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Abstract

Background: Better understanding of the neurobiology of posttraumatic stress disorder (PTSD) may be critical to develop-

ing novel, effective therapeutics. Here, we conducted a data-driven investigation using a well-established, graph-based topo-

logical measure of nodal strength to determine the extent of functional dysconnectivity in a cohort of active duty U.S. Army

soldiers with PTSD compared to controls.

Methods: A total of 102 participants with (n¼ 50) or without PTSD (n¼ 52) completed functional magnetic resonance

imaging at rest and during symptom provocation using subject-specific script imagery. Vertex/voxel global brain connectivity

with global signal regression (GBCr), a measure of nodal strength, was calculated as the average of its functional connectivity

with all other vertices/voxels in the brain gray matter.

Results: In contrast to resting state, where there were no group differences, we found a significantly higher GBCr during

symptom provocation, in PTSD participants compared to controls, in areas within the right hemisphere, including anterior

insula, caudal-ventrolateral prefrontal, and rostral-ventrolateral parietal cortices. Overall, these clusters overlapped with the

ventral and dorsal salience networks. Post hoc analysis showed increased GBCr in these salience clusters during symptom

provocation compared to resting state. In addition, resting-state GBCr in the salience clusters predicted GBCr during

symptom provocation in PTSD participants but not in controls.

Conclusion: In PTSD, increased connectivity within the salience network has been previously hypothesized, based primarily

on seed-based connectivity findings. The current results strongly support this hypothesis using whole-brain network measure

in a fully data-driven approach. It remains to be seen in future studies whether these identified salience disturbances would

normalize following treatment.
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Introduction

Posttraumatic stress disorder (PTSD) is a disabling
mental illness with poorly understood pathophysiology
and a reported crisis in drug development.1,2 Better
understanding of the neurobiology of PTSD may be crit-
ical to the development of novel effective therapeutics. To
date, early neuroimaging work has identified a number of
neural circuit abnormalities in PTSD, and more recently,
brain-wide functional connectivity network disturbances
have been described.3,4 Building on prior work, the
aim of the current report is to identify robust brain bio-
markers of PTSD and to gain insight into the PTSD
brain network abnormalities at rest and during symptom
provocation. To achieve this aim, we conducted a
data-driven investigation using a well-established,
graph-based, topological measure of nodal strength to
determine the extent of functional dysconnectivity in a
cohort of active duty U.S. Army soldiers with PTSD
compared to controls.

Functional connectivity magnetic resonance imaging
(fcMRI) is a powerful neuroimaging tool that has been
extensively used over the past two decades to investigate
the role of the brain intrinsic connectivity networks
(ICNs).5 It has been successfully employed both to map
the architecture of brain systems in healthy individuals6–8

and to identify circuits and network disturbances in
neuropsychiatric disorders.9 Early studies have mostly
focused on hypothesis-driven, seed-based analyses and
ICNs during resting state. More recently, data-driven,
graph-based fcMRI topological measures have been
established and fcMRI approaches have been increas-
ingly employed during various task and arousal
states.10,11 One essential topological measure that has
been widely employed to investigate ICN in health and
disease is nodal strength, i.e., a measure reflecting the
total amount of connectivity between a node (voxel/
vertex or brain region) and the rest of the network (e.g.,
whole brain).12 In healthy populations, measures of nodal
strength, also known as functional connectivity strength,
were found to identify major brain networks,13 to predict
cognitive functioning and intelligence,14 to correlate with
regional brain activity,15,16 and to be directly linked to
glutamate neurotransmission.17

Global brain connectivity with global signal regression
(GBCr) is a robust, well-established measure of nodal
strength. GBCr of a voxel is the average of its functional
connectivity with all other voxels in the brain gray
matter. During resting state, reduced prefrontal GBCr
and other comparable measures have been reported in
depression17–21 and in several psychiatric disorders with
a considerable chronic stress component.22–25 Moreover,
the stress-related prefrontal GBCr deficits were found to
normalize following ketamine treatment.17,18,26 Together,
these findings have led to the hypothesis that the identi-
fied prefrontal GBCr abnormalities may reflect, at least

partially, an underlying stress-related synaptic loss and
dysconnectivity that have long been reported in preclin-
ical studies of trauma and chronic stress.1,27 Surprisingly,
we previously found no prefrontal resting-state GBCr
abnormalities in U.S. military veterans suffering from
severe PTSD symptoms.28 However, follow-up explora-
tory analyses revealed a pattern of reduced prefrontal
GBCr in veterans who reported high symptoms of avoid-
ance and numbing over the past month but increased
prefrontal GBCr in those who reported high arousal
symptoms.28 Thus, we speculated that the trauma- and
stress-related prefrontal GBCr dysconnectivity may have
been masked by arousal-induced increases in cortical
GBCr. Consistent with this hypothesis, GBCr is known
to be directly affected by acute brain functions as evident
by (1) an increased GBCr during treatment with ketamine
(a drug known to induce transient glutamate neurotrans-
mission), (2) a reduced GBCr by the glutamate release
inhibitor lamotrigine, and (3) an association between
GBCr and regional brain activity.16,17,24,26,29,30

However, whether provocation of trauma-related symp-
toms would increase GBCr is not yet known.

In the current report, we aimed to demonstrate this
working model by investigating GBCr at rest and
during symptom provocation using personalized script
imagery in a cohort of individuals with PTSD and a
sex-/age-matched non-PTSD comparison group. We
first conducted data-driven whole-brain analyses to deter-
mine the presence and location of GBCr disturbances in
the PTSD group at rest and during symptom provoca-
tion. Then, to facilitate the interpretation of the whole-
brain findings, we extracted the GBCr values from the
identified regions and conducted post hoc analyses to
determine the effects of task and subgroups. We predicted
no prefrontal abnormalities at rest but increased GBCr
during symptom provocation.

Methods and Materials

All behavioral and imaging data were acquired from the
STRONG STAR data repository (https://tango.uthsc-
sa.edu/strongstar/subs/rpinfo.asp?prj¼12). The imaging
data and analyses during symptom provocation are new
and have not been used in previous reports. The resting
state investigation is a novel analysis of a data set that
was separately investigated using an independent compo-
nent analysis (ICA) approach (Vanasse et al., unpub-
lished data, November 2018). Yet, there is no overlap
between the GBCr measures investigated in this study
and the resting state ICA report.

Participants

A total of 102 participants with successful scans were
investigated (Table 1). Study procedures were approved
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by institutional review boards and informed consents
were completed prior to participation. All participants
had no magnetic resonance contraindication and had a
negative drug screen on the day of the scan. The PTSD
patients met the following criteria: (1) were active duty
U.S. Army soldiers, following deployment to or near Iraq
or Afghanistan; (2) were 18 years or older; (3) had PTSD
diagnosis, as confirmed by a structured interview based
on the Diagnostic and Statistical Manual for Mental
Disorder, Fourth Edition (DSM-IV); (4) experienced a
Criterion A traumatic event during deployment; (5) if
on psychotropic medications, were on stable doses for
at least six weeks; (6) did not have imminent suicide or
homicide risk; (7) did not have psychosis; and (8) did not
have moderate or severe traumatic brain injury, based on
self-report and their ability to complete the behavioral
assessments. The control participants were either healthy
control (HC) civilians with no Criterion A trauma, or
combat control (CC), who were active duty U.S. Army
soldiers and met Criterion A during deployment but did
not have PTSD. Baseline symptom severity was deter-
mined using the PTSD Check List for DSM-IV, the
Beck Depression Inventory, and the Beck Anxiety
Inventory.

fcMRI Acquisition and Processing

Magnetic resonance imaging (MRI) data were acquired
on a 3T magnet. Each session included five high-resolu-
tion structural T1 (voxel size¼ 0.8� 0.8� 0.8mm; time
to recovery (TR)¼ 2200ms; echo time (TE)¼ 2.83ms),
six functional MRI (rest, script imagery, Stroop, Hariri,
Nback, CO2; voxel size¼ 2� 2� 3mm; TR¼ 3000ms;
TE¼ 30ms), one diffusion weighted imaging, one arter-
ial spin labeling, and one fluid-attenuated inversion
recovery (FLAIR) scan (voxel size¼ 0.8� 0.8� 0.8mm;

TR¼ 2200ms; TE¼ 2.83ms). Here, we processed and
investigated functional connectivity at rest (10min;
200 frames) and during symptom provocation (12min;
240 frames). T1 and FLAIR scans were used for tissue
segmentation and coregistration.

The symptom-provocation task consisted of subject-
specific neutral and trauma scripts (1min each) based
on a structured questionnaire completed during the inter-
view with each participant. The script was recorded in
second person (i.e., ‘‘You are in Iraq. . .’’) and in a
voice sex-matched to the participant. During scanning,
the script was played for 60 s, and participants were
instructed to ‘‘recall and relive the experience.’’ For an
additional 60 s, the participants were instructed to ‘‘think
about the events’’ and recreate the experience. Then, they
were instructed to ‘‘let it go’’ for an additional 60 s. These
three-stage retelling and clearing instructions were
repeated four times, alternating between neutral and
trauma scripts. Considering the potential for carry over
and to obtain stable functional connectivity estimates, the
full 12-min run was used for computing GBCr during
symptom provocation. The Human Connectome
Pipeline was adapted to conduct surface-based prepro-
cessing and optimize registration.31 Details of our image
processing pipeline were previously reported26 and are
provided in the Supplemental Material. GBCr calculation
followed our previous reports17,18,26,28; i.e., they were
computed as the average of the correlations between
each voxel and all other voxels in the brain gray matter
(see Supplemental Material).

Statistical Analyses

Statistical Package for the Social Sciences (SPSS, version
24) was used for the behavioral and region of interest
(ROI) analyses. The distribution of outcome measures

Table 1. Demographics and clinical characteristics.

PTSD (n¼ 50) Combat Control (n¼ 29) Healthy Control (n¼ 23)

Mean (SEM) or N (%) Mean (SEM) or N (%) Mean (SEM) or N (%)

Age 32.8 (1.1) 31.8 (1.1) 32.4 (2.1)

BMIa 28.9 (0.7) 28.3 (0.6) 25.8 (0.7)

IQa 98 (1.5) 99 (2.1) 110 (2.6)

Sex (male) 46 (92%) 27 (91%) 20 (87%)

Race (White) 32 (64%) 18 (62%) 16 (70%)

Race (Black) 11 (22%) 6 (21%) 4 (17%)

Ethnicity (Hispanic)a 10 (20%) 10 (35%) 10 (44%)

PCLa 56.7 (1.8) 20.0 (0.7) 19.8 (0.8)

BDIa 28.2 (1.7) 2.3 (0.7) 1.7 (0.5)

BAIa 19.3 (1.8) 1.7 (0.4) 1.9 (0.4)

BAI: Beck Anxiety Inventory; BDI: Beck Depression Inventory; BMI: body mass index; IQ: intelligence quotient; PCL: PTSD Checklist; SEM: standard error of

the mean.
aSignificantly differed between subgroups.
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was examined using probability plots and test statistics.
Transformations and nonparametric tests were used as
necessary. Estimates of variation are provided as the
standard error of the mean. Significance was set at
P� .05, with two-tailed tests. Analysis of variance and
chi-squares were used to compare behavioral data
across groups. Body mass index, intelligence quotient,
and ethnicity differed between the study groups.
Therefore, these variables were included as covariates in
the vertex/voxel-wise and ROI analyses.

Vertex/voxel-wise fcMRI nonparametric analyses
used FSL Permutation Analysis of Linear Models,
with tail approximation and cluster mass threshold of
1.96 for Type I error correction (corrected �¼ .05).32

First, we conducted a data-driven, whole-brain analysis
using independent t tests to identify clusters with
altered GBCr in the PTSD group compared to all con-
trols, at rest and during symptom provocation.
Then, we extracted the identified clusters (vertex/voxel
P< .005; corrected �¼ .05) and conducted follow-up
ROI analyses to better characterize the GBCr abnorm-
alities across tasks and subgroups. This was accom-
plished by constructing a general linear model (GLM)
that examined the effects of groups (PTSD vs. CC vs.
HC), tasks (rest vs. scripts), and group� tasks inter-
action, followed by post hoc pairwise comparisons.
The aim of the post hoc assessment is to better under-
stand the whole-brain findings, without generating
independent results. Therefore, it is important to under-
score that this post hoc analysis in dependent on
the vertex/voxel-wise results and the readers should be
cautious not to interpret the post hoc data as
separate findings. Finally, we conducted exploratory
linear regression analysis examining whether at-rest
salience GBCr predicts GBCr during symptom
provocation.

Results

Participants were well matched for age, sex, and race
(Table 1). Scans were excluded if they had any frame
with absolute motion >2mm, any frame with relative
motion >2mm, or more than 50% of frames with
frame displacement >0.3mm. Accordingly, five rest and
six script scans were excluded.

Whole-Brain Data-Driven Analyses: Disrupted
Connectivity Within the Salience Networks

During symptom provocation, the whole-brain analysis
revealed a significantly higher GBCr in PTSD partici-
pants compared to controls in areas within the right
hemisphere, including the anterior insula, caudal-ventro-
lateral prefrontal, and rostral-ventrolateral parietal cor-
tices (Figure 1(a); orange-yellow clusters). Notably, these
areas primarily overlap with the ventral and dorsal sali-
ence networks (Figure 1(b); orange and blue clusters).6

Moreover, we found significant clusters of lower GBCr in
the caudal-dorsal areas of the cerebellum in participants
with PTSD compared to control (Figure 2; blue clusters).
At rest, we found no significant differences in GBCr
between the study groups.

ROI Post Hoc Analyses: Increased Connectivity During
Symptom Provocation in PTSD

At rest and during symptom provocation, we extracted
average GBCr from each subject within two ROIs. The
salience ROI included areas that showed significantly
high GBCr in PTSD (Figure 1). The cerebellar ROI
included areas with low GBCr in PTSD (Figure 2).
Investigating the salience ROI, the GLM showed a sig-
nificant group effect (F(2,85)¼ 7.6, P¼ .001; Figure 3),
with higher salience GBCr in PTSD compared to CC

Figure 1. Cortical global connectivity in U.S. Army soldiers with posttraumatic stress disorder (PTSD). (a) The orange-yellow clusters

mark the vertices with increased global brain connectivity with global signal regression in PTSD compared to controls during symptom

provocation. The black lines mark the vertices with P<.005 and corrected �¼ .05. (b) The Akiki-Abdallah6 map of 6 (AA6) intrinsic

connectivity networks: ventral salience (blue), dorsal salience (orange), central executive (yellow), default mode (green), visual (red), and

sensorimotor (purple). The black lines in (b) mirror the black lines in (a).
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(P¼ .001) and HC (P¼ .003), but no differences between
HC and CC (P¼ .71). We also found a significant group-
� task interaction (F(2,85)¼ 4.4, P¼ .01; Figure 4), with
significant increase in salience GBCr during symptom
provocation compared to rest in PTSD (P¼ .04), but
not in CC (P¼ .13) and HC (P¼ .09).

Although salience GBCr differed between groups only
during symptom provocation, it was numerically higher
in PTSD even at rest (Figure 4(b)), raising the question as
to whether a subgroup of PTSD subjects experienced
symptoms and engaged the salience network at rest.
Therefore, we conducted a linear regression examining
whether salience GBCr at rest predicts GBCr during
symptom provocation. We found that salience GBCr at
rest positively predicted salience GBCr during symptom
provocation in the PTSD (F(1,42)¼ 16.0, P< .001), but

not in the CC (F(1,25)¼ 1.1, P¼ .49) and HC groups
(F(1,19)¼ 0.5, P¼ .31).

In the cerebellar ROI, we found a significant group
effect (P¼ .02), with lower cerebellar GBCr in PTSD
compared to CC (P¼ .006) but not HC (P¼ .08)
(Figure S1). There were no significant effects of task
(P¼ .08), or group� task interaction (P¼ .08), and no
difference between CC and HC (P¼ .61).

Discussion

The data-driven results identified widespread disruption
of functional connectivity in areas within the salience net-
work of U.S. Army soldiers suffering from PTSD. The
salience dysconnectivity was evident during symptom
provocation but not at rest. The increase in salience
global connectivity was found in the PTSD group com-
pared to both combat and HCs. Compared to connectiv-
ity at rest, symptom provocation induced significant
increase in salience global connectivity in the PTSD
group but not the control groups. In addition, the data-
driven analysis revealed reduced global connectivity in
PTSD in areas within the posterior lobe of the cerebel-
lum, a cerebellar region that primarily serves cognitive
functions. The reduction in cerebellar connectivity was
significant in PTSD compared to combat but not to
HCs. The identified clusters of salience and cerebellar
connectivity did not differ between combat and HCs.
Finally, although the salience connectivity did not differ
between groups at rest, PTSD patients have shown
numerically higher values that significantly predicted
increased global connectivity during symptom provoca-
tion. This is particularly relevant considering that PTSD
symptoms are commonly present during resting state.
Therefore, these findings raise the possibility that the

Figure 2. Cerebellar global connectivity in U.S. Army soldiers with posttraumatic stress disorder (PTSD). The blue clusters mark the

voxels with reduced global brain connectivity with global signal regression in PTSD compared to controls during symptom provocation

(P<.005 and corrected �¼ .05).

Figure 3. Overall salience global connectivity in U.S. Army sol-

diers with posttraumatic stress disorder (PTSD). There was a sig-

nificant main group effect with increased overall (i.e., at rest and

during trauma recollection) global brain connectivity with global

signal regression in PTSD compared to combat and healthy con-

trols. **P�.01.
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identified salience dysconnectivity may reflect a state-
dependent abnormality that is concealed at rest with
low level of PTSD symptom, but is more evident in the
presence of trauma reminders.

The present investigation extends past research by
employing a data-driven approach rather than a seed-
based analysis and by examining global connectivity at
rest and during symptom provocation. Previous studies
have reported greater functional connectivity between
salience network regions in individuals with PTSD com-
pared to controls.33–36 The salience network is believed to
play a critical role in (1) threat detection, (2) arbitration
between other large-scale intrinsic networks, particularly
the default mode and central executive networks, and (3)
modulation of autonomic reactivity to salient stimuli.37

PTSD is associated with impairment in each of these
three salience-related functions, i.e., increased threat
detection, impaired default and executive connectivity,
and autonomic dysregulation.1,4,38 A recent network-
based framework posits that heightened salience connect-
ivity in PTSD may result in impaired intrinsic connectiv-
ity related to the arbitration function, leading to low
threshold for attention to trauma-related cues, which
may help explain hyperarousal symptoms in PTSD
patients.3

Overall, the study findings support our a priori hypoth-
esis of state-dependent symptom-induced increases in cor-
tical GBCr, putatively concealing any GBCr deficits
related to synaptic loss. Reduced prefrontal GBCr has
been directly associated with trauma- and stress-related
synaptic loss.1,27 Moreover, these cortical GBCr deficits
have been reported in several psychiatric disorders with a
considerable chronic stress component, including unipolar
and bipolar depression, obsessive-compulsive disorder,
and schizophrenia.17–25 Intriguingly, despite extensive evi-
dence suggesting stress- and PTSD-related cortical synap-
tic loss,39,40 the current study and previous report28 failed
to demonstrate reduction in cortical GBCr in PTSD.

Considering previous evidence correlating reduced cortical
GBCr with avoidance and numbing symptoms, and
increased cortical GBCr with arousal symptoms,28 we
interpret the increase of GBCr during trauma recollection
as evidence that the functional dysconnectivity related to
synaptic loss may have been masked by superimposed
increased connectivity related to arousal and perhaps reex-
periencing symptoms.

Unexpectedly, the identified cortical GBCr abnormal-
ities showed a remarkable spatial pattern with noticeable
overlap with the dorsal and ventral salience networks, inter-
estingly limited to the right hemisphere. Lateralization in
the anterior insula, an essential node within the salience
network, has long been suggested with the right insula
highly connected to the sympathetic autonomic system
and plays a main role in attentional orientation to salient
stimuli, interoception, and arousal.41 In contrast, the left
hemisphere insula is more connected to the parasympa-
thetic system and is associated with functions such as nour-
ishment, gesture, positive affect, and cognitive and affective
control.41 Importantly, PTSD is associated with an over-
active sympathetic nervous system and attentional orienta-
tion to salient stimuli including heightened threat
detection.38,42,43 The localization of the study findings to
the salience network and right hemisphere during trauma
recollection further underscores the neurobiological and
clinical relevance of functional nodal strength as measured
by GBCr. It also highlights the utility of longitudinal con-
nectivity designs, where connectivity is tested at rest as well
as during or following an intervention.

Another unpredicted finding is the GBCr reduction in
the posterior lobe of the cerebellum during symptom
provocation. Although the cerebellum has long been
viewed as a unit of motor control, it is becoming increas-
ingly apparent that the cerebellum, especially the neocer-
ebellum (posterior lobe) that is mainly connected to the
cerebral cortex, plays important roles in emotion and
cognition.44 Recent work by Holmes et al. also found

Figure 4. Effect of symptom provocation on salience global connectivity in U.S. Army soldiers with posttraumatic stress disorder (PTSD).

(a) There was a significant group by task interaction effect on salience global brain connectivity with global signal regression (GBCr). (b)

Post hoc comparison shows significant increase in GBCr during trauma recollection (i.e., script imagery) compared to during resting state

in PTSD but not in controls. The higher GBCr values in PTSD compared to combat and healthy controls were significant only during

trauma recollection, but not at rest. **P�.01. Rest: resting state; script: script imagery.
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reduced nodal strength in the cerebellum of PTSD
patients as well as reduced volume and structural covari-
ance.45 Other studies have also reported structural and
functional abnormalities in the cerebellum in
PTSD.46–51 Importantly, the cerebellar abnormalities in
the current study were evident only during symptom
provocation. This finding supports the presence of a
direct relationship between reduced cerebellar global con-
nectivity and trauma recollection. In addition, it shows
the potential utility of paradigm-based connectivity to
induce homogenous and exaggerated effects, which facili-
tate the interpretation of the results and may enhance the
reproducibility of the findings in future studies.

Finally, in contrast to a previous report of reduced
GBCr in the anterior hippocampus in veterans with
PTSD,28 the current study failed to show any subcortical
dysconnectivity at rest or during symptom provocation.
A putative explanation is that PTSD may be associated
with a dual pathology, including a subgroup of patients
suffering from amino-acid pathology (ABP) and another
subgroup having primarily a monoamine pathology.1 The
ABP characteristics include reduced gray matter (e.g.,
hippocampal volume reduction), reduced amino-acid
levels (e.g., low glutamate), increased inflammation,
hypothalamic-pituitary axis dysregulation, and chronic,
complex and treatment-resistant PTSD.1 Therefore, we
speculate that the difference in study population may
have led to the differing results. In particular, the target
population and study criteria of the previous report may
have led to enrolling patients with ABP, as evidenced by
widespread structural and connectivity deficits in the pre-
vious cohort.28,52–55

Limitations and Strengths

The experimental within-session design directly asso-
ciated trauma recollection with increased salience con-
nectivity in individuals suffering from PTSD. However,
we cannot determine whether the salience disturbance
predates the development of PTSD or is a consequence
of PTSD pathology. Predeployment longitudinal studies
would be critical to ascertain the causal relationship. An
alternative approach, to shed light on the relationship
between salience network and PTSD, is to determine
whether these salience disturbances will normalize follow-
ing successful treatment, an investigation that will be
reported elsewhere.56 Among the limitations is that this
neuroimaging study did not assess whether early-life
stress would affect the results. It also matched the sub-
groups only for combat trauma. Another limitation is
that the current study is mainly investigating the PTSD
group. Therefore, to optimize type I and type II errors,
the study did not fully assess for differences between
combat and HCs. In that regard, it is important to under-
score that the post hoc ROI analyses conducted are

dependent on the whole-brain investigation and should
be viewed and interpreted only within the context of
better characterizing the data-driven results. Finally, the
timing (i.e., symptom-induced), localization, and lateral-
ization of the disturbance in nodal strength strongly
implicate the ventral and dorsal salience networks.
However, the nodal strength measured is based on
whole-brain global connectivity and not limited to a spe-
cific ICN. Therefore, the identified salience dysconnectiv-
ity may reflect increased internal (i.e., within network)
and/or external connectivity (i.e., between networks).
Future studies may employ network-restricted topology
approaches to further investigate the role of ICNs in the
pathology of PTSD.53

The strengths of the study include (1) a relatively large
sample in a less-often investigated target population (i.e.,
active duty military personnel); (2) the use of state-of-the-
art neuroimaging methods based on the Human
Connectome Pipeline, including enhanced registration,
surface-based analysis, and nonparametric correction
for vertex/voxel-wise multiple comparisons; (3) the use
of GBCr, a well-validated measure of nodal strength
that has been repeatedly associated with psychopath-
ology and successful treatment, and that does not require
a priori selection of seed or ROI; and (4) the use of
trauma recollection design to identify symptom-specific
network disturbances.

Conclusions

The results strongly implicate the salience network in the
pathophysiology of PTSD, demonstrating symptom-
induced lateralized increase of global connectivity in
brain areas within the ventral and dorsal salience networks
in the right hemisphere. The high salience global connect-
ivity during trauma recollection was evident in PTSD
compared to both combat and HCs. Although there was
no significant dysconnectivity at rest, the salience global
connectivity during trauma recollection was positively
predicted by salience connectivity at rest. Together, the
results support the hypothesis that the reduction of cor-
tical global connectivity due to synaptic loss in PTSDmay
be concealed by state-dependent, arousal-related increases
in connectivity. Finally, the study found reduced global
connectivity in the posterior lobe of the cerebellum, con-
tributing to accumulating evidence implicating this essen-
tial brain region in the pathology of PTSD.
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