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ABSTRACT Sewage overflows, agricultural runoff, and stormwater discharges intro-
duce fecal pollution into surface waters. Distinguishing these sources is critical for
evaluating water quality and formulating remediation strategies. With the falling
costs of sequencing, microbial community-based water quality assessment tools are
under development. However, their application is limited by the need to build refer-
ence libraries, which requires extensive sampling of sources and bioinformatic exper-
tise. Here, we introduce FORest Enteric Source IdentifiCation (FORENSIC; https://forensic
.sfs.uwm.edu/), an online, library-independent source tracking platform based on
random forest classification and 16S rRNA gene amplicon sequences to identify in
environmental samples common fecal contamination sources, including humans, do-
mestic pets, and agricultural animals. FORENSIC relies on a broad reference signature
database of Bacteroidales and Clostridiales, two predominant bacterial groups that have
coevolved with their hosts. As a result, these groups demonstrate cohesive and reliable
assemblage patterns within mammalian species or among species sharing the same
diet/physiology. We created a scalable and extensible platform that we tested for
global applicability using samples collected in distant geographic locations. This Web
application offers a fast and intuitive approach for fecal source identification, particu-
larly in sewage-contaminated waters.

IMPORTANCE FORENSIC is an online platform to identify sources of fecal pollution
without the need to create reference libraries. FORENSIC is based on the ability of
random forest classification to extract cohesive source microbial signatures to create
classifiers despite individual variability and to detect the signatures in environmental
samples. We primarily focused on defining sewage signals, which are associated with
a high human health risk in polluted waters. To test for fecal contamination sources,
the platform only requires paired-end reads targeting the V4 or V6 regions of the
16S rRNA gene. We demonstrated that we could use V4V5 reads trimmed to the V4
positions to generate the reference signature. The systematic workflow we describe
to create and validate the signatures could be applied to many disciplines. With the
increasing gap between advancing technology and practical applications, this plat-
form makes sequence-based water quality assessments accessible to the public health
and water resource communities.

KEYWORDS microbial source tracking, 16S rRNA gene, high-throughput sequencing,
Bacteroidales, Clostridiales, random forest classification, toolkit

Environmental fecal pollution is recognized worldwide as a major threat to human
health that causes millions of deaths in developing countries (1). While the water-

borne disease burden is far less in developed countries, chronic fecal pollution is
regularly reported (2) and leads to waterborne illness, diminished ecosystem services,
and economic loss (3). In urbanized watersheds, fecal contamination can originate from
multiple sources, including failing sewage infrastructure and contaminated runoff
containing waste from upstream livestock, pets, and wildlife. However, gastrointestinal
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illness risks may differ according to the pollution source. For example, human exposure
to waters contaminated by sewage or cattle waste is estimated to present a greater
health risk than similar exposure to avian waste (4, 5). Water quality measures based on
traditional fecal indicator bacteria do not identify pollution sources (6). As a result, more
advanced methods, including quantitative PCR, have been developed to distinguish
fecal contamination sources by targeting marker sequences that are indicative of a
specific pollution source (7).

The ever-decreasing cost of sequencing and the development of advanced compu-
tational tools has made high-throughput sequencing one of the most efficient ways to
study bacterial communities, and it shows promise for microbial source tracking
applications (8, 9). Recent studies have used 16S rRNA gene amplicons to successfully
characterize human and animal fecal sources in surface waters (10–16). These studies
rely on the detection of fecal community signatures shaped by coevolutionary dynam-
ics between hosts and their gut microbiota (17–20). These approaches, including use of
the state-of-the-art Bayesian classifier SourceTracker (21), require the creation of a
reference sequence library for fecal samples, which entails sampling and sequencing
both of source samples and of the water samples of interest. Such additional effort is
often beyond the capabilities or resources available to a single investigator. This
limitation is compounded when fecal references are geographically distant from sam-
ples tested, which can alter the accuracy of source identification (14). To date, a publicly
available database that encompasses most common animal sources for fecal contam-
ination does not exist.

Our previous work reported a source tracking method using random forest classi-
fication, which offered a rapid, sensitive, and accurate solution for identifying host-
microbial signatures in environmental samples (15). In this study, we demonstrated that
the two most common gut-associated bacterial orders in mammals, i.e., Bacteroidales
and Clostridiales (18, 22), provide enough host-specific signal to perform accurate
source identification. Similar observations were reported at the genus level (23–25),
highlighting the fractal nature of specialization between gut microbiota and their hosts.
Targeting taxonomically defined groups, rather than studying the whole bacterial
community, may reduce the influence of large cross-phylum shifts due to diet or
sequencing primer bias in the bacterial community (25) while providing relevant
host-associated profiles.

Here, we introduce the Web application FORest Enteric Source IdentifiCation
(FORENSIC), an online platform with a user-friendly interface that employs random
forest to identify common sources responsible for fecal contamination. FORENSIC gives
access to an extensible list of human and animal reference signatures, eliminating the
need for users to create their own fecal reference databases. This platform responds to
an emerging demand for sequence data in the advancement of water quality testing.

RESULTS

Fecal gut microbiota were explored in 132 human (sewage) and 395 animal fecal
source samples collected around the world, which included but not were not limited to
those from cats, cattle, dogs, deer, pigs, horses, goats, sheep, rabbits, raccoons, chicken,
and geese. Amplicon sequences generated from the V4, V4V5, and V6 regions of the
16S rRNA gene were used to create and validate global FORENSIC source signatures.

Host community patterns and performance of global classifiers. We focused on
Bacteroidales and Clostridiales to perform fecal source identification, since they are the
most dominant fecal microbiota and have the highest genetic diversity among mam-
mal fecal samples that we examined (Fig. 1). Despite microdiversity and geographical
patterns within some sources, both taxonomic groups provided resolution to observe
source-specific structures in their assemblages (Fig. 2). This structure allowed us to
create and store fecal source signatures as classifiers for both bacterial orders and
multiple 16S rRNA gene variable regions. A sample was considered contaminated by a
source if random forest classification could identify a bacterial structure similar to the
fecal signature stored in the classifier.

Roguet et al.

March/April 2020 Volume 5 Issue 2 e00869-19 msystems.asm.org 2

https://msystems.asm.org


To create the initial classifiers, we used the 15 to 20 samples with the most similar
Bacteroidales or Clostridiales sequence structure (based on Bray-Curtis intrasource
comparisons) for the V4V5 and V6 variable regions. We then tested the specificity (i.e.,
proportion of correctly classified negative samples) and sensitivity (i.e., proportion of
correctly classified positive samples) of these classifiers against samples with the most
dissimilar Bacteroidales or Clostridiales sequence structure. Exceptions were applied
when a strong community bifurcation was observed within an animal source assem-
blage (i.e., for V6 cattle and dog; see Materials and Methods). We maximized the
performance of each classifier by tailoring the voting tree probability cutoff (called the
decision cutoff) at which a sample was considered contaminated or not by a source (see
Materials and Methods); the voting tree probability is a proxy reflecting the bacterial
profile similarity between a tested sample and a fecal signature. The performances of
classifiers and decision cutoffs are summarized in Table 1. The classifier amplicon
sequence variants (ASVs), which are the highly resolved operational taxonomic units
composing the individual source signatures, are listed in Table S1 in the supplemental
material. All V4V5 and V6 sewage classifiers had a specificity of 100%. All sewage
samples were correctly classified. All animal classifiers had a specificity ranging from 82
to 100%, except V4V5 dog Bacteroidales, for which no cutoff could be defined; this
classifier was therefore discarded. Misclassifications typically involved animals with
similar diets, e.g., misclassifications of horse as cattle (see Data Set S1 in the supple-
mental material for individual sample predictions). The fecal sources with the lowest
sensitivity, e.g., dog or cattle, had a large intrasource dispersion, likely due to a larger
number of atypical samples used to test the classifier performance (see nonparametric
multidimensional scaling plot in Fig. S1 in the supplemental material).

We only considered classifiers to be validated as global classifiers if the specificity
and the sensitivity were �70% when using a voting tree decision cutoff of �10%.
Reducing the voting cutoff further increases sensitivity in some cases but creates
specificity tradeoffs and may generate too many misclassifications when testing envi-

FIG 1 Phylogeny and distribution of the dominant V4 sequences across the fecal microbiota of eight
host species. Ten fecal samples were averaged per host, except for dog, chicken, and goose, represented
by 7, 6, and 8 samples, respectively. Only sequences (n � 287) with an average relative abundance per
host of 0.5% are displayed. Colors in the inner circle depict phyla. Gray clades symbolize the dominant
bacterial orders for at least one host. Log-transformed relative abundances were normalized by the
maximum abundance for each host. Fuso., Fusobacteriales; Lacto., Lactobacillales. The tree was rooted
using Halobellus ramosii strain S2FP14 (GenBank accession no. NR_145608.1). Sequences were aligned
using MUSCLE implemented in MEGA (61). The tree was generated using the interactive Tree Of Life
(iTOL) (62).
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ronmental samples. Classifiers with a cutoff of �10% were considered “draft” in order
to offer the users the ability to explore their data set while considering uncertainty.
Classifiers with a decision cutoff of �5% were discarded.

Scalability of the classifiers. In addition to the host-specific classifiers, we devel-
oped diet/physiology-centered classifiers, including those for herbivore and ruminant
sources. These broad classifiers allowed us to extend the scope of the host-specific
classifiers to capture fecal signatures shared among hosts having similar diets or
physiology. This approach also allowed us to include sources with limited sample sets
that prohibited creating individual host classifiers (e.g., horse or sheep). The diet/
physiology-centered classifiers had a minimum specificity and sensitivity of 78%
(Table 2). Interestingly, in some cases, the broader classifiers were able to identify the
fecal signature in samples (e.g., Bacteroidales V6 deer samples) where the host-specific
classifiers failed (see Data Set S1).

Importance of sequencing depth. We evaluated the performance of the source
classifiers (Bacteroidales and Clostridiales for both V4V5 and V6) in seven freshwater river
samples for which sewage and cattle fecal contamination had been previously identi-
fied (26) using validated quantitative PCR (qPCR) assays (Table 3). Unlike V4V5, V6
classifiers identified the sewage signature in all the samples. The sequencing of the V6
region using the Illumina HiSeq or NextSeq platform provided 4-fold higher depth than
the Illumina MiSeq platform used to sequence the V4V5 region. The two V4V5 samples
not classified as contaminated with sewage (MKE_18755 and MKE_18765) had the

FIG 2 Bray-Curtis analysis of the Bacteroidales assemblage for the V4 region of the 16S rRNA gene. Color code shows the host, the type
of sample (train or test the classifier), the initial 16S rRNA gene region amplified, and the geographical origin of the samples. Samples were
ordered by source from the most similar samples (left) to the most dissimilar (right) based on the averaged intrasource Bray-Curtis
dissimilarity comparisons. h., horse. Bray-Curtis analysis of the V4 Clostridiales and V6 Bacteroidales and Clostridiales assemblages are
presented in Fig. S2 and S3 in the supplemental material, respectively.
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smallest number of sequences matching the classifiers. This increased sequencing
depth appeared to provide the information needed to capture the fecal signature in the
environmental samples where bacteria are already abundant (in freshwater samples,
bacterial abundance is typically �105 cells per ml). For this reason, we decided to focus
our classifier approach on short hypervariable regions of the 16S rRNA gene to
maximize sequencing depth. In addition to the V6 region, we created and tested the
performance of classifiers built on the V4 region, which is targeted extensively in
environmental and fecal microbiota data sets (27). We incrementally subsampled all
fecal samples used to test the V4 and V6 classifiers in order to define the classifier
detection limits. This analysis revealed that a minimum of 1,000 sequences was
necessary to properly classify a sample. Additionally, artificial bacterial assemblages
composed of several fecal signatures were also correctly classified when the fecal
signature matching the classifiers was composed of at least 1,000 sequences repre-
sented by �100 unique representative sequences (see Table S2 in the supplemental
material for individual sample predictions). The relationship between the number of
sequences in a sample (proxy of the percentage of contamination) and the voting tree
probability was logarithmic.

Flexibility of sequence data. We developed and compared V4 classifiers from both
de novo-produced V4 sequence data and trimmed V4V5 sequence reads. The ability to
reliably use trimmed data was explored using 42 untreated sewage and 191 animal
fecal samples sequenced in both the V4 and V4V5 regions. The V4 primer sites were
recognized in more than 99% of Bacteroidales and Clostridiales V4V5 reads, suggesting
that the V4 primer sites are highly conserved in these two bacterial orders. Since the
trimmed V4V5 data set was sequenced to a lower depth, we rarefied the de novo V4
data set to the median count of trimmed V4V5 reads. We created three source
classifiers, namely sewage, cattle, and pig, using both rarefied de novo V4 and trimmed
V4V5 data sets. The majority of the sequences composing the classifiers were shared
between the two data sets (see Table S3 in the supplemental material). Moreover, they
generated comparable sensitivity and specificity metrics when tested using their

TABLE 1 Sensitivity and specificity of the V4V5 and V6 source classifiers

Region Source

Bacteroidales Clostridialesa

Specificity
(%)b n

Sensitivity
(%) n

Decision
cutoff (%)

Classifier
typec

Specificity
(%)b n

Sensitivity
(%) n

Decision
cutoff (%)

Classifier
typec

V4V5 Sewage 100 82 100 52 14 Global 100 89 100 53 16 Global
Dog 82 (cat, raccoon) 125 100 9 14 Global NA 134 NA 8 ND Discarded
Pig 100 123 100 11 14 Global 100 130 100 12 39 Global

V6 Sewage 100 261 100 9 21 Global 100 265 100 9 16 Global
Dog 91 239 84 31 1 Discarded 87 (cat) 243 100 31 34 Global
Cattle 82 (horse, kangaroo,

raccoon)
222 85 48 26 Global 86 (horse) 226 81 48 26 Global

Deer 84 (sheep) 257 100 13 4 Discarded 95 (sheep) 261 100 13 26 Global
Pig 99 235 100 35 14 Global 100 238 100 36 31 Global

aNA, not applicable; ND, not defined.
bSource(s) for which the majority of the samples were misclassified are given in parentheses.
cType of classifier based on decision cutoff. Classifiers with a decision cutoff of �10% were considered global, and those with a cutoff of �5% discarded.

TABLE 2 Sensitivity and specificity of the V4V5 and V6 diet and physiology classifiers

Region Classifiera

Bacteroidales Clostridiales

Specificity
(%)b n

Sensitivity
(%) n

Decision
cutoff (%)

Classifier
typec

Specificity
(%)b n

Sensitivity
(%) n

Decision
cutoff (%)

Classifier
typec

V4V5 Ruminant 100 121 92 13 13 Global 99 123 95 19 4 Discarded
V6 Herbivore 78 (raccoon, chicken) 162 87 108 40 Global 88 (raccoon) 167 87 107 25 Global
aClassifiers trained using cattle and deer fecal samples.
bSource(s) for which the majority of the samples were misclassified are given in parentheses.
cType of classifier based on decision cutoff. Classifiers with a decision cutoff of �10% were considered global, and those with a cutoff of �5% discarded.
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respective data set and the reciprocal data set (i.e., rarified de novo V4 classifiers tested
using trimmed samples and vice versa). Interestingly, a nonrarefied de novo V4 classifier
had lower sensitivity when using trimmed V4V5 data, likely because of the lower
sequence depth of the test data set. The performance of each configuration is de-
scribed in Table S4 in the supplemental material. Thereafter, V4 classifiers exploiting
both rarefied de novo V4 and trimmed V4V5 data sets were implemented in FORENSIC.
The performance is described in Table 4.

FORENSIC implementation and user interface. FORENSIC integrates the validated
classifiers to perform fecal source identification and can be accessed online at https://
forensic.sfs.uwm.edu/. It requires a FASTA file (see Materials and Methods) and yields
source contamination predictions in raw downloadable text and interactive visualiza-
tions. Classification relies upon an exact match with fecal signature sequences, and
therefore trimming to exact V4 or V6 primer positions is crucial. Most FORENSIC analysis
takes a few seconds to a few minutes, depending on the number of input sequences.
FORENSIC currently encompasses a total of five global source classifiers and two
physiology/diet classifiers for V4 and/or V6 regions (Tables 1, 2, and 4).

FORENSIC visualizes its predictions in multiple ways, including a color-coded table
of source category predictions for each submitted sample (Fig. 3a) and an interactive
association networks of ASVs and sources that allows the user to explore and disen-
tangle the different fecal profiles recovered from the samples (Fig. 3b). This interactive
visualization strategy can also help to detect potentially false-positive predictions by
discerning the prevailing fecal signature(s) from other trace source signatures and/or
from signatures sharing sequences with the dominant one. Users can access raw data
outputs such as counts of sequences matching to each classifier, voting tree probabil-
ities, and simplified identifications. Warning flags are displayed if samples do not meet
certain criteria, such as the number of sequences in the submitted FASTA or the
number of sequences (or unique representative sequences) matching to the classifiers
being too low indicating insufficient sequencing depth or, in the case of no matching
sequences, technical issues in data processing.

DISCUSSION

FORENSIC is an online platform for performing fecal source identification in water
from 16S rRNA gene amplicons. It leverages Bacteroidales and Clostridiales, two bacterial
orders with many members that show remarkable host specificity in mammalian guts
(15, 23, 28, 29). Microbial community differences that distinguish animals are substan-
tially diet driven due to the specialization of bacterial members for specific metabolic
functions (30–32). Here, we used these host-microbiota association patterns to discrim-
inate fecal contamination with both host-based (e.g., human, cattle, pig) and/or diet/
physiology-based (e.g., ruminant, herbivore) classifiers. Specific markers for both Bac-
teroides (33, 34) and Lachnospiraceae (35) have shown a broad geographic distribution.

TABLE 4 Sensitivity and specificity of the combined V4 classifiers generated using de novo V4 and trimmed V4V5 sequences to the V4
primer positions

Classifier

Bacteroidales Clostridiales

Specificity
(%)a n

Sensitivity
(%) n

Decision
cutoff (%)

Classifier
type (%)b

Specificity
(%)a n

Sensitivity
(%) n

Decision cutoff
(%)

Classifier
typeb

Sewage 100 138 100 56 19 Global 100 142 100 57 17 Global
Dog 87 (cat) 185 100 9 22 Global 75 (cat, raccoon) 190 78 9 10 Draft
Cattle 100 161 100 33 9 Draft 99 162 100 37 16 Global
Pig 99 168 100 26 13 Global 99 174 100 25 29 Global
Ruminantc 93 (kangaroo) 150 100 44 5 Discarded 97 (kangaroo) 151 100 48 10 Draft
Herbivored 88 (raccoon, goose) 135 95 59 33 Global 99 136 89 63 22 Global
aSource(s) for which the majority of the samples were misclassified are given in parentheses.
bType of classifier based on their decision cutoff. Classifiers with a decision cutoff of �10% were considered global, those with a decision cutoff of �5% were
considered draft, and those with a cutoff of �5% were discarded.

cRuminant classifiers trained using cattle and deer fecal samples.
dHerbivore classifiers trained using cattle, deer, and horse fecal samples.
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FIG 3 Forensic interactive report, including (a) a source identification predictions table and (b) bubble
plot to characterize the fecal signature in the submitted samples. (a) Colors indicate if the fecal source
signature was characterized (red) or not (white or green) in the tested sample. Dark green sources
indicate that at the voting tree probability observed, the specificity of the classifier was at least 80%; light
green sources indicate a specificity of �80%. Global classifiers are represented by black rings. Discarded
classifiers are symbolized using black circles. (b) Bubbles represent all the amplicon sequence variants
(ASVs) that compose the classifiers for a given bacterial group. Blue bubbles show the ASVs recovered
from the sample tested, unlike red bubbles. The sizes of the bubbles are proportional to the relative
abundances of the ASV in the tested sample. Sources are represented by the outer arcs. The longer the
arc is, the more that source contributed to the fecal pollution (among the sources investigated). The
example shows the V4 Clostridiales profile recovered from a Chinese surface-water pond (SRA accession
number SRR6037827) and classified as sewage by random forest. A total of 74 out of the 385 ASVs that
compose all the classifiers were found in the sample; 55 and 14 ASVs were associated with the sewage
and dog classifiers, respectively. The largest arc (representing 91% of the relative abundance of all the
fecally associated ASVs) was associated with the sewage signature (bottom right). The second largest was
associated with the dog and the third with the pig signature. The interactive version of this figure is
available at https://forensic.sfs.uwm.edu/result/example. Data from Hägglund et al. and Hu et al. (16, 63).
See Table S5 in the supplemental material for the full list of the individual predictions.
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Consistent with these findings, we observed minimal geographic sample partitioning
for the whole Bacteroidales and Clostridiales assemblages, which demonstrates that
these classifiers could have global relevance.

The FORENSIC sewage classifiers had a sensitivity of 100%, meaning that all tested
sewage samples were correctly classified. These samples were collected from three
continents, which confirms that sewage carries a robust human fecal signature (36, 37)
and that the classifiers are potentially applicable to cities worldwide with modern sewer
infrastructure. The sewage signature also is unique and differentiated from the other
nonintegrative (individual animal) sources, as no animal fecal samples were identified
as sewage and no sewage samples were classified as an animal source.

Given that the microbial community composition of a single fecal sample can be
quite distinct from that of an integrative sample (36), we wanted to test whether this
approach could correctly identify sources from samples encompassing the variability
expected among individual sources. By creating classifiers using only the 15 to 20 most
similar samples and then testing their performance using the most dissimilar samples,
we were able to examine this scenario. The random forest approach generated high
sensitivity and specificity for most fecal pollution sources we tested, demonstrating the
consistency and cohesion of the host fecal signature as characterized by a minimum
number of samples. Misclassifications generally involved sources with similar diets or
samples with atypical fecal microbiota. Given that fecal pollution in waterways is
generally derived from multiple animals, we anticipate that the application of FORENSIC
for actual water sample testing would produce few false-negative results and that
sporadic individual atypical animals would not influence the results.

For two animal sources (cattle and dog), the community composition data split into
two very distinct community types, possibly driven by the diet of the animal or other
factors such as cohabitation, age, or individual variation. For instance, a large dissimi-
larity in the cattle microbial community composition has been observed between cattle
that are grass fed versus those that are grain fed (38, 39). Therefore, specific animal
groups, such as cattle, that are fed distinct diets or have other distinct lifestyle
characteristics may not be suitable for a single-marker-gene or classifier approach for
tracking their impact. Instead, multiple classifiers used in combination may be needed
to cover the diversity of a single animal group.

Global classifiers implemented in FORENSIC were characterized from a minimum
of 15 source samples and had a specificity and sensitivity of 70% and a decision
cutoff of �10%. Classifiers that did not meet these requirements were either discarded or
designated draft classifiers. Cats and dogs had microbial communities similar to that of
sewage, indicating shared sequences (Fig. S1). This may be due to shared diet or to actual
pet or wildlife inputs into the sewer conveyance system. We did not attempt to make a cat
classifier, and two of the four dog classifiers were either discarded or designated draft.

FORENSIC is implemented with random forest classification, which is particularly
suitable for an online application, especially since the classifiers do not require each
new investigation to reanalyze de novo bacterial assemblages in all trained and tested
samples. The global classifiers of FORENSIC are based on the shared/common source
signatures, increasing access to sequence-based analysis for users who do not have
source samples. SourceTracker (21), a well-established tool, relies upon direct compar-
ison of a source community to the sink community and requires both communities to
be used as inputs. Users would need to provide representative samples, or chose
samples from publicly available data. Analysis is performed de novo, i.e., without a
reference database of what to expect, and therefore does not require that a source
contain a universal signature. SourceTracker is highly sensitive, particularly for atypical
sources or uncharacterized sources, when the source community is available. Further-
more, since the entire community is used for comparison, SourceTracker may be more
suitable to identify animals where additional taxonomic groups provide a more dis-
tinctive signature than Bacteroidales or Clostridiales. Closely related animals (cattle and
horses), unique geographic signatures, or the presence of uncharacterized sources,
particularly wildlife, should be considered when choosing a tool.
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The scalability of FORENSIC makes it possible to add more samples to the reference
database as they become available. This characteristic will allow for systematic verifi-
cation of the classifier performance, with a goal of continuous improvement. Overall,
future directions include (i) extending the source classifiers to include farm animals or
waterfowl and targeting predominant bacterial groups appropriate to these sources, (ii)
strengthening broad diet/physiology classifiers, or, inversely, (iii) characterizing finer
subsource clusters to improve the sensitivity of the classifiers.

Our study also highlights that sequencing depth is crucial to capturing fecal
signatures within environmental samples. Even at relatively significant contamination
levels, the fecal microorganisms can be outnumbered by the native microorganisms by
�2 orders of magnitude. We recommend implementing our approach on deeply
sequenced data (i.e., �100,000 reads) and using sequencing platforms that generate
shorter reads (e.g., V4 or V6 regions of the 16S rRNA gene) and therefore greater depth.
However, FORENSIC correctly identified the source of fecal pollution in environmental
samples with lower sequencing depth where the fecal signature was represented with
a minimum of 1,000 sequences and 100 unique representative sequences. This rate of
correct identification equates to correctly identifying the fecal signature in 100,000
reads if the signature comprises 1% of the community.

When generating the classifier, the short V4 reads performed as well as the longer
V4V5 reads, which supports previous reports that minimal information was needed for
resolution of microbial members (40, 41). Although primers for the region targeted are
often cited for introducing bias in the assessment of microbial communities (42, 43), we
demonstrated the equivalence of using V4V5 sequences trimmed to the Earth Micro-
biome Project V4 primer positions and of using de novo V4 sequences for the specific
FORENSIC application. This result is congruent with previous studies that reported a
limited bias for several phyla, including Bacteroidetes and Firmicutes (44, 45), likely
because primer sites are conserved within closely related groups.

In summary, FORENSIC offers a comprehensive open-source platform that enables
rapid and straightforward screening of large sequence data sets to identify fecal
contamination. In the era of affordable and accessible high-throughput sequencing,
FORENSIC is a valuable tool for community-based water quality assessments to pros-
pect the main sources of fecal pollution and guide appropriate management actions.

MATERIALS AND METHODS
Sample collection and processing. Animal stool samples were collected in the United States,

France, the Dominican Republic, and Australia. Samples collected in the United States were preserved in
lysis buffer from the stool extraction kit and shipped to the laboratory on ice and stored at �80°C upon
arrival. Dominican Republic samples were stored at �20°C until extracted. Australian fecal sample
processing and storage were described previously, and extracted DNA was provided (46). Animal stool
samples from France were freeze-dried prior to DNA extraction. A human fecal signature was charac-
terized from sewage influent samples from 71 cities across the United States (36), Reus in Spain (47), and
Sydney in Australia. Finally, seven river samples collected after heavy rainfall in the Milwaukee River
Basin, Milwaukee, WI, USA, were used to test the sensitivity of the classifiers (26). Sewage and animal fecal
sample details are reported in Data Set S1.

Sample processing and DNA extraction. For the U.S. and Dominican Republic fecal samples,
bacterial DNA was extracted from approximately 1 g of material using a QIAmp DNA stool minikit
according to the manufacturer’s instructions (Qiagen, Valencia, CA) as described (25). About 200 mg of
Australian stool samples was extracted using the QIAmp stool DNA kit, while about 500 mg of dry fecal
sample for French samples was extracted using the FastDNA spin kit for soil (MP Biomedicals, Carlsbad,
CA). Australian and French extracted DNA was freeze-dried before being shipped to the United States.

In total, 25 ml for sewage influent and between 200 and 400 ml for freshwater samples was filtered
onto 0.22-�m mixed cellulose ester filters with a 47-mm diameter (Millipore, USA). DNA from filters was
then extracted using the FastDNA spin kit for soil (MP Biomedicals, Solon, OH) as previously described
(26, 36). DNA concentration was assessed on a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA).

16S rRNA gene sequencing and library construction. Amplicon libraries were constructed at the
Josephine Bay Paul Center in the Marine Biological Laboratory (Woods Hole, MA) and/or the Great Lake
Genomics Center (Milwaukee, WI) using the MiSeq Illumina platform for the V4 and V4V5 hypervariable
regions and the HiSeq and/or NextSeq Illumina platforms for V6 hypervariable regions. Details for
amplicon library construction and sequencing procedures for the V4V5 and V6 regions were followed as
previously described (48, 49). The construction of the V4 amplicon library using the Earth Microbiome
primers is described in Text S1 in the supplemental material.

Roguet et al.

March/April 2020 Volume 5 Issue 2 e00869-19 msystems.asm.org 10

https://msystems.asm.org


Reads were trimmed using cutadapt v1.14 (50), allowing for two to four mismatches in the primer
sequence depending on the region. Forward and reverse reads were merged using PEAR v0.9.10 (51)
with the default parameters. Merged reads with a length shorter or longer than 5% of the V4V5 median
(372 bp) or 10% of the V4 and V6 median (i.e., 253 and 60 bp, respectively) were removed during this
step. Quality filtering was assessed using mothur 1.39.5 (52). Assembled reads containing ambiguous
bases or with more than eight successive homopolymers were discarded. Sequences were taxonomically
assigned based on the best match in a Global Alignment for Sequence Taxonomy (GAST) (53) process
using the Silva 132 database (54). Only sequences assigned to Bacteroidales and Clostridiales were
selected for further analysis.

Minimum entropy decomposition analysis. Minimum entropy decomposition (MED) analysis was
performed using the oligotyping pipeline version 2.1 (55). MED uses nucleotide entropy (nucleotide
variant variability) along DNA sequences to distinguish differences in nucleotides originating as a result
of true genetic variation among organisms from noise due to sequencing errors (56). MED partitions DNA
sequences into amplicon sequence variants (ASVs) according to the position in the DNA sequence with
the highest entropy. This step iteratively lasts until each final ASV satisfies the maximum entropy
criterion. ASVs that do not meet the minimum substantive abundance (M) criterion were discarded. M
was set to N/30,000, N/40,000, and N/60,000, for the V4V5, V4, and V6 data sets, respectively, where N
was the total number of sequences in the data set.

Selection of the samples to train and test the classifiers. Sequencing quality was systematically
evaluated for each sewage and animal fecal sample before creating or testing the classifiers. For that, a
prospective MED analysis was performed for both Bacteroidales and Clostridiales using all the samples of
a given source. Samples in which more than 50% of the reads were discarded during the MED analysis
for at least one of the bacterial groups were deleted from further analysis. The total numbers of
amplicon sequence variants (ASVs) were log10 transformed and plotted in a box plot. Lower outlier
samples, i.e., those lower than 1.5 times the interquartile, were considered to have low sequencing
depth and were discarded. We also verified for each source that there was no sample with an
extremely atypical bacterial assemblage using Bray-Curtis dissimilarities computed separately for
each source and bacterial group via the vegan package (57) implemented in R. Intrasource
dissimilarities were averaged per sample and plotted in a box plot; upper outliers were not used to
evaluate the performance of the classifier but are reported separately in Data Set S1. These extreme
outliers comprised less than 8% of the total samples and, in some cases, had Bray-Curtis dissimilarity
scores of �0.95 compared to other samples from a given host, which could have resulted from
sample handling, external contamination, or poor sequencing quality.

Each classifier was built using 15 to 20 samples having the most similar intrasource bacterial
assemblages (based on Bray-Curtis dissimilarity index). The validation of the classifier predictions was
assessed with a minimum of six samples (30% minimum of the samples per source) having the most
dissimilar intrasource bacterial assemblages to ensure a stringent assessment of performance. We
systematically explored the intrasource variability of the bacterial group assemblages using a hierarchical
clustering analysis (based on the Bray-Curtis dissimilarity and Ward linkage) in order to take into account
environmental factors that may result in bifurcation of gut microbiota structure within sources. We
defined subgroups within sources when the branch length between two clusters for a given source was
greater than five. A relevant shift was observed in the V6 cattle (Bacteroidales and Clostridiales) and V6
dog (Bacteroidales) bacterial assemblages. A balanced number of samples from each cluster was used to
build the V6 cattle and dog (Bacteroidales) classifiers. Diet and physiology classifiers were trained and
tested using the collection of samples for each respective category (e.g., ruminant trained and tested
using cattle and deer samples).

Random forest classifications. To characterize the fecal source signature for a classifier, bacterial
assemblages from a given source (e.g., sewage) were compared to the assemblages from all other source
samples (e.g., nonsewage samples from dog, cattle, etc.). For that, 100 random forests consisting of
10,000 trees were computed per source and per bacterial group using the default settings of the
‘randomForest’ function implemented in the randomForest R package (58). Mean decreases in Gini were
averaged for each ASV among the 100 random forest replicates. Mean decreases in Gini were plotted in
a scree plot. ASVs with mean decreases in Gini above the breakpoint curve were chosen to be part of the
classifier. Breakpoints were estimated using the “breakpoints” function included in the strucchange R
package (59). Classifiers were trained with 100 forests constituted of 1,000 trees to recognize the fecal
source signatures from the ASVs selected upstream (per source and bacterial group, the total relative
abundance of the ASVs was of 100%). Replicates were pooled using the “combine” function. One
classifier was created for each source, bacterial group, and region of the 16S rRNA gene. To identify the
fecal source signature in a test sample, sequences matching the ones in the classifiers were first
extracted. Bacterial profiles were then compared to the ones stored in the classifiers using the “predict”
function, which generated a voting tree probability, translating the degree of similarity between the test
and the classifier profiles. We defined the voting tree probability cutoff (called the decision cutoff) to
maximize the sensitivity and specificity with a minimum of 70% for each classifier. Samples associated
with a voting tree higher than the decision cutoff for a given source were considered to be contaminated
by that source. In addition to the source-specific classifiers (e.g., sewage, cattle), we created diet/
physiology classifiers from multiple fecal source samples: V4/V4V5 ruminant classifiers were created
using cattle and deer fecal samples, and a V4 herbivore classifier was created using cattle, deer, and horse
fecal samples. Although V6 herbivore classifiers were created using ruminant fecal samples (i.e., cattle
and deer), their specificity to only detect the ruminant fecal signature was low compared to that for
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detecting the herbivore signature (data not shown). Thus, these classifiers were considered herbivore
classifiers. All analyses were conducted using the statistical environment R (version 3.6.0) (60).

Sensitivity, specificity, and library size detection limit of random forest classifications. Sensi-
tivity was calculated as the number of true positives (TPs) (i.e., when a source was correctly detected)
divided by the sum of TPs and false negatives (FNs) (i.e., when a source was not detected as expected).
In contrast, specificity was defined as the number of true negatives (TNs) (i.e., when a source did not have
a classifier and thus should have been classified as “unknown”) divided by the sum of TNs and false
positives (FPs) (i.e., when an unexpected source was detected). Classifier performance for specificity was
evaluated using the test samples from host groups that were the focus of the classifier, but with also
seven additional animal fecal sources; see Data Set S1 for details. The minimum number of sequences at
which a classifier can correctly classify a fecal sample was assessed using an in silico analysis. All V4 and
V6 test samples were subsampled at 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, and
0.001%. The subsampling was performed using the function “sub.sample” in mothur 1.39.5. Additionally, the
minimum number of sequences belonging to the classifier signatures at which a classifier can correctly
identify multiple fecal sources was assessed using artificial bacterial assemblages generated in silico. Defined
sequence proportions from pristine surface freshwater and fecal samples (i.e., sewage, cattle, pig, and sheep)
not used to train the classifiers were combined to create V4 and V6 artificial bacterial community mixes (see
Table S2 in the supplemental material). Sequences from each sample were selected by randomly subsampling
(99 repeats) using the “rrarefy” function included in the vegan R package.

Implementation of the online interface. The FORENSIC Web interface (https://forensic.sfs.uwm
.edu/) was designed using free and open software development practices in mind. The source code of
FORENSIC was implemented in Python programming language using the Flask Web Framework (https://
palletsprojects.com/p/flask/) for easy maintenance. FORENSIC can run as a Web application behind a
reverse proxy (such as NGinx) and on Web server (such as Apache; http://apache.org/), and can be
deployed on any Unix-based operating system. The reverse proxy handles Hypertext Transfer Protocol
Secure (HTTPS) encryption for security, sanitization of malformed inputs, and efficient data upload.
FORENSIC requires the upload of a multi-FASTA file and assumes the sequencing reads to have been
trimmed and merged. The Python Web application detects the 16S rRNA region targeted in sequences
and generates a count table of the ASVs matching the sequences in the classifiers. After the classification,
the Web platform generates a static report using the data generated. The interactive report page
visualizations are created using D3.js (https://d3js.org/) and our ad hoc JavaScript code. The data used for
visualizations can also be directly downloaded from the interface as tab-separated data files for
user-directed analyses. The web platform also notifies the user via e-mail when analysis is complete if an
e-mail address has been provided during submission. A unique identifier (ID) is also provided during the
submission to review the results for up to 1 year.

Data availability. The source code of FORENSIC is available online (https://github.com/mclellanlab/
web_forensic) and licensed with the General Public License to allow local and institutional deployments.
The R scripts to create, train, and test the classifiers are available on figshare, as well as the script to
determine the decision cutoff (https://doi.org/10.6084/m9.figshare.11231627). Raw read files were up-
loaded to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) and are
accessible under the BioProject accession numbers PRJNA261344, PRJNA264400, PRJNA433408,
PRJNA591968, and PRJNA591970 for V4V5; PRJNA591976 and PRJNA591975 for V4; and PRJNA235337,
PRJNA433407, PRJNA591949, and PRJNA505345 for V6. Data Set S1 contains the list of samples and their
corresponding SRA study accession numbers.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, DOCX file, 0.02 MB.
FIG S1, TIF file, 2.2 MB.
FIG S2, TIF file, 2.2 MB.
FIG S3, TIF file, 2.9 MB.
TABLE S1, XLSX file, 0.1 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.05 MB.
TABLE S4, XLSX file, 0.01 MB.
TABLE S5, XLSX file, 0.03 MB.
DATA SET S1, XLSX file, 0.1 MB.
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