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Abstract: Through the combination of various intelligent devices and the Internet to form a large-scale
network, the Internet of Things (IoT) realizes real-time information exchange and communication
between devices. IoT technology is expected to play an essential role in improving the combat
effectiveness and situation awareness ability of armies. The interconnection between combat
equipment and other battlefield resources is referred to as the Internet of Battlefield Things (IoBT).
Battlefield real-time data sharing and the cooperative decision-making among commanders are highly
dependent on the connectivity between different combat units in the network. However, due to
the wireless characteristics of communication, a large number of communication links are directly
exposed in the complex battlefield environment, and various cyber or physical attacks threaten
network connectivity. Therefore, the ability to maintain network connectivity under adversary attacks
is a critical property for the IoBT. In this work, we propose a directed network model and connectivity
measurement of the IoBT network. Then, we develop an optimal attack strategy optimization model
to simulate the optimal attack behavior of the enemy. By comparing with the disintegration effect of
some benchmark strategies, we verify the optimality of the model solution and find that the robustness
of the IoBT network decreases rapidly with an increase of the unidirectional communication links
in the network. The results show that the adversary will change the attack mode according to the
parameter settings of attack resources and network communication link density. In order to enhance
the network robustness, we need to adjust the defense strategy in time to deal with this change.
Finally, we validated the model and theoretical analysis proposed in this paper through experiments
on a real military network.

Keywords: internet of battlefield things; complex networks; directed networks; optimal attack
strategy; network robustness

1. Introduction

The Internet of Things (IoT) provides a new way for massive deployment of smart devices,
such as heterogeneous machines, sensors, and actuators [1,2]. Through ubiquitous connections,
devices can exchange data and leverage each other’s information, which enables the Internet of Things
to have a high degree of situational awareness [3]. Since the combat efficiency and coordinated
decision-making of a modern army depend highly on the ability to have real-time situation awareness
on the battlefield and the smooth dissemination of combat information [4,5], the Internet of Things has
a promising application in the context of modern warfare. IoT technology used for the interconnection
between combat equipment and other battlefield resources is referred to as the Internet of Battlefield
Things (IoBT) [6,7]. The collection of real-time data and information dissemination rely on the
connectivity of the network, which is vital in allowing the IoBT network to unleash its full potential [8].
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However, most of the connections within the IoBT are wireless in nature [9–11]. Attackers can
selectively destroy specific channels and data packets, causing communication links in IoBT networks
to be removed [1,12]. Therefore, considering the presence of malicious attacks by the enemy,
the robustness of the IoBT network is crucial to maintaining the combat capability and situational
awareness of troops on the battlefield.

Chen et al. studied a two-layer secure network formation problem for IoT networks in which the
network designer aims to design a network that can resist different number of link failures with the
least resources [1]. Leveraging the theories of stochastic geometry and mathematical epidemiology,
Farooq et al. presented a generic framework for secure and reconfigurable design of IoBT networks,
which can reconfigure the network according to the changing mission requirements [8]. Farooq et al.
also proposed a cognitive connectivity framework, which can cognitively adapt to the changes in
the network to interconnect spatially dispersed smart devices thus making it possible to remotely
deploy mobile Internet of Things [3]. In order to model and analyze malware infection in wireless IoT
networks, Farooq and Zhu proposed a variation of the mean field population process model based on
a customized state space that allows us to analyze the formation of botnets in wireless IoT networks
and helps in making corresponding network defense decisions [9]. Most of the aforementioned studies
are carried out from the perspective of network security design, and there is no research to analyze the
robustness of the Internet of Battlefield Things under the optimal attack strategy from the opponent
(namely, the ability of the network to maintain connectivity in the worst case).

The network disintegration model in complex network theory has been successfully applied to the
modeling and analysis of traditional infrastructure network robustness problems [13–18]. By randomly
or intentionally removing nodes or edges from the network to simulate random failures or malicious
attacks, these models accurately capture the key nodes or edges in the network [19–23]. These research
findings will not only be helpful in guiding different protection strategies, but will also be useful
in the design of high-robustness and low-cost infrastructure networks [13]. Although the research
on the robustness of infrastructure networks has achieved rich results, previous studies did not
take the direction of communications between nodes in the network and the optimal attack strategy
of the adversary into account, and hence cannot give meaningful insights for the IoBT network.
The directionality of communications is an important feature that is not ignorable for IoBT networks.
For example, the command and control node will receive data from the sensing node, generate the
operation command, and send it to the fire strike node [5,24–26]. In this process, the information
can only propagate between nodes along the sending direction or receiving direction. For systems
with directional connections, the directed network is a network model that naturally describes this
communication mode, and the edges in the network have directionality [27–29]. Another vital
feature of IoBT networks is to make the network connectivity resistant to edge removal attacks
by anticipating the worst attack behaviors [1]. From the perspective of attackers, some scholars convert
the network disintegration problem into a combinatorial optimization-based problem by introducing
some meta-heuristic algorithms to identify the optimal attack strategy [30–33], which provides an
effective method to predict the worst attack behavior of attackers.

In this paper, aiming at the security requirements of the Internet of Battlefield Things, we first
use the directed network to model the wireless communication characteristics of the IoBT network.
Then, based on the concept of the largest strongly connected component (LSCC) in the directed
network, the connectivity of the IoBT network is quantitatively described. Furthermore, we establish
an optimization model to simulate the optimal attack strategy of the enemy and verify the optimality
of the model solution by comparing it with the disintegration effect of some benchmark strategies.
The experimental results show that the network robustness decreases with an increase of the
proportion of unidirectional edges in the IoBT network, which means that the number of nodes
that can maintain mutual access will decrease rapidly when the IoBT network is attacked maliciously.
Furthermore, we also found that under different attack resources of opponents and with changes to
the communication link density of the IoBT network, the optimal attack mode of the adversary will
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change significantly, which enlightens us to adjust the edge protection strategy to deal with the change
of adversary attack mode.

The remainder of this paper is organized as follows. In Section 2, we propose a network model and
connectivity measurement of the Internet of Battlefield Things. In Section 3, we construct an optimal
attack strategy optimization model to simulate the attack behaviour of the enemy. In Section 4,
the robustness of the IoBT network under the optimal attack strategy is investigated through
experiments on the synthetic networks and real military networks, and give the network defense
strategies under different parameter settings. Finally, the conclusions are given in Section 5.

2. The Construction of Network Model

In this section, we first use the directed network model to describe the wireless communication
characteristics of the IoBT network. Then, based on the concept of the largest strongly connected
component (LSCC) in the directed network, the connectivity between devices in the IoBT network
is quantitatively described. Figure 1 illustrates a typical battlefield environment comprised of
airborne warning aircraft, armed helicopters, armored vehicles, and soldiers, whose communications
are threatened by physical or cyber attacks. The enemy can destroy specific channels and data
packets, resulting in some equipment being unable to send real-time data or unable to receive the
latest operational command, which dramatically reduces the situation awareness ability and combat
efficiency of the Internet of Battlefield Things.

Figure 1. A typical IoBT network with high situational awareness capability. The intelligent devices on
the battlefield can exchange data and share critical information through D2D communications, and the
directed edges indicate the propagation direction of data or information in the network. The enemy
can selectively destroy specific channels and packets, resulting in the deletion of communication links
in the network.

2.1. Directed Network Model

Systems with asymmetric or unidirectional connections can be described as a directed network,
which is represented by a simple directed graph G = (V, E), and there are no loops and multiple
edges in the network. V = {v1, v2, . . . , vN} is the set of nodes and E = {e1, e2, . . . , eW} is the set of
directed edges. Let N = |V| be the number of nodes and W = |E| be the number of edges, respectively.
Any edge in the network corresponds to a pair of nodes ex =

(
vi, vj

)
, where node vi is the starting point

and node vj is the end point. Denote by A (G) =
(
aij
)

N×N the adjacency matrix of G, in which aij = 1
if there is a directed edge from vi to vj, and aij = 0 otherwise. It should be noted that, unlike undirected
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networks, the adjacency matrix of directed networks is generally asymmetric. Let kout
i = ∑N

j=1 Aij and

kin
i = ∑N

j=1 Aji be the out-degree and in-degree of node vi, respectively.
In this study, we only consider attacks against edges. We define the edge type between any

two nodes in the directed network, including no edge, bidirectional edge, and unidirectional edge.
The specific definitions are shown in Figure 2. Obviously, three edge types correspond to three possible
communication modes between two nodes. If there is no direct communication between the two nodes,
such as when affected by geographical factors, it can be represented as no edge. If two nodes send
information to each other, it can be represented by a bidirectional edge. A unidirectional edge means
that one node can only send or receive information.
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Figure 2. Three edge types between two nodes in a directed network. Node 1 and Node 2 both have
edges pointing to each other, so the corresponding edge type is a bidirectional edge. There is only one
edge between Node 3 and Node 4, and the corresponding edge type is a unidirectional edge. There is
no edge between Node 1 and Node 3. The right side of this figure shows the adjacency matrix, which is
an asymmetric matrix.

2.2. Network Connectivity Evaluation Index

In this article, to visually observe the impact of edge attack behaviors on IoBT network connectivity,
we use the proportion of nodes in the largest strongly connected component (LSCC) as the measure
function of network connectivity. For the IoBT network, there is at least one reachable communication
path between any pair of combat units in the LSCC. We assume that the larger the LSCC of the IoBT
network is, the better the robustness of the network. In Figure 3, we use a simple example to illustrate
the change of LSCC after the network is attacked.
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Figure 3. Illustration of the change of the largest strongly connected component LSCC after the directed
network is attacked. There is a path between any pair of nodes in the largest strongly connected
component. After the two edges (3,1) and (4,1) in the initial network are removed, Node 3 and Node 4
are separated from the largest strongly connected component and become failed nodes (marked in red),
while Node 1, Node 2, and Node 5 constitute the new largest strongly connected component (marked
in blue).

3. Optimization Model for Edge Attack Strategy in Directed Networks

In this section, we model the optimal attack launched by the enemy on our IoBT network in the
battlefield environment. We first define the edges attacked in directed networks. Then, we construct
the optimal edge attack strategy optimization model in directed networks and obtain the optimal
attack strategy of the enemy by solving the model.

Each edge attack removes an existing edge in the network. If one edge from node vi to node
vj is removed, then aij = 0, which means that the edge type may be converted from a bidirectional
edge to a unidirectional edge, or from a unidirectional edge to no edge. Denote by Ê ⊆ E the set of
directed edges that are removed and denote by Ĝ =

(
V̂, E− Ê

)
the network after the edge removal.

Denote by m =
∣∣Ê∣∣ the attack strength parameter. If m = W, all edges of network G are removed.

We define an edge attack strategy as X̂ = [x1, x2, . . . , xW ], where xi = 0 if xi ∈ Ê, otherwise xi = 1.
Therefore, a constraint of the edge attack strategy can be obtained as follows:

m = W −
W

∑
i=1

xi . (1)

Our goal is to find the optimal edge attack strategy to minimize network performance.
The measure function of network performance is denoted by Φ

(
Ĝ
)
. The problem of solving the

optimal edge attack strategy in a directed network could be formulated as follows:

s.t.

{
∑W

i=1 xi = W −m, 0 ≤ m ≤W
xi = 0 or 1, i = 1, 2, . . . , W

(2)

For a directed network with W edges, the size of the solution space of this problem is

(
W
m

)
,

which increases sharply with the size of the network. It is almost impossible to traverse all possible
combinations of edges if the directed network’s size is large. Fortunately, the tabu search algorithm
has been successfully applied to solve the optimal node attack strategy in undirected networks [30].
The tabu search algorithm, which is one of the meta-heuristic algorithms, is a powerful tool for
solving combinatorial optimization problems. It employs a move mechanism and a tabu list to
prevent subsequent iterations from falling into a sub-optimal solutions and proposes an aspiration
criterion to release some of the better solutions that are currently in the tabu list, thereby ensuring
the possibility of an efficient global search. At the same time, we have also noticed that, as a kind
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of meta-heuristic algorithm, the genetic algorithm is also applied to solve the optimal edge attack
strategy in an undirected network [33]. The genetic algorithm has strong global search capabilities,
but a simple genetic algorithm not only easily converges prematurely, but also makes it difficult to
obtain the global optimal solution [34].

In this work, we compare the disintegration effects of the optimal solutions found by the Tabu
Search Algorithm (TS) and Genetic Algorithm (GA). Please refer to these works of literature [30–33]
for the detailed steps and algorithm diagram of the TS algorithm and GA algorithm.

4. Experimental Analysis

In this section, we analyze the optimal edge attack strategy based on the optimization model
introduced above. On the one hand, we focus on the disintegration effect of the optimal edge attack
strategy on the synthetic directed networks. In order to verify that the attack strategy solved by the
model can simulate the optimal edge attack behavior, namely, the solution is an approximate optimal
solution, we introduce some existing edge attack strategies as benchmarks for comparison. On the
other hand, considering the constraint of communication cost on the proportion of bidirectional edges,
by setting a certain proportion of bidirectional edges as unidirectional edges at random, we simulate
the IoBT network with different communication link densities and study the impact of the change in
the proportion of unidirectional edges on the network robustness.

4.1. Synthetic Directed Networks

Due to the ubiquity of random connections and power-law characteristics in the real world, in this
paper we attempt to employ the directed scale-free network and directed random network as the
fundamental network model of the IoBT network. We first generate an undirected scale-free network
with a power-law degree distribution p (k) = (λ− 1)mλ−1k−λ. We then randomly select q proportion
bidirectional edges from this initial network and set them as unidirectional edges to obtain a directed
scale-free network. In particular, by defining Eq as the total number of directed edges in the directed
network under the parameter q, it can be derived that Eq = (1− q/2) · E. If q = 0, then Eq = E,
and the edges in the network are all bidirectional. Additionally, if q = 1, then Eq = E/2, and the edges
in the network are all unidirectional. Therefore, the directed scale-free network model is denoted
by SF

(
Eq, N, m, λ, q

)
. Similarly, the directed random network can be generated by determining the

number of nodes N and the probability p of connecting edges between any two nodes, which can be
indicated by ER

(
Eq, N, p, q

)
.

4.2. The Existing Edge Attack Strategies

In order to verify the disintegration effect of the optimal attack strategy obtained by solving the
optimization model, as a comparison, we introduce two common methods, namely, Edge-Degree
(based on local information) and Edge Betweenness Centrality (based on global information),
as benchmarks.

4.2.1. Edge Attack Strategy Based on Edge-Degree

In undirected networks, determining the importance of edges based on the information of two
endpoints has been proven to be an effective method in disrupting networks [35]. The degree is
a classic local index to measure the importance of nodes. The importance of edges can be defined
by the sum or product of the degrees of two endpoints. In this work, according to the concepts of
out-degree and in-degree, we define three attack strategies: removing edges in decreasing order of the
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sum of out-degree (SOD), the sum of in-degree (SID), and the sum of out-degree and in-degree (SOID).
These definitions are given by Equation (3).

SODe = kout
i + kout

j

SIDe = kin
i + kin

j

SOID = SODe + SIDe ,

(3)

where kout
i and kin

j are the out-degree of endpoint i and the in-degree of endpoint j, respectively.
We collectively refer to the definitions in Equation (3) as Edge-Degree. Following the definition of
Edge-Degree, the edges that connect the in-hubs or the out-hubs will be attacked preferentially.

4.2.2. Edge Attack Strategy Based on Edge Betweenness Centrality

The Edge Betweenness Centrality quantifies the role of edges in maintaining interconnections
between components in the network by reflecting the ratio of the number of shortest paths between
nodes i and j to the total number of shortest paths between all pairs of nodes. Extending this concept
directly to directed networks, we define the attack strategy based on Edge Betweenness Centrality
(EBC), which removes edges in descending order of betweenness centrality. The definition is given
by Equation (4).

EBCe = ∑
i 6=j

σij (E)
σij

, (4)

where σij is the number of shortest paths from node i to node j, and σij (E) is the number of shortest
paths from i to j that pass through edge E.

4.3. Experiments in Synthetic Networks

We first conducted experiments on both a directed scale-free network and a directed random
network with parameters q = 0.2, 0.5, 0.8, corresponding to the three cases where the proportion of
unidirectional edges in the directed network is small, half, and large, respectively.

This paper uses the relative size of the largest strongly connected component (LSCC) mentioned
in Section 2 as the performance measurement function of the directed network. Denote by f = m/W
the directed edge deleting fraction. As the value of f increases, the network will eventually collapse,
until the relative size of the LSCC almost approaches 0.

The parameters of the optimization model for solving the optimal edge attack strategy based on
tabu search were set as the following: the maximum of iterations Tmax = 100, the number of candidates
ncandidate = 100, and the tabu length Ltabulist = 100.

The parameters of the optimization model for solving the optimal edge attack strategy based on
the genetic algorithm are set as the number of iterations is also set to T = 100; the selection probability
is 0.5, the crossover probability is 0.5, the mutation probability is 0.5 and the initial population size
is 300.

In order to eliminate the influence of randomness on the experiment as much as possible,
the average value of 100 independent experiments was taken as the experimental result.

The disintegration effects Φ (G) as a function of the directed edge deleting fraction f with various
edge attack strategies in directed scale-free networks and directed random networks are shown in
Figure 4. We found that, given the directed edge deleting fraction, the disintegration effect of the
optimal attack strategy solved by the optimization model in Section 3 is much better than other
heuristic attack strategies. The results show that the model can simulate the optimal attack launched
by the enemy on the IoBT network. In Figure 4, it can be observed that the disintegration effect of the
solution obtained by the tabu search algorithm is better than the genetic algorithm, which shows that
the solution obtained by tabu search algorithm is closer to the optimal solution than genetic algorithm.
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Therefore, in the following, only the tabu search algorithm is used to solve the optimization model.
In addition, to investigate the influence of communication link density on the robustness of the IoBT
network, we set up directed scale-free networks and directed random networks with q = 0.2, 0.5, 0.8,
corresponding to high, medium, and low communication link densities, respectively. As can be
seen from Figure 4, with an increase of the proportion of unidirectional edges (namely, a decrease of
communication link density), the decline curve of network connectivity becomes steeper, which means
that the number of nodes in the IoBT network that can maintain mutual accessibility is rapidly
decreasing. This shows that the network robustness can be improved by increasing the communication
link density.

Tables 1 and 2 respectively show the standard deviation of the results solved by the two
meta-heuristic algorithms in Figure 4. In order to simplify the representation, we only reserved
the parameter q in the network name as the logo in the bottom right corner.

After successfully predicting the optimal attack strategy, we need to formulate the corresponding
defense strategy for our IoBT network to deal with the potential threat from the enemy. To keep
the IoBT network resistant to attacks, the network defender can invest in securing its links against
failures, where we refer to these specially protected communication edges as protected links [1].
A protected link can be designed by using the moving target defense (MTD) strategy, where the
network defender randomly uses communication links among multiple created channels between
two nodes [36]. However, considering the cost of these protected links, we can only protect part of
the communication edge in the network. Thus, we need to know which possible attack modes are
adopted in the optimal attack strategy of the enemy. It is easy to conclude that there are three attack
modes that the enemy may take, which are defined as follows: (1) Mode 1: the unidirectional edge is
attacked, and the communication between the two nodes is completely cut off; (2) Mode 2: only one
unidirectional edge in the bidirectional edge is attacked, and another unidirectional edge is left to
communicate between the two nodes; (3) Mode 3: both unidirectional edges in the bidirectional edge
are attacked, and the communication between the two nodes is completely cut off. Note that the first
two attack modes only need to attack once and remove one edge, while the third attack mode needs to
attack twice and remove two edges.

Under the parameter settings of f = 0.1, 0.2, . . . , 0.9 and q = 0.1, 0.2, . . . , 0.9, we counted the
amounts of the three attack modes adopted by the optimal attack strategy. Figure 5 shows the change
of amounts of three attack modes adopted by the optimal attack strategy in different situations.

As can be seen from Figure 5, when the enemy attack resources are limited ( f value is low), and the
communication link density of our IoBT network is high (q value is low), the enemy tends to use Mode
2 as the primary attack mode. There is a large amount of bidirectional communication in our network,
so Mode 3 is not a cost-effective attack mode for an enemy with limited resources. However, the enemy
can destroy one unidirectional edge in the bidirectional edge to reduce the proportion of bidirectional
edges, which will reduce the possibility of large-scale strongly connected components in the network
and thus weaken the combat effectiveness of our IoBT network. Consequently, in this case, we should
focus our defense resources on the protection of bidirectional edges. When the enemy attack resources
are abundant ( f value is high) and the communication link density of our IoBT network is high (q value
is low), the enemy tends to use Mode 3 as the primary attack mode. It is the enemy’s first concern
to destroy the network connectivity as much as possible, rather than whether the attack mode is
cost-effective. By cutting off the bidirectional communication between massive nodes, the enemy
can cut our IoBT network into smaller connected pieces. Similarly, in this case, we should focus our
defense resources on the protection of bidirectional edges. No matter whether the attack resources
are limited or abundant when our IoBT network communication link density is low (q value is high),
the enemy will choose Mode 1 as the primary attack mode. Due to the poor robustness of the network
with a high proportion of unidirectional edges, the network connectivity will collapse quickly if the
enemy attacks the unidirectional edge. Differently from the previous two cases, we should focus our
defense resources on the protection of unidirectional edges if our network robustness is poor.



Entropy 2020, 22, 1166 9 of 15

Table 1. Standard deviation of results obtained by tabu search algorithm.

f = 0.1 f = 0.2 f = 0.3 f = 0.4 f = 0.5 f = 0.6 f = 0.7 f = 0.8 f = 0.9

SFq=0.2 0.0134 0.0192 0.0235 0.0272 0.0309 0.03173 0.0053 0.0033 0.0021
SFq=0.5 0.0135 0.0241 0.0256 0.0344 0.0356 0.0076 0.0031 0.0018 0.0024
SFq=0.8 0.0133 0.0217 0.0279 0.0256 0.0062 0.0034 0.0019 0.0020 0.0007
ERq=0.2 0.0123 0.0164 0.0252 0.0300 0.0570 0.0093 0.0040 0.0022 0.0022
ERq=0.5 0.0143 0.0238 0.0340 0.0831 0.0089 0.0045 0.0025 0.0005 0.0019
ERq=0.8 0.0210 0.0572 0.0202 0.0071 0.0040 0.0029 0.0005 0.0022 0.0005

Table 2. Standard deviation of results obtained by genetic algorithm.

f = 0.1 f = 0.2 f = 0.3 f = 0.4 f = 0.5 f = 0.6 f = 0.7 f = 0.8 f = 0.9

SFq=0.2 0.0043 0.0034 0.0088 0.0088 0.0119 0.0142 0.0254 0.0063 0.0025
SFq=0.5 0.0105 0.0142 0.0108 0.0113 0.0153 0.0213 0.0344 0.0012 0.0000
SFq=0.8 0.0117 0.0135 0.0155 0.0161 0.0174 0.0313 0.0053 0.0021 0.0000
ERq=0.2 0.0034 0.0071 0.0078 0.0106 0.0120 0.0263 0.0152 0.0000 0.0022
ERq=0.5 0.0048 0.0119 0.0093 0.0154 0.0256 0.0512 0.0010 0.0000 0.0000
ERq=0.8 0.0078 0.0120 0.0235 0.0324 0.0600 0.0025 0.0000 0.0018 0.0000

4.4. Experiments in Real Military Network

In this section, we use a real military organization network to verify the model and theoretical
analysis proposed in this paper. The military network data come from the literature [37], which contains
89 entities, including 12 command nodes, 26 force nodes and 51 intelligence nodes, and there are 150
observable edges. The basic topological features of the military network are shown in Table 3. By setting
a certain proportion of bidirectional edges as unidirectional edges at random, we study the network
robustness of this military network under different communication link densities. Consistent with
Figure 4, we set the unidirectional edge ratio parameters q = 0.2, 0.5, 0.8, corresponding to high,
medium and low communication link densities, respectively.

Table 3. The basic topological features of the military network. Basic topological features include the
number of nodes N, the number of edges E, the average degree 〈k〉, the average shortest path length
〈d〉, the assortative coefficient r and the clustering coefficient C.

Network N E 〈k〉 〈d〉 r C

Military Network 89 150 3.483 8.113 0.2754 0.094

The disintegration effect Φ versus the directed edge deleting fraction f with various edge attack
strategies in a real military network are shown in Figure 6. Obviously, the network robustness of this
military network is poor. If the enemy takes the optimal attack, then only the removal of 0.2 percent
of the edges in the network can make the relative size of the LSCC drop sharply to 0.2 and below.
From the perspective of network defense, the topology and number of edges in this military network
should be changed to improve the network robustness in the face of possible optimal attacks.
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Figure 4. The disintegration effect Φ versus the directed edge deleting fraction f with various edge
attack strategies in directed scale-free networks SF

(
Eq, N, m, λ, q

)
and directed random network

ER
(
Eq, N, p, q

)
. Tabu, Genetic, SOD, SID, SOID and EBC represent the strategies based on tabu

search, genetic algorithm, sum of out-degree, sum of in-degree, sum of out-degree and in-degree,
and edge betweenness centrality respectively. To eliminate the influence of randomness on the results,
each quantity is an average over 100 independent experiments. (a) The disintegration effect on SF
network with q = 0.2. (b) The disintegration effect on SF network with q = 0.5. (c) The disintegration
effect on SF network with q = 0.8. (d) The disintegration effect on ER network with q = 0.2.
(e) The disintegration effect on ER network with q = 0.5. (f) The disintegration effect on ER network
with q = 0.8.
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Figure 5. Under the optimal edge attack strategy, the amounts of three typical attack modes will
change with the directed edge deleting fraction f and the proportion of unidirectional edges q,
which are Mode 1 (blue color bar), Mode 2 (red-brown color bar), and Mode 3 (cyan color bar).
(a) Directed scale-free networks SF

(
Eq, N = 200, m = 3, λ = 2.8, q

)
and (b) directed random network

ER
(
Eq, N = 200, p = 0.03, q

)
.

Furthermore, we show in Figure 7 the relationship between the number of three attack modes
and the directed edge deleting fraction f under the optimal attack strategy. To facilitate the reader to
visually compare the number changes in the three attack modes, we use a stacked bar plot to display
the results.
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Figure 6. The disintegration effect Φ versus the directed edge deleting fraction f with various edge
attack strategies in real military networks Military Network

(
Eq, N, q

)
. Tabu, SOD, SID, SOID and EBC

represent the strategies based on tabu search, sum of out-degree, sum of in-degree, sum of out-degree
and in-degree, and edge betweenness centrality, respectively. To eliminate the influence of randomness
on the results, each quantity is an average over 100 independent experiments. (a) The disintegration
effect on military network with q = 0.2. (b) The disintegration effect on military network with q = 0.5.
(c) The disintegration effect on military network with q = 0.8.
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Figure 7. Three attack modes versus the directed edge deleting fraction f under the optimal
attack strategy in real military networks Military Network

(
Eq, N, q

)
. Mode 1 represents that the

unidirectional edge is attacked. Mode 2 represents that only one unidirectional edge in the bidirectional
edge is attacked. And Mode 3 represents that both unidirectional edges in the bidirectional edge are
attacked. (a) Three attack modes on the military network with q = 0.2. (b) Three attack modes on the
military network with q = 0.5. (c) Three attack modes on the military network with q = 0.8.

The results in Figure 7 are consistent with the theoretical analysis in Figure 5. As shown in
Figure 7a, when the communication link density is high (q = 0.2) and the enemy attack resources are
limited ( f value is low), the enemy will choose Mode 2 as the primary attack mode. As the attack
resources increase ( f value is high), Mode 3 becomes the primary attack mode. As shown in Figure 7b,
when the communication link density is medium (q = 0.5), with the increase in attack resources,
the enemy’s primary attack mode gradually changes from Mode 2 to Mode 1 and Mode 3. As shown in
Figure 7c, whether the attack resources are limited or abundant when the communication link density
of the military network is low (q = 0.8), the enemy will choose Mode 1 as the primary attack mode.

5. Conclusions

In this work, we studied the robustness of the Internet of Battlefield Things (IoBT). Since the
connectivity between battlefield nodes plays an essential role in delivering real-time data and ensuring
situation awareness, the ability to maintain network connectivity under adversary attacks is a critical
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property for the Internet of Battlefield Things. Aiming at the security requirements of the IoBT network,
we first proposed the directed network model and connectivity measurement. Then, we established
the optimal attack strategy optimization model and obtained the worst-case attacks by solving the
model. Applying the network model, we analyzed the robustness of the IoBT network under the
optimal attack strategy, which provided insights into the development of effective protection strategies
to ensure the security and reliability of the IoBT network despite adversarial behaviors.

As part of our future work, we will consider the heterogeneity of devices and extend the network
model to heterogeneous multi-layer networks. Although the IoBT network is modeled by directed
scale-free networks and directed random networks, the structural characteristics and formation
mechanism of real IoBT network are still unclear, which makes the network model in this paper
unable to reflect all of the characteristics. We will carry out more works on these two directions in
the future.
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