48 Hz, a frequency range that is also used in the 
key AMSA paper.3 Subsequently, the power spec-
trum was obtained, from which the power spectrum 
area28 was calculated. Moreover, we determined the 
dominant frequency,30 which is the frequency where 
the power spectrum attains its maximum, and the 
median frequency,31 that is, the frequency for which 
the integrated power was half of the total integrated 
power. Finally, we calculated the bandwidth, defined 
as the frequency difference between the first and 
third quartile of the total power, providing a measure 
of the spread in frequencies.32

3. Signal organization: The organization index33 was 
calculated as the sum of the power of the dominant 
frequency and its harmonics, divided by the total 
power of the signal, over an interval of 2 to 48 Hz 
(Figure  S1).19 Furthermore, detrended fluctuation 
analysis (DFA)34 was performed as a measure of 
the complexity of the VF signal. In the current study, 
we report on 2 DFA scaling exponents, in small and 
larger time scales (DFAα1 and DFAα2, respectively, 
Figures S2 and S3).35

Discriminative Models
We used the following stepwise protocol to discrimi-
nate between the 2 study groups, using 4 different ap-
proaches (Table 1).

Approach 1: Lead II, Single VF Characteristic

In the setting of OHCA, anterolateral direction of the 
defibrillator paddles is the most standard and recom-
mended method. Therefore, we used ECG information 
of lead II. First, we assessed the diagnostic perfor-
mance of an approach using the AMSA of lead II only, to 
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discriminate between patients with and without a prior 
MI. Subsequently, the same procedure was followed 
for all other individual characteristics of lead II, and we 
compared their diagnostic yield with that of the AMSA.

Approach 2: Lead II, 10 VF Characteristics 
(Machine Learning Model A)

To investigate the additional value of more VF features, 
the entire set of VF waveform characteristics from lead 
II was used as input for a support vector machine 
(SVM) classifier, resulting in a model with 10 input fea-
tures. The SVM process is explained in more detail in 
Table 1 and Data S2 (Figures S4 and S5). The discrimi-
native ability of the constructed SVM model (model A) 
was compared with the performance of the prior ap-
proach (lead II, AMSA only).

Approach 3: 12 ECG Leads, Single VF 
Characteristic (Machine Learning Model B)

To investigate the additional value of information from 
more recording directions, AMSA data of all 12 ECG 
leads were used as input features for an SVM model. 
Previous work demonstrated that the VF waveform 
in lead V1 seems unaffected by the presence or ab-
sence of an MI.20 Therefore, we calculated differences 
with the AMSA of V1 and added these as extra input 
features, resulting in a model with 23 input features 

(Table 1, Data S2). The discriminative performance of 
this model (model B) was compared with that of the 
approach with the AMSA of lead II only. The same pro-
cedure (ie, lead II versus all leads) was followed for all 
other individual VF characteristics.

Approach 4: 12 ECG Leads, 10 VF 
Characteristics (Machine Learning Model C)

To investigate the impact of the input of additional VF 
characteristics in a 12-lead model, the entire set of 10 
VF characteristics from all ECG leads was used, as 
well as their differences with V1, resulting in an SVM 
model with 230 input features (Table 1, Data S2). The 
discriminative performance of this approach (model C) 
was compared with that of model B.

Ancillary Analyses—Infarct Localization
Previously, we have shown that VF waveform differ-
ences associated with underlying etiology are best 
observed in the ECG leads adjacent to the affected 
myocardial region.20,36 In this context, we performed 
ancillary analyses to assess the discriminative ability 
of the SVM models to detect the localization of the 
prior MI. We used the patient subset with a prior MI 
and assessed the ability of 2 SVM models, with all 
VF-waveform characteristics from either lead II or 12 
ECG leads. C-statistics were assessed for discrimina-
tion between patients with a prior inferior or anterior 
MI. Patients with involvement of both the anterior and 
inferior wall were excluded.

Statistical Analysis
Categorical variables were reported as numbers (per-
centages) and compared between groups using a 
chi-square test or a Fisher’s exact test, whichever was 
appropriate. Continuous variables were analyzed for 
Gaussian distribution and reported as means±SDs or 
medians (interquartile ranges), whichever was appropri-
ate. Comparisons between groups were performed ac-
cordingly, with either a Student t test or a Mann–Whitney 
U test. Descriptive and comparative statistics were 
performed with SPSS (Version 25, IBM, Armonk, NY). 
Receiver operating characteristic analysis was performed 
to assess the discriminative performances of the models 
(MedCalc Version 19.1.3, MedCalc Software bv, Ostend, 
Belgium). C-statistics (95% CI) were compared using the 
DeLong method.37 Moreover, values of the positive pre-
dictive value (PPV) were obtained at the threshold value 
where Youden’s J-statistic (J=sensitivity+specificity−1) 
reaches its maximum, which was considered as the 
optimal cutoff point of the discriminative model.38 For 
all statistical analyses, P<0.05 was considered statisti-
cally significant. In the case of multiple comparisons, 
Bonferroni correction was applied.

Table 1. Schematic Description of the Data Analyzing 
Process

Approach
Recording 
Direction

VF Waveform 
Characteristics Predictor

1 Lead II AMSA 1 variable

2 Lead II Entire 
set of VF 

characteristics

SVM model with 10 
input features* (model A)

3 12 ECG 
leads

AMSA SVM model with 23 
input features† (model B)

4 12 ECG 
leads

Entire 
set of VF 

characteristics

SVM model with 230 
input features‡ (model C)

Four approaches were used to discriminate between patients with and 
without a myocardial infarction. In approach 1, the AMSA was used as a 
single variable predictor. Approach 2, 3 and 4 represent SVM discriminative 
models. Receiver operating characteristic analysis was performed to assess 
diagnostic accuracy. For approaches 1 and 3, the same procedure as the 
AMSA was performed for all other individual VF characteristics. AMSA 
indicates amplitude spectrum area; SVM, support vector machine; and VF, 
ventricular fibrillation.

*The entire set of 10 VF characteristics, derived from lead II (10×1=10 input 
features).

†The AMSA derived from all 12 ECG leads (1×12=12 input features) plus the 
difference of these AMSA values with the AMSA value of lead V1 (1×11 input 
features), resulting in 23 input features.

‡The entire set of 10 VF characteristics derived from all 12 ECG leads 
(10×12=120 input features) plus the difference of all VF characteristics with 
the corresponding VF characteristic of lead V1 (10×11=110 input features), 
resulting in 230 input features.
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RESULTS
Study Population
We studied 206 patients with a median age of 64 
(57–72) years, of whom 150 were men (73%). Thirty-
two percent (67/206) of the implanted ICDs were 
for secondary prevention, and 32% (66/206) were 
cardiac resynchronization therapy defibrillator de-
vices. In total, 42% (87/206) of the patients had no 
evidence of a prior MI. A prior anterior MI was pre-
sent in 23% (47/206) of the cases, a prior inferior MI 
was present in 27% (56/206), and 8% (16/206) of the 
patients had an MI that involved both the inferior and 
the anterior myocardial wall. Baseline characteristics 
are reported in Table  2. A representative example 
of VF induction and termination by an ICD shock is 
shown in Figure 1.

MI Identification, Lead II
Approach 1, Single VF Characteristic

The AMSA in lead II was lower in patients with than 
without a prior MI (10.7 mVHz [interquartile range, 8.7–
13.4] versus 12.7 mVHz [interquartile range, 9.7–17.7]; 
P=0.006). The discriminative ability of an approach 
using the AMSA of lead II demonstrated a C-statistic of 
0.61 (95% CI, 0.54–0.69), with a PPV of 69% (Table 3).

As for the other individual VF characteristics, 
we found differences according to the presence or 

absence of prior MI, as well as a significant ability to 
discriminate between the study groups, for the mean 
absolute amplitude, median slope, organization index, 
and power spectrum area (Figure  2, blue graphs; 
Table  S1). None of these characteristics had a diag-
nostic performance that was significantly different from 
the AMSA.

Approach 2, Entire Set of VF Characteristics

The single-lead SVM model with all 10 VF characteris-
tics of lead II as input features (model A), resulted in a 
C-statistic of 0.66 (0.59–0.73) with a PPV of 71% at the 
maximum Youden’s J-statistic (Figure 3, Table S2). The 
discriminative value of this model with the entire set of 
VF characteristics did not significantly differ from the 
performance of the approach using only the AMSA in 
lead II (P=0.09; Table 3).

MI Identification, 12 ECG Leads
Approach 3, Single VF Characteristic

The SVM model with the AMSA data of all 12 ECG 
leads as input features (model B), yielded a C-statistic 
of 0.75 (95% CI, 0.68–0.81; Figure  3). This was sig-
nificantly higher than the C-statistic of the approach 
with the AMSA of lead II only (P<0.001; Table 3). The 
PPV of this model was 77%. None of the other 12-lead 
SVM models with input from a single VF characteristic 

Table 2. Baseline Characteristics of the Study Population

Cohort of ICD Recipients With VF Waveform Analysis

All Patients 
N=206

Prior MI 
N=119

No Prior MI 
N=87 P Value

Medical history

Age 64 (57–72) 67 (61–75) 59 (48–68) <0.001

Male sex 150 (73%) 100 (84%) 56 (64%) 0.001

Secondary prevention 67 (33%) 44 (37%) 23 (26%) 0.111

CRT-D 66 (32%) 33 (28%) 33 (38%) 0.121

BMI, kg/m2 25.9 (23.9–28.9) 26.4 (24.5–29.2) 25.1 (23.0–28.6) 0.034

LVEF, % 34 (27–45) 33 (27–44) 34 (27–46) 0.539

LVIDd index, cm/m2 3 (2.7–3.3) 3 (2.7–3.3) 3 (2.7–3.3) 0.965

LV mass index, g/m2 113 (94–134) 111 (96–134) 113 (87–136) 0.635

QRS duration, ms 119 (102–142) 116 (102–138) 122 (102–150) 0.319

Infarct localization

Anterior infarction 47 (23%) 47 (39%) … …

Inferior infarction 56 (27%) 56 (47%) … …

Both 16 (8%) 16 (13%) … …

Medication

Beta blocker 185 (90%) 110 (92%) 75 (86%) 0.094

Amiodarone 27 (13%) 18 (15%) 9 (10%) 0.304

BMI indicates body mass index; CRT-D, cardiac resynchronization therapy defibrillator; ICD, implantable cardioverter defibrillator; LV, left ventricular; LVEF, 
left ventricular ejection fraction; LVIDd, left ventricular internal diastolic diameter; MI, myocardial infarction; and VF, ventricular fibrillation.
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demonstrated a significantly better diagnostic perfor-
mance than the approach of using the AMSA data 
of all 12 ECG leads. The performance of the 12-lead 
AMSA model was superior to those that contained 12-
lead information of the bandwidth, DFAα1, and DFAα2 
(Figure 2, red graphs; Table S3).

Approach 4, Entire Set of VF Characteristics

The 12-lead SVM model, with information of all VF 
characteristics from all 12 ECG leads (model C) dem-
onstrated a C-statistic of 0.74 (95% CI, 0.67–0.80) with 
a PPV of 71% (Figure 3, Table S2). The discriminative 
ability was not significantly different compared with the 
performance of model B (P=0.66; Table 3).

Infarct Localization
In total, 39% (47/119) of the patients with MI had a 
prior anterior MI and 47% (56/119) a prior inferior MI. 
An SVM model with all VF waveform characteristics 
of lead II demonstrated a C-statistic of 0.77 (95% 
CI, 0.67–0.85) for identification of the infarcted area, 
with a PPV of 74% for detection of an inferior MI. A 
machine learning model combining all VF waveform 
characteristics from 12 ECG leads demonstrated a 
C-statistic of 0.89 (95% CI, 0.81–0.94) and a PPV of 
83% for identification of an inferior MI (P for compari-
son=0.01; Figure S6).

DISCUSSION
In follow-up on studies that showed associations 
between the VF waveform and underlying etiology, 

Figure 1. The VF waveform during defibrillation testing after ICD implantation.
In this representative example, the ECG of a single ECG lead (lead II) is presented (upper plot). After initial pacing, VF is induced by 
a shock on the T wave. VF is recognized by the ICD and terminated by a defibrillatory shock. The red selection (4.1 seconds, 12-lead 
subplot) is used for VF waveform analysis. ICD indicates implantable cardioverter defibrillator; and VF, ventricular fibrillation.

Table 3. Results of the Primary Analyses

Approach
SVM 

Model C-Statistic*

Positive 
Predictive  
Value, %

1) lead II, AMSA only … 0.61 (0.54–0.69) 69

2) lead II, all VF 
characteristics

A 0.66 (0.59–0.73)† 71

3) 12 leads, AMSA only B 0.75 (0.68–0.81)‡ 77

4) 12 leads, all VF 
characteristics

C 0.74 (0.67–0.80)§ 71

Model performances of the different approaches are presented by the 
area under the receiver operating characteristic curve (C-statistic). The 
positive predictive value is obtained at the threshold value where Youden’s 
J-statistic (J=sensitivity+specificity−1) reaches its maximum. AMSA indicates 
amplitude spectrum area; SVM, support vector machine; and VF, ventricular 
fibrillation.

*P<0.017 was considered statistically significant after Bonferroni 
correction.

†Nonsignificant (P=0.09) compared with approach 1.
‡Significantly different (P<0.001) compared with approach 1.
§Nonsignificant (P=0.66) compared with approach 3.
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we now present the first study in humans with focus 
on diagnostic performance, and demonstrate that 
computerized VF waveform analysis may have the 
potential to actually detect an MI using a single ECG 
lead (lead II). Data from diagnostic machine learn-
ing approaches showed that additional input from a 
combination of VF characteristics rather than from a 
single VF feature did not improve discriminative ability, 
whereas input from all 12 ECG leads resulted in a sig-
nificantly higher diagnostic accuracy. These findings 
warrant additional confirmative experimental studies. 
Appreciating that VF morphology may be even more 
affected in case of acute MIs,16–18 our findings on prior 
MI can be considered as pilot data for future in-field 
initiatives to study the diagnostic performance of an 
acute MI, which could pave the way toward very early 
triage and treatment of patients with cardiac arrest.

The VF Waveform and Cardiac Arrest
Over the years, analysis of the VF waveform has be-
come a new instrument in cardiac arrest research, 
as it is easily obtainable, with the potential to provide 
information in the very early, prehospital phase of re-
suscitation.3,39,40 The AMSA is the key characteristic of 
interest in most studies and has been shown to reflect 
myocardial metabolic state.41 Several studies have 
demonstrated associations between the AMSA and 
cardiac arrest outcomes (defibrillation success, neu-
rologic survival).4,42,43 In follow-up, the first initiatives 
to study the predictive value of the VF waveform have 
been published, with promising results using machine 

learning approaches with input of a wide variety of VF 
characteristics.3–6 As a next step, a randomized trial 
has been initiated to investigate defibrillation success 
with a standard cardiopulmonary resuscitation proto-
col, compared with a protocol with a smart defibrilla-
tor that provides real-time AMSA analysis and guides 
defibrillation timing.7

Another potential application of VF waveform anal-
ysis could be detection of underlying heart disease, 
such as an MI. Infarct model studies have shown mark-
edly different VF waveform characteristics in the case 
of a prior MI, with even more pronounced changes 
during acute coronary occlusion. More specifically, 
these animal studies demonstrated that ischemia re-
sults in VF waveform changes early after initiation of VF 
and that differences between prior and acute MI seem 
to increase with longer arrest duration.14–16 As of yet, 
human studies have been contradictory. While retro-
spective cohort studies in patients with OHCA with ST-
segment–elevation MI have reported associations with 
lower AMSA values,17,18 others did not observe signif-
icant VF waveform differences between patients with 
ST-segment–elevation MI, non–ST-segment–elevation 
MI and nonischemic OHCA.44

In follow-up on previous studies describing asso-
ciations, and as a first step toward potential future 
studies on acute MI identification, we performed this 
experimental study on the diagnostic ability of VF 
waveform analysis to detect a prior MI. From an elec-
trophysiological perspective, this study adds to the 
current knowledge that computerized VF-waveform 
analysis may allow for identification of underlying 

Figure 2. Discriminative ability of all individual VF waveform characteristics.
Receiver operating characteristic curves of individual VF waveform characteristics of a single lead (lead II, blue) and from SVM models 
using that specific VF characteristic of all 12 ECG leads (red). AMSA indicates amplitude spectrum area; BW, bandwidth; DF, dominant 
frequency; DFA, detrended fluctuation analysis; MAA, mean absolute amplitude; MDF, median frequency; MDS, median slope; MI, 
myocardial infarction; OI, organization index; PSA, power spectrum analysis; Sens, sensitivity; Spec, specificity; SVM, support vector 
machine; and VF, ventricular fibrillation.
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disease, in this case a prior MI. Our current findings 
can be considered as pilot data for OHCA studies on 
acute MI.

Detection of MI Using the VF Waveform
Initially, we studied the diagnostic performance using 
VF waveform information from lead II, as a proxy for 
the paddle ECG. We demonstrated that with the 
AMSA of lead II only, it was feasible to detect a prior 
MI. Discriminative performance was moderate, without 
significant improvement when using a combination of 
VF characteristics rather than a single VF feature. With 
use of input from all 12 ECG leads, the diagnostic ac-
curacy significantly improved as compared with the 
single-lead approach, again without additional yield 
from a combination of VF characteristics.

Our observations that machine learning techniques 
with combined information from multiple ECG leads 
resulted in markedly improved discriminative perfor-
mances is in line with previous studies that showed 
importance of the recording direction of VF.20,45 In pre-
vious work, we observed differences in VF waveform 
characteristics in patients with and without a prior MI, 
especially in the leads adjacent to the infarcted area.20 
These differences were not present in lead V1. As 

such, lead V1 may serve as a reference electrode for 
each patient individually. This is the rationale behind 
the additional input feature that consists of the as-
sessment of VF waveform differences between each 
of the respective ECG leads with V1.

Building on the hypothesis that infarcted myocar-
dium results in regional VF waveform differences, we 
performed ancillary analyses on the subset with either 
anterior or inferior MI to determine the diagnostic ac-
curacy in terms of infarct localization. Machine learn-
ing models combining information from 12 ECG leads 
were very accurate in the identification of the infarcted 
area (C-statistic, 0.89), which was superior to a sin-
gle-lead approach (C-statistic, 0.77). In short, these 
collective findings support the concept of regional 
ECG differences in VF characteristics in patients with 
MI. Appreciating that VF waveform changes have been 
reported to be more apparent in acute than in prior 
MI, this paves the way for future work on the detec-
tion of acute MI with use of computerized VF waveform 
analysis.

Implications
Our observation that identification of a prior MI is fea-
sible with computerized analysis of the VF waveform 
provides impetus for further experimental and clinical 
studies. Given the challenging conditions of in-field 
cardiac arrest research, additional work is needed be-
fore undertaking an out-of-hospital study with a smart 
defibrillator, aiming at detection of acute MI with VF 
waveform analysis.

Experimental studies will have to focus on further 
exploration and optimization of the SVM models (in 
terms of tuning parameters and input features) with 
primary focus on an approach using a single lead (II), 
as this most closely reflects current daily practice with 
defibrillator pads. From a scientific point of view, more 
data are needed on the optimal number and positions 
of the ECG electrodes, as well as on quantification 
of the potential additional diagnostic yield of these 
options.

In terms of clinical studies, prospective cardiac 
arrest registries with systematically collected ECG 
data and coronary angiography information could 
help answer whether VF waveform information from 
the paddle ECG can contribute to identification of 
an acute MI. Potentially, a smart defibrillator with a 
VF waveform–based algorithm may help to identify 
patients with an acute MI in a much earlier stage of 
cardiac arrest. As of yet, the diagnosis of acute MI is 
restricted to those patients who (eventually) achieve 
return of spontaneous circulation. Especially in pa-
tients with refractory VF, there is a high burden of 
coronary artery disease.9,10 Identification of acute MI 
as an underlying, treatable cause of cardiac arrest 

Figure 3. Identification of an MI, 4 different approaches.
ROC curves for MI identification, using either the AMSA of a 
single lead (lead II, approach 1, blue dashed line), an SVM model 
with combined VF characteristics of lead II (approach 2, blue 
solid line), an SVM model with the AMSA of all 12 ECG leads 
(approach 3, red dashed line) or an SVM model with combined 
VF characteristics of all 12 ECG leads (approach 4, red solid 
line). The positive predictive value is obtained at the threshold 
value where Youden’s J-statistic (J=sensitivity+specificity−1) 
reaches its maximum. AMSA indicates amplitude spectrum area; 
char, characteristics; MI, myocardial infarction; ROC, receiver 
operating characteristic; Sens, sensitivity; Spec, specificity; 
SVM, support vector machine; and VF, ventricular fibrillation.
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would be a first step toward research on more in-
dividualized resuscitation strategies. In an era of 
upcoming treatment options like transport with me-
chanical resuscitation and extracorporeal membrane 
oxygenation, a smart defibrillator may provide im-
portant benefits on shock success, prognosis, and 
possibly the underlying cause to guide triage and 
decision making.3,10,11,40,46

Limitations
In this experimental setting, we investigated induced, 
short-duration VF, which has previously been re-
ported to be more organized than in-field VF.47,48 
Moreover, the current rhythm recordings reflect early 
VF, in an earlier stage than observed during OHCA. 
This may limit generalizability to VF in the OHCA 
setting. Appreciating the logistic challenge of a pro-
spective in-field study with VF waveform analysis, we 
opted to first investigate the feasibility of detecting 
underlying etiology under controlled conditions, in-
cluding multiple ECG leads. During cardiac arrest, 
the appearance of the VF waveform develops over 
time, and morphology also depends on the quality of 
administered cardiopulmonary resuscitation, factors 
that were not addressed in this experimental model 
but could contribute to improve discriminative ability 
in the field.43,49,50

Finally, despite the fact that we report on the larg-
est VF cohort to date with 12-lead ECG recordings, 
the amount of input features is relatively small for ma-
chine learning purposes. In this context, future studies 
with larger data sets may provide valuable insights.

CONCLUSIONS
This proof-of-concept study provides the first evi-
dence that computerized VF waveform analysis 
allows for actual detection of a prior MI. During on-
going VF, MI identification is modestly feasible with 
use of the AMSA of lead II. Machine learning ap-
proaches suggest that information from multiple ECG 
recording directions rather than input of multiple VF 
characteristics results in superior discriminative per-
formances. Appreciating that previous studies have 
indicated that VF waveform changes are even more 
pronounced in acute MI, our findings fuel the con-
cept that VF analysis may contribute to the detection 
of an acute MI. This calls for additional studies that 
may ultimately pave the way toward more individual-
ized cardiac arrest care with assistance of a “smart 
defibrillator.”
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Supplemental Methods 1. Calculation of VF-waveform characteristics 

 

Data pre-processing 

Each ventricular fibrillation (VF) signal was sampled at a sampling frequency of 𝑓𝑠 = 1000 Hz. The 

characteristics were determined from the time segment of 4.1 seconds prior to the first shock delivery. 

Each segment was pre-processed with a fourth-order Butterworth bandpass filter with cut-off 

frequencies of 1 and 48 Hz. To cancel phase shift the filter was applied once forward and once 

backward in time, which is what the Matlab command filtfilt does, resulting in the filtered VF-segment 

𝑥𝑛, for which 𝑛 ∈  {1, 2, … 𝑁} with number of samples of 𝑁 = 4096. 

 

Time domain parameters 

- The mean absolute amplitude (mV) is computed as the mean of all absolute samples of the 

filtered time segment, following:  

𝑀𝐴𝐴 =  
1

𝑁
∑ |𝑥𝑖|

𝑁

𝑖=1

 

 

- The median slope (mVs-1) is calculated by taking the median of all sample-to-sample 

differences in the signal, following: 

 

𝑀𝐷𝑆 = median(|𝑥𝑖 − 𝑥𝑖−1| ∙ 𝑓𝑠)  

for samples 2 ≤ 𝑖 ≤ 4096. 

 

Frequency domain parameters 

A standard Fast Fourier Transform (FFT) of the VF segment returns 𝑁 Fourier coefficients 

𝑥1, 𝑥2, … , 𝑥𝑁. Only the first 𝑁/2 coefficients are relevant and they correspond to the 𝑁/2 frequencies 

𝑓𝑘 = 𝑘 ∙  𝑓𝑠/𝑁 with 𝑘 ∈  {0,1, … 𝑁/2}.  



 
 

- The amplitude spectrum area (mVHz) is defined as  

𝐴𝑀𝑆𝐴 =  
2

N
 ∑  |𝑥𝑘 ∙ 𝑓𝑘 |

𝑁/2
𝑘=0 ,  

but in this sum only those indices 𝑘 are taken into account for which 2 ≤ 𝑓𝑘 ≤ 48. 

 

The power spectrum of the VF signal, also called the power spectral density, describes the power 

present in the signal as a function of the frequency, per unit frequency. It is defined as  

𝑃𝑆𝐷𝑘 =  𝛽𝑘  |�̂�𝑘|2, with 𝑘 ∈ {0, 1, … 𝑁/2} and 𝛽𝑘 = {
2

1

𝑓𝑠𝑁
       𝑘 ∈ {1, 2, …

𝑁

2
− 1}

 
1

𝑓𝑠𝑁
          𝑘 = 0  or  𝑘 = 𝑁/2

 

 

- From the power spectrum, the power spectrum area (mV2Hz) was calculated as:  

𝑃𝑆𝐴 =  
𝑓𝑠

𝑁
 ∑ |

𝑁/2

𝑘=0

𝑃𝑆𝐷𝑘 ∙  𝑓𝑘| 

 

- The dominant frequency (Hz) is defined as the frequency 𝑓𝑘 for which 𝑃𝑆𝐷𝑘  attains his 

maximum: 

𝐷𝐹 = arg max𝑓𝑘 𝑃𝑆𝐷𝑘 

 

- The median frequency (Hz) is computed as the smallest frequency 𝑓𝑘 for which the trapezoidal 

integral approximation (∑ |𝑥𝑖|2𝑘
𝑖=0 ) − (|𝑥0|2 + |𝑥𝑘|2)/2 is at least 50% of the total trapezoidal 

(∑ |𝑥𝑖|2𝑁/2
𝑖=0 ) − (|𝑥0|2 + |𝑥𝑁/2|

2
) /2. Likewise, we compute the 25% and 75% frequencies 

and then the bandwidth (Hz) is defined as the difference between these two frequencies.  

 

  



 
 

Measures of signal organization 

Organization index 

First, the bandwidth of the fundamental peak (corresponding to the dominant frequency) was obtained, 

given by a 75% amplitude decrease. Subsequently, harmonic peaks corresponding to the DF were 

assessed, as well as the bandwidth of these harmonic peaks. 

- The organization index was defined as the ratio between the summed power of the bandwidth 

of the fundamental and its harmonic peaks, and the total power (Figure S1). 

 

Detrended fluctuation analysis 

Detrended fluctuation analysis (DFA) gives information about the complexity of the VF morphology. 

DFA-measures are computed following standardized steps, which is visualized in Figure S2. 

  

Correction for the offset of the original time series by subtracting the mean of the signal (1); The 

resulting signal is subsequently integrated by taking the cumulative sum of the signal (2); This signal 

is divided in boxes of equal sample length 𝑛, with 𝑛 ∈ {21, 22 … 212 = 4096}. In each box, the local 

linear trend is calculated (3) and subtracted from the integrated time series (4). From these detrended 

signals, the root mean square (RMS) is calculated, representing the fluctuation 𝐹 in that specific box 

size. This process is repeated for all values of 𝑛; (5) the relationship between 𝐹(𝑛) and 𝑛 is plotted on 

logarithmic axes. The DFA scaling exponent α is the slope of the trend line of this function, estimated 

using linear regression.  

 

In the current study, we report on two DFA scaling exponents (Figure S3): 

 

- DFAα1: defined as the DFA scaling exponent on small time scales, i.e. 0.004 to 0.128 seconds.  

- DFAα2: defined as the DFA scaling exponent on larger time scales, i.e. 0.128 to 4.0 seconds. 

 

  

  



 
 

Data S2. Support vector machine 

 

Support vector machine (SVM) is a machine learning technique which enables discrimination between 

two classes by an algorithm that maximizes the distance between these classes, using a prespecified 

amount of input features. The mathematical function that gives the optimal separation between the 

classes is called the hyperplane, which allows for discrimination between the two classes. SVMs have 

been used in multiple VF-studies to combine VF-waveform characteristics and predict defibrillation 

success and clinical outcome measures. [5,6]  

 

 

Settings of SVM-models in this study 

In the current study, the function fitcsvm in Matlab (version 2018a, The Mathworks, Natick, USA) was 

used for training and validation of the SVM-models. In these preliminary analyses to investigate the 

concept of machine learning for MI-identification, fixed settings were used for model optimization. 

Models were trained using normalized input features (mean = 0, standard deviation = 1). Optimization 

of the regularization parameter 𝐶 was performed by varying this parameter following:  

𝐶 = 2−7, 2−6 …  27 and taking the value with the maximum AUC (Figure S4). For all models, a linear 

kernel was used, with automatic scaling of the kernel. Five-fold cross validation was performed using 

the crossval function in Matlab. The process of data analysis is visualized in Figure S5. 

 

Data flowchart and input features 

The input feature matrix consists of N x M elements, with N the number of patients and M the number 

of input features. M is determined by the number of leads (either a single lead of 12-leads) and the 

number of VF-characteristics per lead (either a single lead or the entire set of 10 VF-characteristics). 

In case of a 12-lead approach, the difference with V1 was calculated for each VF-characteristic as 

well. Hence, M differed for all three SVM-approaches that were used:  



 
 

(A) Single lead II, 10 VF-waveform characteristics (1 lead  x 10 VF-characteristics =  

10 input features per patient 

(B) 12 leads, single VF-characteristics (12 leads  x 1 VF-characteristic + 11 x 1 difference with 

V1 = 23 input features  

(C) 12 leads, 10 VF-characteristics (12 leads  x 10 VF-characteristic + 11 x 10 difference with V1 

= 230 input features  

 

  



 
 

Table S1. Individual VF-characteristics and discriminative performances, single lead II. 

 

VF-

characteristic 

All patients 

N=206 

MI + MI - P-value 

comparison 

C-statistic 

AMSA 11.3 (9.1-16.1) 10.7 (8.7-13.4) 12.7 (9.7-17.7) 0.006 0.613 (0.535-0.692) 

BW .49 (.49-.73) .49 (.49-.98) .49 (.24-.73) 0.06 0.576 (0.498-0.653) § 

DFA1 1.97 (1.95-1.98) 1.96 (1.95-1.98) 1.97 (1.96-1.98) 0.07 0.574 (0.496-0.652) § 

DFA2 .26 (.22-.31) .27 (.23-.31) .25 (.21-.30) 0.11 0.565 (0.485-0.646) § 

DF 5.1 (4.9-5.6) 5.1 (4.9-5.6) 5.4 (4.9-5.9) 0.11 0.566 (0.486-0.650) § 

MAA .15 (.11-.24) .14 (.10-.21) .19 (.12-.27) 0.003 0.619 (0.541-0.697) § 

MDF 5.4 (4.9-5.6) 5.1 (4.9-5.6) 5.4 (4.9-5.9) 0.08 0.570 (0.491-0.649) § 

MDS 4.6 (3.5-7.1) 4.2 (3.2-5.7) 6.1 (3.8-8.0) 0.001 0.631 (0.553-0.709) § 

OI .70 (.56-.78) .68 (.51-.77) .72 (.60-.79) 0.04 0.586 (0.508-0.664) § 

PSA .18 (.10-.42) .17 (.08-.27) .26 (.12-.58) 0.001 0.625 (0.558-0.713) § 

§ Statistically not different from the C-statistic of AMSA (De Long method p>0.006 after Bonferroni correction) 

 

 

 

  



 
 

Table S2. Performances and characteristics of SVM-models with combined VF-characteristics. 

 

SVM-model C-statistic Optimal regularization 

parameter C 

Lead II 0.66 (0.59-0.73) 23 

12 leads 0.74 (0.67-0.80) 2-2 

 

  



 
 

Table S3. Individual characteristics and model performances, 12-lead SVM-models. 

 

SVM-model C-statistic Optimal regularization 

parameter C 

AMSA, 12-leads 0.744 (0.678-0.803) 23 

BW, 12-leads 0.603 (0.531-0.671) * 25 

DFA1, 12-leads 0.600 (0.528-0.668) * 24 

DFA2, 12-leads 0.545 (0.474-0.616) * 24 

DF, 12-leads 0.634 (0.563-0.701) § 25 

MAA, 12-leads 0.721 (0.654-0.782) § 23 

MDF, 12-leads 0.615 (0.544-0.683) § 27 

MDS, 12-leads 0.727 (0.659-0.787) § 21 

OI, 12-leads 0.641 (0.570-0.707) § 23 

PSA, 12-leads 0.743 (0.677-0.802) § 22 

* Inferior to C-statistic of AMSA model (DeLong method p<0.006 after Bonferroni correction)  

§ Statistically not different from the C-statistic of AMSA model 

 



 
 

Figure S1. Representation of the organization index. The organization index was calculated as the 

ratio between the summed power of the bandwidth of the fundamental and its harmonic peaks, and the 

total power. 

 

 

 

 

 

 

  



 
 

Figure S2. Stepwise process of detrended fluctuation analysis. 

 



 
 

Figure S3. Two scaling exponents of detrended fluctuation analysis (DFAα1 and DFAα2). The 

red lines represent the scaling exponents as obtained from the DFA analysis. DFAα1 is defined as the 

DFA scaling exponent on small time scales, i.e. 0.004 to 0.128 seconds; DFAα2 is defined as the DFA 

scaling exponent on larger time scales, i.e. 0.128 to 4.0 seconds. 

  



 
 

Figure S4. Optimization of the regularization parameter C of the support vector machine 

models. Overview of the obtained C-statistics for all chosen values of the regularization parameter C. 

The red dot represents the optimal value of C per VF-characteristic. 

  



 
 

Figure S5. Flowchart of the support vector machine process. 

 

  



 
 

Figure S6. Ancillary analysis on infarct localization. ROC curves of anterior vs inferior myocardial 

infarction, all VF characteristics combined in a single lead (blue, C= 2-6) or multiple lead (red, C=20) 

SVM model. 

 

 

 

  

Lead II model 

 

12-lead model 

 

p-value 

(DeLong method) 

 

 

ROC analysis 

 

 

0.767 (0.671-0.847) 

 

0.888 (0.809-0.943) 

 

0.0096 

 

PPV* 

 

74% 
 

 

83% 

 

 * to identify an inferior MI 

 


