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Agnieszka Barańska 1,* , Agata Błaszczuk 2, Małgorzata Polz-Dacewicz 2, Wiesław Kanadys 3, Maria Malm 1 ,
Mariola Janiszewska 1 and Marian Jędrych 1
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Abstract: The aim of the report was to investigate the impact of soy protein and isoflavones on
glucose homeostasis and lipid profile in type 2 diabetes. The studies used in this report were iden-
tified by searching through the MEDLINE and EMBASE databases (up to 2020). Meta-regression
and subgroup analyses were performed to explore the influence of covariates on net glycemic
control and lipid changes. Weighted mean differences and 95% confidence intervals (CI) were
calculated by using random-effect models. Changes in the lipid profile showed statistically signif-
icant decreases in total cholesterol and LDL-C concentrations: −0.21 mmol/L; 95% CI, −0.33 to
−0.09; p = 0.0008 and −0.20 mmol/L; 95% CI, −0.28 to −0.12; p < 0.0001, respectively, as well as
in HDL-C (−0.02 mmol/L; 95% CI, −0.05 to 0.01; p = 0.2008 and triacylglycerols (−0.19 mmol/L;
95% CI, −0.48 to 0.09; p = 0.1884). At the same time, a meta-analysis of the included studies revealed
statistically insignificant reduction in fasting glucose, insulin, HbA1c, and HOMA-IR (changes in
glucose metabolism) after consumption of soy isoflavones. The observed ability of both extracted
isoflavone and soy protein with isoflavones to modulate the lipid profile suggests benefits in prevent-
ing cardiovascular events in diabetic subjects. Further multicenter studies based on larger and longer
duration studies are necessary to determine their beneficial effect on glucose and lipid metabolism.

Keywords: T2DM; soy isoflavones; lipid profile; total cholesterol; HDL-C; LDL-C; triacylglycerol;
glycemic control; HbA1c; HOMA-IR

1. Introduction

Diabetes mellitus has been widely recognized to be a fundamental and leading cause
of major health issues, such as cardiovascular disease. The world prevalence of diabetes
among adults (aged 20–79 years) amounted to 285 million adults in 2010, and will in-
crease to 439 million adults by 2030 [1]. In the United States, in 2018, 34.2 million people
were thought to be diabetic (10.5% of the U.S. population), including 26.9 million peo-
ple (26.8 million adults) confirmed and 7.3 million unconfirmed (21.4%) [2]. Obesity and
diabetes are major causes of morbidity and mortality in the United States [2].

T2DM is characterized by elevated fasting plasma glucose (FPG), insulin resistance and
relative lack of insulin [3,4]. A variety of metabolic disorders, such as obesity, hypertension
and dyslipidemia very often coexist with diabetes [5,6]. Lifestyle factors, particularly those
associated with obesity, and a rapid increase in the intake of fat, notably saturated fatty
acids, as well as a decrease in physical activity contribute to developing T2DM [7,8].

Improvements in glycemic control have been demonstrated in adults with T2DM
through a combination of pharmaceuticals and lifestyle changes, and with lifestyle changes
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alone [9,10]. Lifestyle factors such as diet and physical activity can be individually mod-
ified. It is important to choose a diet in relation to the quality of nutrients, including
carbohydrates, protein, fats, minerals and vitamins, and to establish its health bene-
fits [11,12]. A number of studies on animal models [13–15] and intervention studies in
humans [16–20] have shown that soy protein with isoflavones can improve the parameters
of glycemic control and lipid homeostasis. Recently, several new studies on this topic have
appeared [21–23].

This systematic review and meta-analysis was undertaken to investigate the influence
of soy isoflavones on glucose metabolism, including fasting blood glucose (FBG), fasting
insulin (FI), glycosylated hemoglobin A1 level (HbA1c) and peripheral insulin resistance
(homeostasis model assessment of insulin resistance: HOMA-IR), as compared with healthy
subjects, in patients with T2DM. A secondary aim of the study was to evaluate the influence
of soy isoflavones on lipid metabolism.

2. Materials and Methods
2.1. Search Strategy and Study Selection

The study was conducted based on the PRISMA guidelines, and utilized the MED-
LINE (PubMed) and EMBASE electronic database websites (up to March 2020) [24]. The
following search words were used in various combinations to identify relevant studies:
diabetes mellitus, T2DM, type 2 diabetes mellitus, soy protein, soy isoflavones, lipids, lipid
profile, cholesterol, glucose metabolism, glucose control, and randomized controlled trials.
Inclusion criteria were: randomized controlled trials; parallel-group design, or crossover
design that contained data for the first period; studies that provided sufficient information
on the values of FG, FI, HbA1c, and HOMA-IR, as well as total cholesterol (TC), LDL-
cholesterol (LDL-C), HDL-cholesterol (HDL-C), and triacylglycerols (TAG) before and after
administration of isoflavones; studies that a daily dose of soy isoflavones; and involved a
comparison with a placebo or with a no-intervention group. The exclusion criteria were as
follows: no control group in the study, lack of sufficient information, results were reported
as graphics or percent changes, and as duplicated reports.

2.2. Data Extraction

The following data was extracted from each of the included studies: first author’s
name, year of publication, country of origin, study design; follow-up period, number of
participants in the intervention and control groups; characteristics of the studied popula-
tions (age (range), menopausal status (years since menopause), body mass index), daily
dose of soy isoflavones, type of control group, and initial and final mean values with
corresponding standard deviations (SD) of the above-mentioned components of the lipid
metabolism and glycemic profile, for each comparison group. When different units were
given in the research (conventional units or System International of Units [SI]), the follow-
ing conversion factors were used to unify them: to convert cholesterol to mmol/L, multiply
by 0.02586; to convert triglycerides to mmol/L, multiply by 0.01113; to convert insulin to
pmol/L, multiply by 6; to convert glucose to mmol/L, multiply by 0.05551; and to convert
HbA1c to %, multiply by 0.0915 + 2.15. To avoid duplication of data in trials with multiple
time points, only the results from the shortest follow-up were taken into account. In the
case of trials with more than one active group compared to one control group, all results
were taken into account.

2.3. Quality Assessment and Bias Risk of the Trials

The quality of trials was evaluated using the Cochrane Collaboration’s tool [25]. This
consists of seven items that have a potential biasing influence on the estimates of interven-
tion effectiveness in randomized studies. Included are: selection bias (random sequence
generation and allocation concealment), performance bias (blinding of participants and
personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete
outcome data), reporting bias (selective reporting), and other sources of bias. The risks
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of bias in RCTs are designated in the review as ‘high risk’, ‘unclear’, or ‘low risk’ [25]. To
explain the possible presence of bias publications, Begg’s rank correlation test (Kendall
Tau) and Egger’s weighted regression test were applied [26,27].

2.4. Statistical Analysis and Meta-Analysis

Treatment effect of each comparison group was defined as the mean difference (MD)
(final value minus baseline value) from corresponding SD of change in individual com-
ponents of lipid metabolism or glycemic profile for subjects ingesting soy isoflavones or
control. When the standard error of the mean (SEM) was employed, the conversion to SD
was made according to the formula: SD = SEM×

√
N. If a 95% confidence interval (95% CI)

was applied, SD conversion was: SD = sqrt (N) × (upper bound–lower bound)/(2u) (equal
to 3.96). The missing SD of MD were imputed using the formula: SD = sqrt ((SD ”initial”)2

+ (SD ”final”)2 − (SD ”initial” × SD ”final”) × 2R), where R is the correlation coefficient;
we took an R value = 0.50 according to the suggestion of Follmann et al. [28,29]. Summary
outcomes measures were presented as mean differences between the intervention and
control groups. A random-effects model was used to calculate weighted-mean difference
(WMD) and 95% confidence interval (CI) for each comparison, and the combined overall
effect (p < 0.05 was considered statistically significant), according to DerSimonian and
Laird [30]. For heterogeneity evaluation, Cochrane Q and I2 statistic were employed. The
I2 test allowed assessing whether the variance across studies was correct and not due to
sampling errors. Percentage of total variation indicates the degree of heterogeneity; I2 val-
ues of≤25% were considered low, >25% as moderate, and≥75% as high heterogeneity [31].
Multivariate meta-regression was also applied. Since this is a multivariate regression, its
results differ from the subgroup analysis.

2.5. Subgroup Analysis

Additional subgroup analyzes were performed in order to detect sources of het-
erogeneity according to the following covariate variables: design of studies (parallel vs.
crossover), participants age (≤60 y vs. >60 y), follow-up period (≤8 w vs. >8 w), BMI
(<30 kg/m2 vs. ≥30 kg/m2), duration of diabetes (<5 y vs. ≥5 y) and isoflavones dose per
day (<80 mg vs. ≥80 mg) [32]. Furthermore, meta-regression was undertaken to investigate
whether there were any strong predictors of lipid and glycemic changes [33].

3. Results

Our search yielded 139 citations for double screening of abstracts, of which 38 were
identified for full-text analysis. Of these, 12 randomized controlled trials were finally included.
A detailed review of selection procedures is shown in Figure 1. Of the total of 12 articles
included in this meta-analysis: (a) nine reported on glucose metabolism [21,22,34–40], includ-
ing eight that concerned FBG [21,22,34–37,39,40], seven dealt with FI [21,22,34,35,37,39,40],
five were about HbA1c [21,22,38–40] and five were homeostasis model assessments of
HOMA-IR [21,22,34,35,37,39]; and (b) nine reported lipid profiles [21–23,36,37,39–42]. Of
the selected trials, five studies were of parallel randomized design [21–23,34,36], and seven
studies used cross-over randomized design [35,37–42]. Here, the crossover researches
conducted by Gobert et al. [35] and Pipe et al. [41] are based on identical characteristics, but
differed in the parameters assessed in the analysis: glucose or lipid profile, respectively.

3.1. Characteristics of Included Trials

The characteristics of selected studies are listed in Table 1. In total, the 12 trials
involved 662 participants (56.2% women and 43.8% men) in mean age at baseline of
59.7 ± 10.3 (10 trials reporting). In trials reporting gender distribution, four trials con-
sisted entirely of women [23,34,37,39], two trials consisted entirely of men [22,38], and
six trials consisted of men and women [21,35,36,40–42] Of trials that reported T2DM, five
studies involved subjects with obesity [21,22,37,39,40], of which one study was carried
out on diabetes complications that pertained to subclinical hypogonadism [22]; three
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studies dealt with diabetic nephropathy [36,38,42]; and four studies involved subjects
without any complications [23,34,35,41]. The duration of the trials in most studies ranged
from 6 weeks to 12 weeks. Only two studies examined the effect of longer-term admin-
istration of isoflavones [34,36]. The analysis was based on 12 studies, of which nine
studies employed isolated soy protein containing isoflavones [21,22,35,36,38–42], one study
dealt with two active groups using supplements containing, respectively, milk protein
or soy protein enriched in isoflavones [34], and two studies were about the administra-
tion of tablets containing extracted isoflavones [23,37]. Compared with the intervention
group studies, the majority of the studies used comparator controls: soy protein without
isoflavones [21,22], milk protein [34,35,41], animal protein [36,42], microcrystalline cellu-
lose [39], and casein alone [38] or mixed with cellulose [40]—all in the form of powder.
Two studies compared isoflavones alone with placebo-in the form of capsules contain-
ing starch [23] or microcrystalline cellulose in pills [37]. In five researches, the T2DM
participants additionally had intake of various types of antidiabetic drugs (insulin, oral
hypoglycemic drugs) [21,22,36,38,40], while in five other researches, T2DM patients did
not receive any other drugs [34,35,37,39,41]. No data were available in two studies [23,42].
The included studies were characterized by wide administration of isoflavones: ranging
from 32 mg to 435 mg per day. In seven studies, isoflavones were expressed in aglycone
units [23,34,35,37,38,40,41], one used glycosides [39] and the form of isoflavones could not
be determined in four studies [21,22,36,42].
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Table 1. Characteristics of selected randomized clinical studies assessing effect of soy isoflavones on glycemic control and lipid profile in type 2 diabetes.

First Author

Study Design

Study Population

Intervention
(Daily Dose)

Control
(Daily Dose)

Dietary Advice
during Study Outcome Measures

Data [Reference] (DM Duration; Diabetes
Therapy)

Country Trial Duration “Conditions Accompany
Diabetes”

Konya
2019 [21] Qatar

Parallel groups;
2-w run-in,

8-w follow-up.

n = 26, 8 women and 18 men;
age 65.1 ± 7.3 y; BMI 30.5 ± 5.1
[4.4 ± 3.7; diet or metformin]

16 g SP, 32 mg ISF;
in form of bars

16 g SP alone;
in form of bars

Maintained current diet;
avoid dietary products
with a high-ISF content

TC, LDL-C, HDL-C, TAG
FBG, FI, HbA1c, HOMA-IR

Sathyapalan
2017 [22]

UK

Parallel groups,
3-mo follow-up.

n = 200 men; age 52.0 y †;
BMI 31.8 †.

[7.3 *; stable drugs for T2DM]
“subclinical hypogonadism’

15 g SP, 166 mg ISF;
in form of bars

15 g SP alone:
in form of bars

Avoiding soy products,
nutritional,

mineral and vitamin
supplements

TC, LDL-C, HDL-C, TAG
FBG, FI, HbA1c

Chi
2016 [23]

China

Parallel groups,
2-mo follow-up.

n = 80 women; age 51.9 ± 11.0 y;
BMI 24.1 ± 0.
8[N/A; N/A]

435 mg IAE (52.2%
Gen, 47.8% Dai)

capsule

Starch;
capsule

ISF intake from foods
was restricted to less

than 19 mg/day
TC, LDL-C, HDL-C, TAG

Liu
2010 [34]

Hong Kong

Three-arm study,
parallel groups;

2-w run-in,
24-w follow-up.

n = 180 women; age 56.1 ± 4.3 y;
BMI 24.5 ± 3.7

[untreated early diabetes]

A. 15 g SP, 100 g ISF
(≈25 mg Agl).

B. 15 g MP, 100 mg ISF
(≈25 mg Agl); powder

15 g MP;
powder

Maintained
habitual diet;

not to take supplements
containing isoflavones or

other extracts

FBG, FI, HOMA-IR

Gobert
2010 [35]

Cross-over trial;
4-w washout,

57-d active phase.

n = 29, 13 women and 16 men;
age 60.1 ± 9.6 y; BMI 29.6 ± 4.1

40 g SP; 88 mg IAE
(65% Gen, 31% Dai,

4% Gly powder)

40 g MP
powder

Maintained habitual diet;
other phytoestrogen FBG, FI, HbA1c, HOMA-IR

Azadbakht
2008 [36]

Iran

Parallel groups *;
4-y follow-up.

n = 41, 23 women and 18 men;
age 62.1 ± 12.1 y; 71.5 ± 8.5 kg #
[10.0 ± 3.0; insulin or oral drugs]

“nephropathy”

16 ± 9 g SP,
≈43 ISF ‡ ≈20 g AP § Maintained current diet TC, LDL-C, HDL-C, TAG

FBG

González
2007 [37]

UK

Cross-over trial;
4-w washout,

12-w active phase.

n = 26 women; age N/A;
BMI 30.8 ± 5.9

[N/A; non medications]

132 mg IAE (35% Gen,
37% Dai, 10% Gly);

pill

Microcrystalline
cellulose, pill Diet-controlled diabetes TC, LDL-C, HDL-C, TAG

FBG, FI, HOMA-IR

Teixeira
2004 [38]
Portugal

Cross-over trial *;
4-w washout,

8-w active phase.

n = 14 men; age 53–73 y;
BMI 29.8 ± 2.3; [~14.0 y; insulin]

“early stages nephropathy”

0.5 g/kg SP isolate,
2.0 mg/g protein IAE,

powder

0.5 g/kg casein;
powder

Diet excluding foods
containing soy

TC, LDL-C, HDL-C, TAG
HbA1C
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Table 1. Cont.

First Author

Study Design

Study Population

Intervention
(Daily Dose)

Control
(Daily Dose)

Dietary Advice
during Study Outcome Measures

Data [Reference] (DM Duration; Diabetes
Therapy)

Country Trial Duration “Conditions Accompany
Diabetes”

Jayagopal
2002 [39]

UK

Cross-over trial;
2-w washout,

12-w active phase.

n = 32 women; age 63.5 ± 12.1 y;
BMI 32.2 ± 5.0

[2.6 ± 2.7; non medications]

30 g SP isolate,
135 mg ISF

(95% glucosides)

Microcrystalline
cellulose 30 g

Recommended maintain
a diabetes diet

TC, LDL-C, HDL-C, TAG
FBG, FI, HbA1c, HOMA-IR

Hermansen
2001 [40]
Norway

Cross-over trial;
3-w washout,

6-w active phase.

n = 20. 6 women and 14 men;
age 63.6 ± 7.5 y; BMI 30.2 ± 4.2

[3.0 ± 2.7; oral drugs]

50 g SP isolate,
≥165 mg ISF;

20 g cotyledon fiber

50 g casein;
20 g cellulose

Diet set and controlled
by a dietitians

TC, LDL-C, HDL-C, TAG
FBG, FI, HbA1C

Pipe
2009 [41]
Canada

Cross-over trial;
4-w washout, 57-d

active phase.

n = 29, 13 women and 16 men;
age 60.1 ± 9.6 y; BMI 29.6 ± 4.1

40 g SP; 88 mg IAE
(65% Gen, 31% Dai,

4% Gly powder)

40 g MP
powder intake were prohibited TC, LDL-C, HDL-C, TAG

Azadbakht
2003 [42]

Iran

Crossover trial *;
4-w washout,

7-w active phase.

n = 14, 4 women and 10 men;
age 62.5 ± 12.1 y; 70.6 ± 10.3 kg #

[N/A; N/A], ‘nephropathy’

≈20 g SP,
≈43 mg ISF ‡ ≈20 g AP § The alternate test diet TC, LDL-C, HDL-C, TAG

Data are presented as mean ± standard deviation; range or mean; * non-blinded design; † values are provided as medians; ‡ 0.8 g protein/kg (35% textured soy protein, 35% animal protein, 30% vegetable
protein; § 0.8 g protein/kg (70% animal protein, 30% vegetable protein); # baseline body weight values are only reported when no data on BMI were available.
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3.2. Assessment of the Methodological Quality of Trials

Details of the risk of bias assessment are shown in Figures 2 and 3 . It should be noted
that the studies showed the highest risk of bias with regard to blinding. In the categories
“blinding of participants and investigators” and “blinding assessment of the outcomes”,
seven (58%) trials were assessed as low risk, two (17%) trials were assessed as unclear risk,
which was related to the lack of accurate information on blinding, and three (25%) trials
were at high risk due to lack of blinding. Although two of the aforementioned studies have
been classified as high risk of bias, it has been proposed that the lack of blinding had little
effect on the results [38,42]. In contrast, the low risk categories in 67–75% of the studies
were “random sequence generation”, “allocation concealment” and “selective reporting”,
and the remaining studies were judged to be of unclear risk due to insufficient information
on the methods used by researchers to randomly assigning participants to groups and in
reporting all predefined results. In terms of the random sequence generation, 100% of the
studies showed low risk of bias.
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Figure 2. Risk of bias summary for each study-as assessed by the authors.
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3.3. The Effect of Soy Isoflavones on Metabolism Glucose in Patients with Type 2 Diabetes

The present meta-analysis examined the effect of soy protein isoflavones on glycemic
control. Eight trials with nine comparisons involving 721 patients (360 in the treated
group and 361 in the control group) studied the effect of soy isoflavones on FBG. In five
comparisons, as compared with control, a non-significant decrease in FBG was shown, but
the reduction was statistically significant in one [22], while two trials noticed non-significant
increase of values, and in one trial, no changes were observed. In turn, eight comparisons
from seven trials based on data from 680 subjects (treated—340; control—340) analyzed the
effect of isoflavones on FI levels. A non-significant decrease in the FI level was recorded in
4 comparisons, in one of these, the decrease was significant [22] while a non-significant
increase in the FI was recorded in four comparisons. Moreover, six studies evaluated the
effect of isoflavones on HbA1c in 416 people with T2DM (treated—208; control—200).
Here, a decrease of HbA1c values was found in five studies, including one study where
a significant reduction was observed [22] and 1 wherein a non-significant increase in
value was assessed. Five studies, including 380 subjects (treated—220; control—160),
were assigned to assessing the impact of isoflavones on the level of the HOMA-IR. In
these, a non-significant decrease in HOMA-IR indicator values were seen in three and an
increase was noted in three comparisons. The overall pooled net effect of soy isoflavones
supplementation on glycemic metabolism was −0.30 mmol/L (95% CI, −0.85 to 0.24),
p = 0.2779, this was accompanied by high heterogeneity: I2 = 85.33% for FBG (Figure 4A);
−3.40 mmol/L (95% CI, −10.77 to 3.97), p = 0.3661, I2 = 37.43% for FI (Figure 4B); −0.80%
(95% CI,−1.85 to 0.25), p = 0.1341, with notice of high heterogeneity: I2 = 96.28% for HbA1c
(Figure 4C); and −0.07% (95% CI, −0.54 to 0.41), p = 0.7857, I2 = 22.52% for HOMA-IR
(Figure 4D).

Publication bias was examined by analyzing a series of regression tests for all pooled
effects. Begg and Mazumdar’s test for rank correlation indicated evidence of publication
bias: Kendall’s tau = −0.7333, z = −2.0665, p = 0.0388. In turn, Egger’s test revealed no evi-
dence of publication bias: intercept = -0.1931, t = −0.1032, p = 0.9207. Simultaneously, the
results of Begg and Mazumdar’s test for rank correlation did not indicate publication bias
in the meta-analysis of other components of glucose metabolism: Kendall’s tau = 0.3333,
z = 1.0513, p = 0.2931 for insulin and Kendall’s tau = 0.4667, z = 1.3151, p = 0.1885 for
HOMA-IR. The analysis did not generate results for Begg and Mazumdar’s test. More-
over, the results of Egger’s test for regression showed no evidence of publication bias
for insulin, HbA1c and HOMA-IR: intercept: 1.2126, t = 1.8271, p = 0.1175; intercept:
−5.0560, t = −0.9855, p = 0.3802; and 0.6407, t = 0.6994, p = 0.5632; respectively.
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Figure 4. Forest plots showing the difference in glycemic control in all trials between soy isoflavone—administered and
control groups. (A): FBG, (B): FI, (C): HbA1c, (D): HOMA-IR. Data calculated from the random-effects model are presented
as weighted mean difference and 95% CI. The horizontal lines denote the 95% CIs, some of which extend beyond the limits
of the scales. Letter in parentheses following the author’s name indicate a study with more than one treatment arm.
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To explore the possible influence of covariates on net glycemic change, a subgroup
analysis was additionally conducted on the basis of eight pre-specified factors (study
design, follow-up period, age, BMI, diabetes duration, isoflavone doses, diabetes therapy,
and diabetes complications) as presented in Table 2.

The results of subgroups analysis showed no statistically significant differences
between groups for HOMA-IR. However, soy isoflavones supplementation in subjects’
age ≤60 statistically significantly reduced HbA1c levels (p < 0.0001). Moreover, diabetes
duration more than 5 years statistically significantly reduced FBG and FI levels (p = 0.0003
for FBG, and p = 0.0004 for FI; respectively), and additionally the levels of FBG and FI were
decreased when diabetes with complications occurred (p = 0.0003 for FBG, and p = 0.0004
for FI; respectively).

The multivariate meta-regression analysis suggested that included covariates had no
significant influence on FI and HOMA-IR. However, the diabetes duration and complica-
tions variables were excluded from the analysis for HOMA-IR due to the occurrence in
only one group. Simultaneously, multivariate meta-regression showed that most covariates
had no significant effect on FBG, except for the duration of diabetes (β = −1.400, p = 0.001).
Subject age (β = −2.297, p < 0.001) and diabetes duration (β = −1.857, p = 0.007) had
significant influence on HbA1c (Supplementary Table S1).

3.4. The Effect of Soy Isoflavones on Lipid Levels in Patients with Type 2 Diabetes

The levels of individual components of the lipid profile were analyzed in 10 RCTs
before and after administration of soy protein and/or isoflavones [21–23,36–42]. In to-
tal, 615 subjects participated in the study, including 307 in the active groups and 308 in
the control groups. In comparison with the control group, total cholesterol decreased
in eight studies, but the decrease was statistically significant only in one [22], while one
showed a slight increase in level [37]. The concentration of LDL-C decreased in six stud-
ies [21,36,39–42] and in three studies this was statistically significant [22,23,34], while an
insignificant increase was observed in one study [37]. Furthermore, five studies showed a
non-significant decrease in HDL-C [21,22,36,39,41], one study showed no changes [37] and
four studies showed no significant increase in the level [23,38,40,42]. TAG values decreased
in four studies [36,39,40,42] and the reduction was significant in two studies [22,23], no
changes were observed in one study [37] and a non-significant increase was noted in three
studies [21,38,41].

The pooled estimate revealed that the intake of soy isoflavones was associated with
statistically significance decreases in plasma concentrations of TC: −0.21 mmol/L (95% CI,
−0.33 to −0.09 mmol/L), p = 0.0008, I2 < 0.01% (Figure 5A) and LDL-C: -0.20 mmol/L
(95% CI, −0.28 to −0.12 mmol/L), p < 0.0001; I2 < 0.01% (Figure 5B). However, isoflavone
preparations had no significant effects on the plasma levels of HDL-C: −0.02 mmol/L
(95% CI: −0.05 to 0.01 mmol/L), p = 0.2008, I2 < 0.01% (Figure 5C) and TAG:−0.19 mmol/L
(95% CI,−0.48 to 0.09 mmol/L), p = 0.1884, I2 = 77.96% (Figure 5D), compared to the control.
Taking into account the possible confounding factor, i.e., a higher dose (435 mg) in the
study by Chi et al. [23], additional analysis was performed on the effect of isoflavones
on the lipid profile after excluding the extreme value of 435 mg. However, we found
that after exclusion, the results did not affect the final outcome of the presented analysis:
TC: −0.20 (95% CI, −0.33 to -0.08 mmol/L), p = 0.0016, LDL-C: −0.19 (95% CI, −0.27 to
−0.10 mmol/L), p < 0.0001, HDL-C: −0.02 (95% CI, −0.05, 0.01 mmol/L), p = 0.1777, TAG:
−0.15 (95% CI, −0.47 to 0.16 mmol/L), p = 0.3362.
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Table 2. Pooled estimates of treatment effect on glycemic control in subgroups of trials.

FBG (mmol/L) FI (pmol/L) HbA1c (%) HOMA-IR (%)

Variables n N WMD
(95% CI) p I2

(%) n N WMD
(95% CI) p I2

(%) n N WMD
(95% CI) p I2

(%) n N WMD
(95% CI) p I2

(%)

Overall effects 9 721 −0.30
(−0.85, 0.24) 0.2279 85.66 8 680 −3.40

(−10.77, 3.97) 0.3661 37.43 6 416 −0.80
(−1.85, 0.25) 0.1341 96.25 6 440 −0.07

(−0.54, 0.41) 0.7857 22.52

Study design

Parallel groups 5 507 −0.50
(−1.34, 0.33) 0.2379 92.12 4 466 −4.54

(−12.83, 3.75) 0.2831 42.98 2 226 −2.47
(−7.07, 2.12) 0.2916 99.06 3 266 0.04

(−0.63, 0.72) 0.8977 43.73

Cross-over 4 214 0.04
(−0.36, 0.44) 0.8527 <0.01 4 214 −1.46

(−17.47, 14.55) 0.8585 41.47 4 190 −0.06
(−0.27, 0.16) 0.6126 <0.01 3 174 −0.26

(−1.25, 0.73) 0.6048 20.04

Follow-up period

≤8 weeks 3 124 0.32
(−0.21, 0.85) 0.2342 <0.01 3 124 3.31

(−10.78, 17.40) 0.6457 <0.01 4 152 −0.05
(−0.30, 0.20) 0.6919 <0.01 2 84 1.00

(−1.71, 3.72) 0.4695 66.62

>8 weeks 6 597 −0.53
(−1.21, 0.14) 0.1222 89.71 5 556 −5.33

(−13.81, 3.15) 0.2176 46.62 2 264 −2.46
(−7.08, 2.17) 0.2981 99.17 4 356 −0.14 (−0.56,

0.29) 0.5249 1.08

Age

≤60 years 3 440 −0.72
(−1.75, 0.31) 0.1699 95.74 3 440 −5.65

(−13.23, 1.92) 0.1434 43.26 1 200 −4.83
(−5.61, −4.05) <0.0001 N/R 2 240 −0.09

(−0.53, 0.35) 0.6944 <0.01

>60 years 5 229 0.09
(−0.34, 0.52) 0.6879 <0.01 4 188 −2.22

(−20.43, 5.99) 0.8112 42.78 5 216 −0.07
(−0.27, 0.12) 0.4533 <0.01 3 148 0.03

(−1.74, 1.79) 0.9763 65.74

Body mass index

<30 kg/m2 4 339 0.07
(−0.28, 0.14) 0.4989 <0.01 3 298 −1.25

(−9.29, 6.79) 0.7606 <0.01 2 86 0.03
(−0.30, 0.35) 0.8742 <0.01 3 298 −0.08

(−0.47, 0.32) 0.7031 <0.01

≥30 kg/m2 5 382 −0.43
(−1.54, 0.69) 0.4511 89.33 5 382 −2.46

(−17.58, 12.66) 0.7494 52.49 4 330 −1.30
(−2.96, 0.37) 0.1269 97.63 3 142 0.36

(−2.42, 3.14) 0.1669 37.01

Diabetes
duration *

<5 years 6 428 −0.05
(−0.25, 0.15) 0.6238 <0.01 6 428 −1.41

(−9.58, 6.76) 0.7347 12.76 4 188 −0.09
(−0.28, 0.11) 0.3682 <0.01 5 388 −0.10

(−0.63, 0.43) 0.4104 33.93

≥5 years 2 241 −1.76
(−2.71, −0.81) 0.0003 37.46 1 200 −10.26

(−15.96, −4.56) 0.0004 N/R 2 228 −2.23
(−7.35, 2.90) 0.3945 98.35

Isoflavone intake

<100 mg/d 3 125 0.26
(−0.34, 0.85) 0.3961 11.29 4 324 −0.59

(−8.54, 7.36) 0.8839 <0.01 3 112 −0.04
(−0.29, 0.22) 0.7820 <0.01 2 84 1.00

(−1.71, 3.72) 0.4695 66.62

≥100 mg/d 6 596 −0.48
(−1.15, 0.19) 0.1618 89.63 4 356 −4.85

(−19.79, 10.10) 0.5249 54.10 3 304 −1.70
(−4.56, 1.15) 00.2426 98.36 4 356 −0.14

(−0.56, 0.29) 0.5249 1.08

Diabetes therapy

Non medications 5 414 −0.06
(−0.26, 0.13) 0.5159 <0.01 5 414 −2.17

(−10.59, 6.24) 0.6127 15.07 2 122 −0.07
(−0.30, 0.16) 0.5658 <0.01 5 414 −0.12

(−0.49, 0.26) 0.5446 <0.01

Diet and/or drugs 4 307 −0.69
(−2.19, 0.81) 0.3651 86.36 3 266 0.32

(−19.22, 19.87) 0.9741 54.76 4 294 −1.20
(−3.49, 1.09) 0.3052 97.45 1 26 2.86

(−0.29, 6.01) 0.0755

Complications

without 7 480 −0.05
(−0.24, 0.14) 0.6366 <0.01 7 480 −0.36

(−8.15, 7.44) 0.9287 10.68 4 188 −0.09
(−0.28, 0.11) 0.3685 <0.01 6 440 −0.07

(−0.54, 0.41) 0.7857 22.52

with 2 241 −1.76
(−2.71, −0.80) 0.0003 37.67 1 200 −10.26

(−15.96, −4.56) 0.0004 98.35 2 228 −2.23
(−7.35, 2.90) 0.3945 98.35

HbA1c—glycated hemoglobin; CI—confidence interval; HOMA-IR—homeostatic model assessment of insulin resistance; I2—coefficient of inconsistency; n—number of comparisons; N—sample size;
p—probability value; N/R—not reported; WMD—weighted mean difference; *—data not available in trial of González et al. 2007 [37]—study not included in the HbA1c analysis
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Begg’s and Mazumdar rank correlation test indicated no evidence of publication bias
for TC (Kendall’s tau = −0.1556; z = −0.6261; p = 0.53), LDL-C (Kendall’s tau = −0.0667;
z = −0.2683, p = 0.7884), HDL-C (Kendall’s tau = −0.0222, z = −0.0894, p = 0.93) and TAG
(Kendall’s tau = −0.1429, z = −0.4949, p = 0.62). Moreover, the results of Egger’s test
for regression revealed no evidence of publication bias for TC, LDL-C, HDL-C and TAG:
−0.2049, t = −0.4284, p = 0.68; intercept: −0.25, t = −0.4284, p = 0.69; intercept: 0.3289,
t = 1.1212, p = 0.29; and 1.4968, t = 0.9616, p = 0.36; respectively.

To investigate the possible effect of covariates on lipid profile alteration, a subgroup
analysis was additionally performed taking into account participant characteristics that
included age, BMI and diabetes duration, study design, follow-up period, isoflavones
dosing, diabetes therapy and diabetes complications (Table 3). The results of subgroups
analysis presented non-significance between group differences for HDL-C. Here, the sta-
tistically significant effect of soy isoflavones on changes in TAG was only observed in the
subgroup of people aged ≤60 years (p = 0.0001). However, diet and/or drug administra-
tion statistically were observed to significantly reduce TC (p = 0.0028) and LDL-C levels
(p = 0.0014). In addition, levels of TC were decreased among patients in parallel group
studies (p = 0.0041), in obese patients (p = 0.0031), and in patients that used higher doses of
isoflavones (p = 0.0022).

Furthermore, multivariate meta-regression analysis suggested that the included co-
variates had no significant influence on HDL-C and TAG. Concurrently, multivariate meta-
regression showed that most covariates had no significant effect on TC, except for the follow-
up time (β = 0.242, p = 0.035). However, follow-time (β = 0.202, p = 0.014), BMI (β = −0.999,
p = 0.022), diabetes duration (β = 0.978, p = 0.008), and isoflavone intake (β = −0.483,
p = 0.021) were found to have significant influence on LDL-C (Supplementary Table S2).



Nutrients 2021, 13, 1886 14 of 19

Table 3. Pooled estimates of treatment effect on lipid profile in subgroups of trials.

TC (mmol/L) LDL-C (mmol/L) HDL-C (mmol/L) TAG (mmol/L)

Variables n N WMD
(95% CI) p I2 (%) n N WMD

(95% CI) p I2 (%) n N WMD
(95% CI) p I2 (%) n N WMD

(95% CI) p I2

(%)

Overall effects 10 615 −0.21
(−0.33, −0.09) 0.0008 <0.01 10 615 −0.20

(−0.28, −0.120 <0.0001 <0.01 10 615 −0.02
(−0.05, 0.01) 0.2008 <0.01 10 615 0.19

(−0.48, 0.09) 0.1884 77.96

Study design

parallel group 4 347 -0.21
(−0.35, −0.07) 0.0041 <0.01 4 347 −0.21

(−0.32, −0.10) 0.0002 <0.01 4 347 −0.03
(−0.07, 0.01) 0.0922 <0.01 4 347 −0.34

(−0.83, 0.14) 0.1620 86.50

cross-over 6 268 −0.20
(−0.43, 0.03) 0.0828 <0.01 6 268 −0.19

(−0.31, −0.08) 0.0009 <0.01 6 268 0.02
(−0.05, 0.08) 0.6564 <0.01 6 268 −0.00

(−0.18, 0.18) 0.9816 <0.01

Follow-up period

≤8 weeks 6 260 −0.26
(−0.49, −0.03) 0.0287 <0.01 6 260 −0.23

(−0.34, −0.12) 0.0001 <0.01 6 260 0.02
(−0.06, 0.09) 0.6238 <0.01 6 260 −0.05

(−0.24, 0.13) 0.5689 5.07

>8 weeks 4 355 −0.19
(−0.33, −0.05) 0.0095 <0.01 4 355 −0.17

(−0.29, −0.06) 0.0029 <0.01 4 355 −0.03
(−0.06, 0.01) 0.0988 <0.01 4 350 −0.31

(−0.81, 0.19) 0.2875 86.55

Age *

≤60 years 2 280 −0.20
(−0.35, −0.05) 0.0094 <0.01 2 280 −0.23

(−0.43, −0.03) 0.0248 40.10 2 280 −0.03
(−0.06, 0.01) 0.1380 <0.01 2 280 −0.72

(−1.08, −0.36) 0.0001 54.65

>60 years 7 283 −0.28
(−0.50, −0.06) 0.0134 <0.01 7 283 −0.22

(−0.34, −0.11) 0.0001 <0.01 7 283 0.00
(−0.07, 0.07) 0.9924 <0.01 7 283 −0.01

(−0.17, 0.14) 0.8772 <0.01

Body mass index †

<30 kg/m2 3 166 −0.17
(−0.48, 0.14) 0.2730 <0.01 3 166 −0.23

(−0.44, −0.02) 0.0283 <0.01 3 166 0.03
(−0.06, 0.12) 0.5802 <0.01 3 166 −0.13

(−0.54, 0.28) 0.5338 55.42

≥30 kg/m2 5 380 −0.21
(−0.34, −0.07) 0.0031 <0.01 5 380 −0.18 (−0.29,

−0.06) 0.0035 <0.01 5 380 −0.03
(−0.06, 0.01) 0.1328 <0.01 5 380 −0.24

(−0.74, 0.26) 0.3456 81.16

Diabetes duration ‡

<5 years 4 186 −0.28
(−0.54, −0.02) 0.0316 <0.01 4 186 −0.25

(−0.47, −0.02) 0.0349 <0.01 4 186 −0.01
(−0.10, 0.07) 0.8012 <0.01 4 186 0.04

(−0.16, 0.24) 0.7179 <0.01

≥5 years 3 269 −0.19
(−0.35, −0.04) 0.0129 <0.01 3 269 −0.17

(−0.29, −0.05) 0.0047 <0.01 3 269 −0.02
(−0.08, 0.03) 0.4296 12.00 3 269 −0.36

(−1.02, 0.29) 0.2753 88.59

Isoflavone intake

<100 mg/d 4 152 −0.21
(−0.51, 0.09) 0.1690 <0.01 4 152 −0.21

(−0.32, −0.09) 0.0004 <0.01 4 152 −0.03
(−0.13, 0.07) 0.5648 <0.01 4 152 −0.14

(−0.64, 0.36) 0.5860 <0.01

≥100 mg/d 6 463 −0.21
(−0.34, −0.07) 0.0022 <0.01 6 463 −0.19

(−0.30, −0.09) 0.0004 <0.01 6 463 0.01
(−0.04, 0.06) 0.2481 <0.01 6 463 −0.35

(−0.73, 0.03) 0.0727 69.56

Diabetes therapy #

non medications 3 172 −0.12
(−0.40, 0.16) 0.4085 <0.01 3 172 −0.13

(−0.38, 0.13) 0.3400 7.72 3 172 −0.01
(−0.11, 0.10) 0.9093 <0.01 3 172 0.03

(−0.17, 0.23) 0.7971 <0.01

diet and/or drugs 5 355 −0.22
(−0.36, −0.07) 0.0028 <0.01 5 355 −0.19

(−0.30, −0.07) 0.0014 <0.01 5 355 −0.03
(−0.06, 0.01) 0.1439 <0.01 5 355 −0.23

(−0.73, 0.28) 0.3793 83.47

Complications

without 6 318 −0.22
(−0.43, −0.02) 0.0347 <0.01 6 318 −0.25

(−0.42, −0.08) 0.0039 <0.01 6 318 −0.00
(−0.07, 0.07) 0.9233 <0.01 6 318 −0.05

(−0.23, 0.13) 0.5875 5.68

with § 4 297 −0.20
(−0.35, −0.05) 0.0090 <0.01 4 297 −0.19

(−0.28, −0.10) 0.0000 <0.01 4 297 −0.03
(−0.06, 0.01) 0.1660 <0.01 4 297 −0.32

(−0.84, 0.20) 0.2343 85.00

Abbreviations: CI—confidence interval; I2—coefficient of inconsistency; n—number of comparisons; N—number of participants; P—probability value; WMD—weighted mean difference *—data not available in
trial of González et al. 2007 [37]. †—data not available in trials of Azadbakht et al. 2008 [36] and Azadbakht et al. 2003 [42] ‡—data not available in trials of Chi et al. 2016 [33], González et al. 2007 [37] and
Azadbakht et al. 2003 [42] #—data not available in trials of Chi et al. 2016 [33] and Azadbakht et al. 2003 [42] §—nephropathy; obesity; hypertension and proteinuria; subclinical hypogonadism.
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4. Discussion

Our meta-analysis demonstrated a significant reduction in the concentration of TC
(−0.21 mmol/L, p = 0.0008) and LDL-C (−0.20 mmol/L, p < 0.0001) in the plasma, while
the levels of HDL-C (−0.02 mmol/L, p = 0.2008) and TAG (−0.19 mmol/L, p = 0.1884)
did not change significantly after ingesting soy isoflavone supplements. Zhang et al. [43]
also showed significant reduction in TC (−0.39, p < 0.01) and in LDL-C (−0.30, p < 0.01)
and non-significant decrease in HDL-C (−0.05, p = 0.55) and TAG (−0.094, p = 0.27), while
Yang et al. [44] noted significant reduction in TC (−0.42, p < 0.05), TAG (−0.22, p < 0.05),
significant reduction in LDL-C (−0.30, p = 0.05) and significant increase in HDL-C (0.05,
p < 0.05). Furthermore, Soltanipour et al. [45] observed significant reduction of TC (−0.47,
p < 0.01). In addition, soy products consumption was seen to be beneficial in decreasing
LDL-C and TAG, but had no significant effects on HDL-C (results not shown). Beyond
the aforementioned, Giordano et al. revealed in their study that soy isoflavones increased
plasma TC concentrations and decreased triglyceride ones—adding further evidence to the
notion that soy isoflavones have assorted effects on cardiometabolic risk factors [46].

Simultaneously our meta-analysis for the effects on glycemic control revealed that soy
protein and/or isoflavones are not significantly effective in reducing circulating glucose
levels. In addition, the outcome of our meta-analysis of randomized controlled trials has
indicated that soy protein and/or isoflavones supplementation has no statistical signifi-
cance effect on glycemic control in T2DM (FBG: −0.30 mmol/L, p = 0.28; FI: −3.40 pmol/L,
p = 0.37; HbA1c: −0.80%, p = 0.13; and HOMA-IR:−0.07, p = 0.79). These results are similar
to those of Yang et al. [44], who, in 2011, also did not show any significant effect of soy
protein and/or isoflavones on the level of FBG, FI and HbA1c. In turn, the meta-analysis
by Zhang et al. [43], published in 2016 and based on eight trials with 13 comparisons
revealed significant changes in the FBG, FI and HOMA-IR values after administering soy
preparations (−0.207, p = 0.015; −0.29, p = 0.01; and −0.346, p < 0.01; respectively). More-
over, a recently published meta-analysis by Soltanipour et al. [45] reported that, according
to the data from 14 RCTs, soy consumption had significant effects on HOMA-IR level
(−0.25, p < 0.01), in the absence of significant effects on FBG (−0.14, p = 0.09; FI: −0.11,
p = 0.11; and HbA1c: −0.22, p = 0.18).

The observed differences in outcomes between earlier meta-analyses and our study can
be result of differences in the inclusion criteria. We relied only on studies assessing the effects
of isoflavones contained in soy protein or on the isoflavones alone. Yang et al. [44] used a
study by Anderson et al. [47] in which only soy protein was used. In turn, the meta-analysis by
Zhang et al. [43] included research with soy protein alone [47] or black soybean peptides [48],
but also a study involving nondiabetic people with metabolic syndrome [49]. Furthermore,
Soltanipour et al. [45], in addition to including seven out of 16 studies using isolated soy
protein and isoflavones [23,35–40,42], also analyzed studies using different types of soy
products such as soy milk [50,51], bread fortified with soy flour [52], soy germ pasta enriched
in isoflavones [20], multifilament soy protein-based diabetes-specific food [17], as well as
other preparations containing native starch banana [53] or flavan-3-ols/isoflavones [54].

The molecular and physiological mechanisms underlying the metabolic action of
phytoestrogens components containing in soybean have not yet been fully recognized.
The studies conducted with soy dietary isoflavones and isoflavone alone in cell culture
or in animal models and human studies have definitely demonstrated that isoflavones
can improve some parameters associated with the course of diabetes. In addition, the
structural similarity between soy isoflavones and endogenous 17-β-estradiol suggests that
isoflavones, by binding to estrogen receptors (ERs), lead to gene activation and beneficial
effects on glucose and lipid metabolism [55,56].

There is some evidence to intimate that estrogen receptor (ER) binding is only part
of the isoflavone effect [57]. Genistein and daidzein (and its metabolite equol), im-
prove glycemic control, and significantly alter glucose homeostasis through: (a) stim-
ulating insulin secretion by inhibiting tyrosine kinase (TK) [58,59]; (b) activating adenosine
5′-monophosphate (AMP)-activated protein kinase (AMPK)—which results in decrease
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blood glucose in the liver, while stimulating glucose uptake independently of insulin in
skeletal muscles and modulating glucose transport in peripheral tissue [60]; (c) activating
the peroxisome proliferator-activated receptor gamma (PPARγ); thus, enhancing the expres-
sion and translocation of GLUT-1 and GLUT-4—which results in increased glucose uptake
in adipocytes and muscle cells and subsequent reduction in plasma glucose levels [61];
(d) inhibiting alpha-glucosidase (AG)—which leads to slowing down the absorption of
glucose in the gut [62]; and (e) directly modulating pancreatic beta-cell function and con-
ferring protection against apoptosis through mechanisms that involve cyclic AMP/Protein
Kinase A (cAMP/PKA) signaling [63,64].

Moreover, isoflavones can also regulate lipid metabolism without the mediation of
estrogen receptors; increase expression of PPARα and activate AMPK—which results in
increased activity of genes involved in lipoprotein metabolism; reduce TG-rich particle
production and increase their lipolysis; promote HDL metabolism and promote the uptake,
utilization and catabolism of fatty acid [65–67]. Furthermore, isoflavones can inhibit the
expression and activity of the sterol regulatory element binding protein-1c (SREBP-1c) and
carbohydrate regulatory element binding protein-1 (ChREBP)—proteins that enhance the
expression of lipogenic genes and key enzymes involved in de novo lipogenesis [68,69].
Other possible mechanisms of soy isoflavones that may modulate lipoprotein metabolism,
include their effects on several enzymes important in lipid transformation, including
lipoprotein lipase (LPL), hepatic lipase (HL) also called hepatic triglyceride lipase (HTGL),
and 7alpha-hydroxylase [70,71].

Limitations of This Study

Limitations of the presented meta-analysis must be acknowledged. First, the pooled
population analyzed in our meta-analysis included a limited number of subjects because
the sample size in some of the clinical trials was small. Secondly, the duration of treatment
in some studies was short (<2 months), which could reduce the effect of soy isoflavones
supplementation. Thirdly, the selected studies used different doses and different forms
of soy isoflavones (methylated forms, glycosides, and aglycones)—which could have
affected the results. Fourthly, the clinical effectiveness of soy isoflavones may be limited by
the ability to transform soy isoflavones to the more potent estrogenic metabolite (equol).
High variability in equol production is attributable to interindividual differences in the
composition of the intestinal microflora; only approximately one-third to one-half of the
population is able to metabolize daidzein to equol [55,56,72].

5. Conclusions

Our analysis found that consumption of soy isoflavones brought about a statistically
significant reduction in total and LDL cholesterol, while simultaneously demonstrating no
significant effects on HDL and TAG. Influence of soy isoflavones on glucose levels has been
shown to be statistically insignificant. Moreover, the ability of both extracted isoflavone and
soy protein with isoflavones to modulate the lipid profile suggests benefits in preventing
cardiovascular events in people with type 2 diabetes. However, further multicenter studies
based on a larger pool of research material and a well accurately defined dose of isoflavones
are necessary to determine their beneficial effects on glucose and lipid metabolism.
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