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Helophytic plants contribute significantly in phytoremediation of a variety of pollutants due to their
physiological or biochemical mechanisms. Phenol, which is reported to have negative/deleterious effects
on plant metabolism at concentrations higher than 500 mg/L, remains hard to be removed from the envi-
ronmental compartments using conventional phytoremediation procedures. The present study aims to
investigate the feasibility of using P. australis (a helophytic grass) in combination with three bacterial
strains namely Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, in a
floating treatment wetland (FTW) for the removal of phenol from contaminated water. The strains were
screened based on their phenol degrading and plant growth promoting activities. We found that inocu-
lated bacteria were able to colonize in the roots and shoots of P. australis, suggesting their potential role in
the successful removal of phenol from the contaminated water. Pseudomonas sp. LCRH90 dominated the
bacterial community structure followed by A. lowfii ACRH76 and B. cereus LORH97. The removal rate was
significantly high when compared with the individual partners, i.e., plants and bacteria separately. The
plant biomass, which was drastically reduced in the presence of phenol, recovered significantly with
the inoculation of bacterial consortia. Likewise, highest reduction in chemical oxygen demand (COD), bio-
chemical oxygen demand (BOD), and total organic carbon (TOC) is achieved when both plants and bac-
teria were employed. The study, therefore, suggests that P. australis in combination with efficient bacteria
can be a suitable choice to FTWs for phenol-degradation in water.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phenol (or hydroxybenzene) is a commonly found pollutant in
industrial wastewaters. The compound is produced both syntheti-
cally and naturally; nevertheless, synthetic production has been
increased multi-fold recently. It has been reported that in 2015,
world’s annual production of the phenolic compounds exceeded
10 million tons, which is expected to increase up to 11.6 million
tons in 2020 (Plotkin, 2017). Almost every industry viz a viz petro-
chemical, pharmaceutical, agriculture, tanning, paper and pulp,
iron smelting, food, resin, etc. depends heavily on phenolic com-
pounds for its manufacturing processes (Herouvim et al., 2011;
Tatoulis et al., 2015). Many of these phenol-containing wastes
are discharged directly into the wastewaters causing further con-
taminations of surface and groundwater (Huang et al., 2012;
Stefanakis and Thullner, 2016). Some of the phenolic compounds
have been detected up to 10,000 mg/L of concentration (van
Schie and Young, 2000); whose genotoxic, immunotoxic, carcino-
genic, mutagenic and teratogenic effects are also reported accord-
ingly, Cf., list of priority pollutants (USEPA, 1979; Wu et al., 2012).
The persistence nature also allows their bioaccumulation in the
biotic elements, rendering them as a pollutant of concerns (Liu
et al., 2011; Liu et al., 2012).
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Recent advances in ecological engineering have helped estab-
lish innovative phytoremediation systems for the treatment of
wastewaters (Chen et al., 2016; Ijaz et al., 2016; Wang et al.,
2015). These include floating treatment wetlands (FTW) that har-
bor rooted and/or emergent plants of aquatic or terrestrial origin,
grown on self-buoyant mats being fixed on wastewater reservoirs
(Keizer-Vlek et al., 2014; Lynch et al., 2015; Yeh et al., 2015). These
mats allow plants to extend their roots deep into the contaminated
waters; allowing development of a large biologically active area in
the form of biofilms for the physical entrapment, biochemical
transformation, and degradation of the organic pollutants
(Kyambadde et al., 2005; Weragoda et al., 2012). The success of
such a system purely relies on microbial community in the biofilm
as well as on the plant species (Arslan et al., 2017b; Glick, 2010;
Weyens et al., 2009). Some of the pollutants are, however, toxic
enough to downgrade the overall cleaning process by reducing
the plant growth and inhibiting bacterial degradation (Alkio
et al., 2005). Phenol is among these pollutants, and can affect both
of the processes due to its bactericidal properties and plant meta-
bolic malfunctioning potential (Adeboye et al., 2014;
Kottuparambil et al., 2014; Phenrat et al., 2017; Ucisik and Trapp,
2006). To overcome such a situation, artificial augmentation of rhi-
zobacteria and/or endophytic bacteria, having antagonistic activi-
ties for the specific pollution type, have been proposed in a
variety of phytoremediation experiments (Afzal et al., 2014; Khan
et al., 2013; Weyens et al., 2009). The successful partnership allows
plants to provide nutrients and residency to the inoculated bacte-
ria while bacteria in return improve the plant health by reducing
stress, producing phytohormones and nutrients, and by providing
pollutant degradation services (Glick, 2010; Glick, 2014; Weyens
et al., 2009).

The common reed Phragmites australis (Cav.), a helophytic grass,
is reported to withstand harsh environmental conditions including
contaminant stress (Davies et al., 2005; Hechmi et al., 2014;
Schröder et al., 2008). The species grows in marshes, swamps,
and wet waste areas and therefore can be exploited in FTWs for
the remediation of wastewaters. In principle, the species allows
adsorption of the organic contaminants to the roots, without being
translocated to aboveground plant parts, rendering it suitable for
the removal of organic volatile compounds (Van der Werff,
1991). Moreover, members of the helophytic grasses are able to
transport atmospheric oxygen to the rhizosphere hence helping
them survive in waterlogged conditions. This oxygen flow from
leaves to roots further helps the microbial respiration by creating
gradients of redox conditions ultimately supporting the biofilm
functioning (Syranidou et al., 2016).

Keeping in mind these facts, we established FTW microcosms
by employing P. australis as a model plant, in partnership with
the two rhizospheric bacterial strains (Bacillus cereus LORH97 and
Pseudomonas sp. LCRH90) and one endophytic bacterial strain
(Acinetobacter lwofii ACRH76). This study aims to elucidate (1)
the potential of employing P. australis in a bacterial assisted FTW,
and (2) the success of established FTWs for remediation of
phenol-contaminated water. Moreover, bacterial persistence in
the rhizosphere and endosphere of the plant is evaluated.
2. Materials and methods

2.1. Bacterial strains

Three bacterial strains namely Acinetobacter lwofii ACRH76
(NCBI accession number KF478224), Bacillus cereus LORH97 (NCBI
accession number KF478239), and Pseudomonas sp. LCRH90 (NCBI
accession number KF478222) were used in the current study
(Fatima et al., 2015). The strains A. lwofii ACRH76 and B. cereus
LORH97 were isolated from the rhizosphere of Acacia ampliceps
and Lolium perenne, respectively, whereas Pseudomonas sp. LCRH90
was isolated from the shoot interior of Lecucaena leucocephala. The
strains were selected based on their ability to utilize phenol as a
sole carbon source, i.e., carrying clusters of alk and cyp genes;
metabolic functioning was tested on minimal salt medium con-
taining 100 mg l�1 of phenol. Moreover, B. cereus LORH97 and
Pseudomonas sp. LCRH90 possessed 1-aminocyclopropane-1-car
boxylate (ACC) deaminase activities, a stress alleviation trait of
plant growth promoting bacteria, tested on 0.7 g of 1-aminocyclo
propane-1-carboxylate (ACC) l�1 (Kuffner et al., 2008). The strains
were then cultivated in 10% Luria–Bertani (LB) broth at 37 �C, pre-
viously amended with 50 mg l�1 of phenol. Cells were harvested by
centrifugation followed by re-suspension in 0.9% (w/v) of NaCl
solution. Finally, the optical density of each bacterial strain was
adjusted to get 107 cells ml�1, the suspension was mixed in 1:1:1
ratio and 150 ml of the consortium was inoculated in each reactor,
where required.
2.2. Construction of FTW microcosms

The experiment was conducted in March 2017 at National
Institute for Biotechnology and Genetic Engineering, Faisalabad,
Pakistan for two months. Fifteen FTW phytoreactors were estab-
lished using Diamond Jumbolon sheet (Diamond Foam Company,
Pvt. Ltd. Pakistan) and polyethylene tanks (20-liter capacity).
The sheet was used to make floating mat after cutting it into
20 (length) � 15 (width) � 3 (thickness) inches; and five holes
were drilled at equal distance to insert healthy seedlings of P. aus-
tralis in the mat, i.e., 40–50 seedlings for each reactor (Fig. 1) (Patil
et al., 1994; Mehmood et al., 2013). The seedlings were then
allowed to develop roots for a month in the tap water while Hoag-
land solution was applied fortnightly to augment the process of
root-establishment. After 30 days of acclimatization, tanks and
plant roots were surface-sterilized with 5% NaOCl solution and
the water of the tank was spiked with phenol (500 mg l�1). The
concentration was selected based on earlier observations that of
phenol (500 mg l�1) in water can decrease 50% of evapotranspira-
tion in willow trees (Ucisik and Trapp, 2006). The observations
were made in triplicates and different treatments were:

� T1: vegetated reactor containing tap water – control
� T2: un-vegetated reactor containing phenol-contaminated
water – control

� T3: un-vegetated reactor containing phenol-contaminated
water and bacterial consortium

� T4: vegetated reactor containing phenol-contaminated water
� T5: vegetated reactor containing phenol-contaminated water
and bacterial consortium

2.3. Plant biomass

Plant tissues were cut 2 cm above the mat surface after 15 days
experimental period. The fresh and dry biomass of both roots and
shoots was then measured to reveal the effect of bacterial inocula-
tion and phenol contamination on plant growth and development.
Dry biomass was determined after three days in an oven at 50 �C
(Arslan et al., 2014).
2.4. Phenol estimation

APHA standard methods for the examination of water and
wastewater were used to estimate the residual phenol
concentration in water samples (APHA, 2005).



Fig. 1. Schematic representation of floating mat with holes for plantation of healthy seedlings of P. australis (A); construction of phytoreactors with container and floating mat
(B-C); experimental setup showing plant biomass (C). The tanks were covered to avoid sunlight penetration.
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2.5. Water quality parameters analyses

The water quality parameters were evaluated using established
protocols (APHA, 2005). These included BOD, COD, TOC, and pH as
they define the quality of water (Eaton et al., 2005). Additionally,
dissolved oxygen (DO) was measured temporally to evaluate wet-
land performance over time.

2.6. Survival/colonization of inoculated bacteria

The survival of the inoculated bacteria was determined in
the treated water, rhizospheric water, and plant endosphere at
the end of the experiment. The endophytic bacteria were iso-
lated from the shoots and roots interior was performed after
surface sterilization as per established protocols (Yusuf et al.
2010). Briefly, roots and shoots were washed for 2 min in ster-
ile distilled water followed by treatment with 70% ethanol for
10 min (for roots) and 5 min (for shoots). Subsequently, the tis-
sues were rinsed for 1 min in 1% NaOCl amended with 0.01%
Tween 20 solution. Finally, the surface sterilized roots and
shoot were washed thrice with sterile distilled water and the
surface sterility of the last rinse was checked by spreading
100 ml aliquot on nutrient enriched LB medium. Afterwards, 5
g of the surface sterilized roots and shoots were grounded with
a pestle and mortar in 10 ml NaCl solution (0.9%, w/v) to make
the suspension. Thereon, 100 ll of the suspension and rhizo-
spheric water were plated on M9 media (up to 10�6) containing
phenol as a sole energy source (50 mg l�1). The plates were
then incubated at 37 �C for 48 h, followed by counting of colony
forming units (CFU) using OpenCFU software (Geissmann, 2013).
A statistically significant number of colonies were picked and
subjected to IGS-PCR and RFLP analyses (Ijaz et al., 2015). Each
RFLP reaction constituted 7 mL PCR product, 1 mL HindIII
enzyme, 1.5 mL R-buffer, and 5.5 mL deionized water, to make
a total of 15 mL reaction.

2.7. Statistical analysis

The plant biomass, residual phenol, pollution parameters, CFU
counts, and mutagenicity levels were subjected to statistical
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analysis in R statistical language. One-way ANOVA was used to
test the significant differences among different treatments,
considering Tukey’s test, after testing the homogeneity of variance.
We also performed nMDS analysis (Bray-Curtis similarity) to
compare the distribution of inoculated bacteria based on their
RFLP profile.
3. Results and discussion

3.1. Plant biomass and growth

The fresh and dry biomass of plant tissues (root and shoot)
was measured to elucidate the influence of phenol toxicity and
respective bacterial inoculation on growth of P. australis (Table 1).
It can be seen that the phenol contamination (T4) inhibited plant
biomass development, whereas bacterial inoculation (T5)
improved the biomass production. The reduction in biomass
can be attributed to the presence of phenol in water since its
toxic nature can drastically affect the plant health parameters
such evapotranspiration, photosynthesis rate, etc.
(Kottuparambil et al., 2014; Ucisik and Trapp, 2006). It has been
reported that, in willow plants, 50% of the evapotranspiration
was dropped after its exposure to water containing phenol
500 mg l�1 whereas complete plant death occurred at 1000 mg
l�1 of phenol exposure (Ucisik and Trapp, 2006). The molecular
mechanisms behind this drop in evapotranspiration have
remained least investigated; however, in our other studies of
antibiotics exposure (100 mg l�1), we have seen direct damages
to plant vascular bundles, increased production of reactive oxy-
gen species (ROS), necrosis of plant roots, and dysbiosis in
indigenous endophytic bacteria, ultimately leading to weakening
of plant basal defense mechanisms (Arslan et al., 2017a). In
the present study, we also observed that the root network of
P. australis turned necrotic in the presence of phenol (T4)
without bacterial inoculation. This investigation is in agreement
with Phenrat et al., (2017), which also reported severe
degradation of plant roots at 500 mg l�1 concentration of phenol
in water in the first few days of exposure. Another reason for
decreased biomass is the overloading of the plant detoxification
system after continuous uptake/accumulation of phenol in plant
tissues. This is because of the optimal octanol/water partition
coefficient (log Kow = 1.46) of phenol. Nevertheless, indigenous
bacteria and plants cannot increase the enzymatic efficiency sig-
nificantly to cope with the external pressures and therefore can
lead to severe toxic effects, i.e., the concept of internal exposure
concentration (Escher et al., 2004).

On the other hand, bacterial inoculation increased the biomass
of P. australis in the presence of phenol in water (T5); this could be
linked to the ACC deaminase activities of the two inoculated
strains, i.e., B. cereus LORH97 and Pseudomonas sp. LCRH90. It is
an established fact that the bacteria possessing ACC deaminase
capabilities are able to reduce the contaminant induced stress for
the developing plant, ultimately improving the plant health even
in the presence of contamination (Compant et al., 2010; Glick,
Table 1
Reed root and shoot biomass measured after 15 days of the experiment period.

Treatments Root biomass (g)

Fresh

Vegetated (-phenol) 181.1a (21.9)
Vegetated and un-inoculated (+phenol) 76.5b (7.2)
Vegetated and inoculated (+phenol) 159.7a (27.8)

Each value is a mean of three replicates; means in the same column followed by differen
presented in parentheses.
2010; Saleem, 2016; Saravanakumar et al., 2011). This improved
biomass is further confirmed by ANOVA since less significant dif-
ferences (p < .05) were observed between control (T1) and inocu-
lated plants (T5).

3.2. Phenol removal

The phenol removal by different FTWs is presented in Table 2.
Lowest phenol removal was observed in the reactors with bacterial
consortium only (T3), whereas vegetated reactors were able to
remove a higher amount of phenol (T4). This could be due to the
fact that the phenolic compounds, when present in the environ-
ment at high concentrations, are toxic for bacterial communities
and can inhibit/reduce the overall metabolic efficiency (Adeboye
et al., 2014). However, higher phenol removal by plants, as com-
pared to bacteria, can be associated with the optimal octanol–wa-
ter partition coefficient leading to successful uptake/removal of
phenol by plants. This is more evident in the initial 5-day exposure
phase since most of the phenol was removed in this period and,
thereafter, only a smaller fraction was removed suggesting the
effect of physiological damages as explained earlier. (Riaz et al.,
2017) reported that the accumulation of organic pollutants within
plant tissues could trigger high ROS production, ending up into
plant anatomical damages. Nevertheless, vegetated reactors in
combination with bacterial consortia (T5) were able to remove
the highest concentration of phenol; which is verified at statistical
inference of p < .01. This is in agreement with the earlier studies
describing the usefulness of bacterial augmentation in classical
phytoremediation systems (Afzal et al., 2013). Such partnership
systems have been widely adopted around the world with engi-
neered modifications, aiming to accelerate the natural phytoreme-
diation process with designed objectives (Chen et al., 2016; Ijaz
et al., 2016; Newman and Reynolds, 2005; White and Cousins,
2013).

3.3. Water quality parameters

Established FTWs were able to improve the quality of water by
lowering their respective COD, BOD, and TOC values (Table 3). The
pollution load was highest in the un-vegetated reactors (T2); while
a slight reduction was observed in un-vegetated reactors contain-
ing only bacterial consortium (T3) followed by vegetated contam-
inated reactors (T4). Anyhow, significantly highest reduction of
COD, BOD, and TOC was observed in the bacterially assisted vege-
tated reactors (T5), i.e., COD reduced from 1057 to 122 mg l�1, BOD
from 423 to 78 mg l�1, and TOC from 359 to 53 mg l�1, after 15
days of the treatment. The high oxygen concentration in water is
one of the fundamental parameters of water quality and high con-
centration of organic matter in water can decrease oxygen concen-
tration, and affect metabolic functioning of the indigenous
microbial community (Trivedy and Goel, 1984). The inoculation
of phenol-degrading bacteria (T3), however, would have decreased
the contaminant level but at the expense of oxygen (Chen et al.,
2010; Demoling and Bååth, 2008). While in vegetated reactors
Shoot biomass (g)

Dry Fresh Dry

57.4a (4.1) 963a (98) 268a (34)
22.9b (2.4) 593b (53) 124b (26)
51.1ab (9.9) 815ab (46) 256a (39)

t letter are statistically different at 5% level of significance; standard deviations are



Table 2
Effect of inoculum and vegetation on phenol removal.

Treatments Initial 5 days 10 days 15 days

Control 500 389.4a (26.6) 347.7a (34.4) 333.5a (23.8)
Inoculated 500 327.7ab (24.2) 293.3ab (23.1) 194.6b (19.3)
Vegetated 500 202.3b (29.3) 188.1b (17.4) 167bc (21.3)
Vegetated and Inoculated 500 149.4bc (15.6) 45.3c (11.3) 19.3c (3.1)

Each value is a mean of three replicates; means in the same column followed by different letter are statistically different at 5% level of significance; standard deviations are
presented in parentheses.

Table 3
Water quality parameters for the treated water at the end of experiment.

Treatments COD BOD pH TOC

Control 1057a (45) 423a (34) 5.8b (0.0) 359a (34)
Inoculated 514b (25) 281b (14) 6.6ab (0.01) 165b (15)
Vegetated 476b (29) 223b (22) 6.7ab (0.01) 172b (11)
Vegetated & Inoculated 122c (7) 78c (6) 7.2a (0.01) 53c (5)

Each value is a mean of three replicates; means in the same column followed by different letter are statistically different at 5% level of significance; standard deviations are
presented in parentheses.
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(T4), comparatively high removal can be attributed to the continu-
ous uptake of the pollutant as well the potential of transporting
atmospheric oxygen to the rhizosphere of P. australis (Van der
Werff, 1991). In the bacterial assisted vegetated reactors (T5), suc-
cessful interactions between plant-roots and rhizospheric bacteria
are obvious to be established causing diffusion of surrounding oxy-
gen into the plant rhizosphere as well as removal of contaminant
load with the passage of time (Morris and Monier, 2003;
Vymazal, 2010; Vymazal, 2013). This was revealed during tempo-
ral measurement of dissolved oxygen, where bacterially assisted
reactors were able to recover while all other reactors suffered from
oxygen depletion (Fig. 2). The pH of the treated water was also
improved (acidic to neutral conditions), which is also attributed
to the combined action of phenol transformations by bacteria as
well as the use of organic acids by the plants (Ijaz et al., 2015).

3.4. Survival/colonization of inoculated bacteria

The survival of inoculated bacteria was determined in the
rhizospheric water, roots interior, and shoots interior of the
plant (Fig. 3). Comparatively, bacterial persistence was less com-
monly observed in the un-vegetated reactors (T3) as compared
to the vegetated reactors (T5). This could have been caused by
the absence of plant roots (symbiotic partner) resulting in
reduced survival of inoculated bacteria (Arslan et al., 2014).
Moreover, as all of the inoculated bacteria were previously iso-
lated from the plant rhizosphere and/or endosphere; they may
have developed necessary mechanisms of proliferation in the
Fig. 2. Temporal assessment of dissolved oxygen for evaluating system’s
performance.
presence of host only (Afzal et al., 2014). This is the reason that
persistence of inoculated bacteria was more evident in the
vegetated reactors (T5). In the vegetated reactors (T5), 38% of
the total population was appeared to be A. lwofii ACRH76,
followed by 24% of B. cereus LORH97. The endophytic species
Pseudomonas sp. LCRH90 dominated the plant endosphere as it
was recorded to be 68% of the total bacterial endophytes. Many
of the earlier studies have reported the similar findings that the
rhizospheric bacteria acclimatize and proliferate the rhizosphere
whereas, endophytic bacteria colonize plant interior (Ho et al.,
2013; Ho et al., 2012; Ijaz et al., 2016; Ijaz et al., 2015; Li
et al., 2011; Li et al., 2010; Vacca et al., 2005). The colonization
potential of endophytic bacteria appeared to be highly signifi-
cant for P. australis, which support its suitability as wetland
plant in addition to its helophytic properties. The parallel exper-
iments on phenol degradation using Typha domingensis also
achieved successful removal; nevertheless, bacterial persistence
was limited to only Pseudomonas sp. LCRH90 (Saleem et al., In
Press). The present study therefore presents not only an effective
solution to overall phytoremediation success but also elucidate
the nature P. australis as potential niche provider to endophytic
and rhizospheric bacterial communities. This finding is further
confirmed by nMDS analysis that distinctly separates the com-
munities of endophytic bacteria from rhizospheric bacteria
(Fig. 4); which was previously observed to be valid for the
medium only (Cf. Saleem et al., In Press).

Based on these facts, it can be argued that efficient bacterial col-
onization can help develop an efficient system for the cleanup phe-
nol especially at higher concentration, which remained difficult in
classical phytoremediation experiments. A number of studies have
reported potential key species of rhizospheric and endophytic bac-
teria which can be employed in combination with plants for effi-
cient removal of phenol (Krastanov et al., 2013; Liu et al., 2016;
Gu et al., 2016). Iqbal et al., (2017) reported such a partnership
in which phenol and benzene were removed by endophytic bacte-
rial strains namely Achromobacter sp. (AIEB-7), Pseudomonas sp.
(AIEB-4), and Alcaligenes sp. (AIEB-6) when inoculated with Canna-
bis sativa. Nevertheless, studies employing plant-bacteria partner-
ships are relatively few and most of them rely only to the bacterial
potential of phenol degradation in classical lab experiments.
Therefore, there is a need to validate if these key species can be
used for bacterial assisted phytoremediation studies. Moreover,
to find plant species that can serve as appropriate host for these
bacteria is equally crucial.



Fig. 3. Persistence of inoculated bacteria in the treated water, root interior, and shoot interior of T. domingensis.

Fig. 4. The nMDS ordination of inoculated bacterial consortium based on RFLP
profile.
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4. Conclusions

Helophytic plants can be a suitable choice in FTW for phy-
toremediation of phenolic compounds. The technology is an
innovative product of ecological engineering and can be engi-
neered to harness phytological and microbiological remediation
at all levels. The current study is an example of such a system
that was engineered in a way to restore contaminated water
with phenolic compounds. The system performance was up to
the mark as successful removal of phenol was observed in the
established FTWs with reduced COD, BOD, and TOC levels.
Although the study was conducted in microcosm, we observed
successful interaction of inoculated bacteria with P. australis
suggesting the potential role of helophytic grasses in plant-
bacteria partnership. Therefore, engineering the potential of
helophytic plants with pollutant-degrading bacteria could be a
promising area in the wastewater treatment. Last but not least,
the technology relies on near-natural means of remediation and
comparable little energy is needed for its operation, this makes
it particularly attractive for the countries with more economic
constraints such as Pakistan.
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