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The early prediction of a patient’s response to neoadjuvant chemotherapy (NAC) in breast
cancer treatment is crucial for guiding therapy decisions. We aimed to develop a novel
approach, named the dual-branch convolutional neural network (DBNN), based on deep
learning that uses ultrasound (US) images for the early prediction of NAC response in
patients with locally advanced breast cancer (LABC). This retrospective study included 114
women who were monitored with US during pretreatment (NAC pre) and after one cycle of
NAC (NAC1). Pathologic complete response (pCR) was defined as no residual invasive
carcinoma in the breast. For predicting pCR, the data were randomly split into a training set
and test set (4:1). DBNN with US images was proposed to predict pCR early in breast
cancer patients who received NAC. The connection between pretreatment data and data
obtained after the first cycle of NAC was considered through the feature sharing of different
branches. Moreover, the importance of data in various stageswas emphasized by changing
the weight of the two paths to classify those with pCR. The optimal model architecture of
DBNN was determined by two ablation experiments. The diagnostic performance of DBNN
for predicting pCR was compared with that of four methods from the latest research. To
further validate the potential of DBNN in the early prediction of NAC response, the data from
NAC pre and NAC1 were separately assessed. In the prediction of pCR, the highest
diagnostic performance was obtained when combining the US image information of NAC

pre and NAC1 (area under the receiver operating characteristic curve (AUC): 0.939; 95%
confidence interval (CI): 0.907, 0.972; F1-score: 0.850; overall accuracy: 87.5%; sensitivity:
90.67%; and specificity: 85.67%), and the diagnostic performance with the combined data
was superior to the performance when only NAC pre (AUC: 0.730; 95% CI: 0.657, 0.802;
F1-score: 0.675; sensitivity: 76.00%; and specificity: 68.38%) or NAC1 (AUC: 0.739; 95%
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CI: 0.664, 0.813; F1-score: 0.611; sensitivity: 53.33%; and specificity: 86.32%) (p<0.01)
was used. As a noninvasive prediction tool, DBNN can achieve outstanding results in the
early prediction of NAC response in patients with LABC when combining the US data of
NAC pre and NAC1.
Keywords: deep learning, breast cancer, neoadjuvant chemotherapy, pathologic complete response,
ultrasound imaging
INTRODUCTION

Breast cancer is the most common cause of cancer-related death
among women worldwide (1). Neoadjuvant chemotherapy
(NAC) has been used as a systematic preoperative treatment
for patients with locally advanced breast cancer (LABC) (2).
NAC has the advantage of downsizing breast cancers, thus
allowing breast-conserving surgery and assessments of the
response to chemotherapy during treatment. The achievement
of pathologic complete response (pCR) may be a potential
independent predictor of better disease-free survival (DFS) and
overall survival (OS), especially in patients with triple-negative
and human epidermal growth factor 2 (HER2)-enriched breast
cancer (3). However, even with the continuous improvements in
chemotherapy regimens, the number of patients who achieve
pCR remains low (4). Due to the different molecular types and
histopathology of breast cancer, the response to chemotherapy
may be different. Therefore, identifying patients with superior
responses to NAC early has naturally become one of the current
hotspots of study.

The optimal method for monitoring the response to NAC has
not been established (5). Imaging examination can be used as one
of the primary assessment methods. Magnetic resonance imaging
(MRI), US, and positron emission tomography (PET)/computed
tomography (CT) have been used as evaluation tools (5–7).
However, imaging examinations have limitations when used
clinically because image interpretation is mainly based on a
radiologist’s visual assessment and is not standardized.
Furthermore, MRI and PEC/CT are expensive, and PEC/CT is
radioactive, making them impractical for frequent scans of
patients receiving NAC. Among those methods, ultrasound
(US) may become the primary monitoring tool due to its
reusability, versatility, sensitivity, and safety.

With the continuous development of deep learning, computer-
aided diagnosis (CAD) has become an important research topic,
especially in breast cancer research. CAD research has involved
the classification (8), segmentation (9), and detection (10) of breast
tumours. Especially for classification tasks, which mainly focus on
the differentiation of benign and malignant breast tumours, CAD
has attracted increasing attention from researchers (11). Deep
convolutional neural networks (CNNs) have been widely applied
to many healthcare and medical imaging works, leading to state-
of-the-art results (12–16). The classification operation procedure
of a CNN is that an input image is fed into the CNN to learn
essential features and save these parameters as weights and biases
to classify images (17). Recently, with the help of deep learning
methods, there have been several published studies for predicting
2

breast cancer treatment responses based on PET/CT and MRI
images (18–20). El Adoui M et al. introduced a two-branch CNN
for the early prediction of breast cancer response to chemotherapy
using DCE-MRI volumes acquired before and after chemotherapy
(18). Braman N et al. developed a CNN for predicting pCR to
HER2-targeted NAC with pretreatment DCE-MRI (19). Choi J H
et al. used a CNN algorithm based on Alexnet to predict responses
to NAC for advanced breast cancer using PET and MRI images
(20). Those studies have shown that deep learning has emerged as
a promising tool for breast cancer response prediction.

High-resolution breast US images contain rich texture and
echo features that, when combined with deep learning
techniques, may potentially be used to achieve a highly
accurate and noninvasive NAC response detection method. At
present, there are some studies about the use of CAD with US
images for predicting the response of breast cancer to NAC (21–
23). However, most of these studies focus on feature engineering
work based on semiautomatic intermediate steps, and the
technique is labour intensive and time consuming. The
accuracy of a deep network has far exceeded that of a
traditional machine learning method based on handcrafted
features (8). However, in the learning process of existing deep
learning models, the correlation and importance of the data
during different chemotherapy courses have been ignored, and
the characteristics of the data have not been well grasped. The
purpose of our study is to construct a novel deep learning-based
approach named the dual-branch convolutional neural network
(DBNN) based on US images at different stages of chemotherapy
for the early prediction of NAC in patients with LABC.
METHODS

Study Participants
This retrospective single-centre study was approved by the Ethics
Committee of ShangHai RenJi Hospital (ShangHai P.R. China),
and the requirement for written informed consent was waived.
Between February 2015 and June 2019, we enrolled 132 women
with LABC who were treated with NAC and surgical resection at
our institution. The eligibility criteria were as follows: (a) patients
with breast cancer aged 18 to 80 years; (b) patients with
histologically confirmed breast cancer and no history of
treatment for breast cancer; (c) patients for which US was
performed during NAC; and (d) after NAC, the patients
underwent surgery and a pathological evaluation was
performed. Of the 132 patients, 18 were excluded for the
following reasons: (a) US was performed at an outside hospital
April 2022 | Volume 12 | Article 812463
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(n= 3); (b) no midtreatment US data were available (n= 12); and
(c) the US images were of poor quality (n=3). A total of 114
patients (age range: 26-72 years; mean age: 49.92 years)
comprised the study group. (Figure 1).

US Examination
The ultrasonography examinations were performed using MyLab
Twice (Esaote, Genoa, Italy) with a 4–13-MHz LA523 linear
transducer by an experienced radiologist at the Department of
Ultrasound (C.F.W. with 10 years of experience in breast US). In
this study, US images were collected before and after the first course
of chemotherapy. The US images of pCR and non-pCR samples
collected at different treatment stages are shown in Figure 2. The
primary dataset called Renji NAC (RJNAC) contains 1936 (968×2
stages) US images (800×608 pixels) at different treatment stages,
including 968 US images at each stage, with an average of 16 to 20
images per patient. For the prediction of pCR, the dataset was
randomly split into training data (80%) and test data (20%) (a ratio
of 4:1). That is, when dividing the dataset, the pCR and non-pCR
ratios in the samples were kept close. In the training set and the test
set, the pCR and non-pCR ratios were both approximately 0.63.
Specifically, each stage of the training set contained 776 images,
including 300 pCR images and 476 non-pCR images, while the test
set contained 192 images, including 75 pCR images and 117 non-
pCR images. (Figure 1).

Data Preprocessing
The data collected in this study are ultrasonic video data. To
input it into the neural network, we perform a video frame
cutting operation on the video data (24–26). Four preprocessing
steps are applied before starting the training process. As detailed
in Figure 3, the first step is to cut the video with different time
lengths according to the fixed frame interval to form an
indefinite number of M ultrasonic images. The second step is
to select N high-quality breast tissue images by removing some
images containing artifacts, blur, and non-lesion tissue. Blind to
the patients’ private information and pathological results, two
Frontiers in Oncology | www.frontiersin.org 3
professional radiologists (Q.D. and C.F.W. with five and ten
years of experience in breast US, respectively) independently
read the breast US images. They reach a consensus through
discussion to ensure the correctness and repeatability of the
dataset. The N of two stages of each patient must be the same but
can vary for different patients, depending on howmany clear and
usable mass images were contained in the indefinite number of
M images of different patients. The change of N among different
patients does not affect the model learning. N images of two
stages are paired sequentially to ensure that the image pairs of
each pair are closest in the video time sequence. The third step is
that, after removing the nonrelevant breast tissue information,
such as the model number of the instruments, time of scanning
or imaging, and patient information, we retain the remaining
information as a region of interest (ROI). In addition, the
resolution of ROI images obtained after video processing is
consistent with the resolution of ROI images obtained by static
single frame cropping, both of which are 445×445 pixels. Finally,
we use the median filter (27) to denoise the US images and
preserve edge information. All US images are represented as
greyscale images with sizes of 128 × 128 before being fed into the
deep neural network.

Dual-Branch Convolutional
Neural Network
In the prediction of NAC response, the existing studies failed to
take advantage of the correlation among multistage data and the
importance of data at each chemotherapy stage (5, 28–30). To
solve this problem, we developed a model named DBNN based
on feature sharing and weight assignment to predict
chemotherapy response by utilizing US images before and after
the first stage of chemotherapy (NACpre and NAC1,
respectively). Dual branches were designed to extract data
features from NACpre and NAC1. There are feature-sharing
modules between different branches so that the model could
fully use the correlation of the data from each stage. In addition,
the model has a weight assignment module, which considers the
FIGURE 1 | Flowchart for the study. LABC, Locally Advanced Breast Cancer; NAC, Neoadjuvant Chemotherapy; US, Ultrasound; pCR, Pathologic Complete
Response; non-pCR, non-Pathologic Complete Response.
April 2022 | Volume 12 | Article 812463
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FIGURE 3 | Data preprocessing of an ultrasonic video. ROI, Region Of Interest.
A

B

FIGURE 2 | Two sets of tumour US images corresponding to different stages of NAC. (A) a set of images of pCR. (B) a set of images of non-pCR. NACpre, US
images before chemotherapy; NAC1, US images after the first stage of chemotherapy.
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 8124634
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importance of different branch features and provides prior
knowledge for accurate classification.

As shown in Figure 4, the DBNN architecture is composed of
two branches that take a 128 × 128 breast tumour ROI cropped
from NACpre and NAC1 images as input. Each path contains
four convolution blocks, which contain nine convolutional layers
in total. Batch normalization layers (31) follow each
convolutional layer to speed up network convergence, and a
rectified linear unit (ReLU) activation function (32) is used to
increase the nonlinearity of the network. Then, these layers are
followed by four max-pooling layers (33), where each max-
pooling layer is used to perform image downsampling.
Furthermore, DBNN has two fully connected layers for feature
weighting, and features are shared between each branch by
feature fusion.

The details of DBNN feature sharing are shown in the black
dotted box in Figure 5. DBNN consists of four convolutional
blocks, and the input of each block is the output of the previous
block (except for Block 1, where the input is US images from
NACpre and NAC1). Sixty-four kernels are used for each
convolutional layer in Block 1, 128 for each layer in Block 2,
256 for each layer in Block 3 and 512 for each layer in Block 4,
and each kernel has a size of 3 × 3. An US image is input into the
respective branch at each stage. Then, the fusion feature map is
trained through the convolutional layer, batch normalization
layer, and ReLU function and finally downsampled and input
into the other blocks until the convolution operation
is completed.

First, the network starts from the input layer and is expressed
as:

C0 = X (1)

C
0
0 = Y (2)

where X denotes the input of NACpre and Y denotes the input of
NAC1. Then, C0 and C

0
0 are input to their respective convolution

layers, and features are extracted through the convolution kernel.
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Finally, the feature maps C1 and C
0
1 are generated. The formula is

expressed as:

Ci = si wi  ∗ Ci−1 + bið Þ (3)

C
0
i = s

0
i w

0
i  ∗ C

0
i−1 + b

0
i

� �
(4)

where Ci and C
0
i represent the feature maps of layer i, i

ϵ{1,3,5,7,8}. si and s
0
i indicate the ReLU activation function, wi

and w
0
i stand for the network weights of layer i of the two paths,

bi and b
0
i are network biases for the convolution layer, and *

denotes the convolution operation. Ci-1 and C
0
i−1 are used as

inputs of the next layers, Ci and C
0
i , respectively.

Cj = sj wj ∗ Cj−1 + C
0
j−1

� �
+ bj

� �
(5)

C
0
j = s

0
j w

0
j ∗ C

0
j−1 + Cj−1

� �
+ b

0
j

� �
(6)

where Cj and C
0
j represent the feature maps of layer j, j

ϵ{2,4,6,9}. Cj-1 and C
0
j−1 are used as inputs of the next layers, Cj

and C
0
j , respectively.

After each convolution block, we obtain Ck and C
0
k and input

them into the max-pooling layer to reduce the number of
parameters of the feature map:

Ck = maxpooling Ckð Þ (7)

C
0
k =  maxpooling C

0
k

� �
(8)

where Ck and C
0
k represent the feature maps of layer k,

k ϵ{2,4,7,9}.
In contrast to the fusion method in the fully connected layer,

DBNN shares the features between each branch; that is, it uses
fusion when extracting low-level features. As a result, the
model could be trained effectively to screen out crucial
features, including changes in lesion areas before and after
FIGURE 4 | Overview of the DBNN model architecture.
April 2022 | Volume 12 | Article 812463
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NAC treatment, thus affecting the prediction results of
chemotherapy response.

As shown in Figure 6, the weight fusion strategy of DBNN is
uncomplicated, and the black dotted box shows the details of the
red dotted box. First, the feature vector F(X) from the NACpre

branch and the feature vector F(Y) from the NAC1 branch are
input, and then the updated feature vectors F(X') and F(Y') are
obtained by multiplying the two feature vectors by a(0.2) and
b(0.8), respectively. Finally, the sum operation is performed on the
updated features to obtain the feature vector F(Z) which is fused
with the two branches. The process is expressed by the formula:

F Zð Þ = a  ∗ F X 0� �
+ b  ∗ F Y 0� �� �

(9)

After the fully connected layer, we used a dropout strategy
(34) (with a rate of 0.5), which helps to prevent the model from
overfitting during training. Then, the two branches were
Frontiers in Oncology | www.frontiersin.org 6
summed after the fully connected layer with 1024 hidden
units, and a softmax function was applied for pCR classification.

The performance of machine learning algorithms is primarily
affected by their hyperparameters because their performance will be
inferior without optimal hyperparameter values (35). In particular,
the deep learning model relies on good hyperparameter values to
accelerate the convergence of the model and achieve optimal
performance. To compile and evaluate each model, we use cross
entropy (36) as the loss function and a standard accuracy metric
that calculates the mean accuracy rate across all predictions.Table 1
shows the hyperparameter setup. The loss curves show no
overfitting or underfitting in our model (Figure 7).

All experiments were performed on a Dell T640 tower server
deep learning workstation with two NVIDIA GeForce RTX
2080Ti independent graphics cards and two Intel Xeon Silver
4110 CPUs, with RAM extended to 64 GB. The experimental
FIGURE 6 | Diagram of the weight assignment method.
FIGURE 5 | Diagram of the feature-sharing method.
April 2022 | Volume 12 | Article 812463
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platform was in Python version 3.7. DBNN was implemented by
PyTorch, which is a deep learning platform.

Histopathologic Assessment
A pathologist with more than 20 years of experience in breast
pathology assessed the histologic results. All pathologic results from
outside biopsies were reviewed at our institution. Tumour pathologic
characteristics were obtained from histopathologic reports of US
guided core biopsies performed before NAC. The histologic type,
grade, and expressions of HER2, the oestrogen receptor (ER), the
progesterone receptor (PR), and antigen Ki67 were assessed.
Tumours with >1% nuclear staining were denoted as ER/PR
positive. The cut-off point for Ki-67 high expression was 30%. In
terms of HER2 expression, tumours were considered HER2 negative
if they had a score of 0 or 1+ during the immunohistochemical
(IHC) examination, and a score of 3+ indicated that the tumour was
HER2-positive. If the HER2 status was equivocal (IHC score: 2+ or 1
+ to 2+), further investigation using in situ hybridization (ISH) was
required. In our study, pCR was defined as no residual invasive
carcinoma in the breast at surgical resection. Molecular subtypes
were classified according to the St. Gallen Consensus (38).

Statistical Analysis
Our statistical analysis was performed using IBM SPSS Statistics 22
(Armonk, NY, USA). Clinicopathological characteristics and US
images before and after the first stage of chemotherapy, including
maximum tumour diameter and tumour histologic type, were
7

collected. The continuous variables were described as the range,
mean and standard deviation, while the categorical variables were
reported as counts with percentages. T-tests, chi-squared tests, or
Fisher exact tests for independent samples were used to determine
significant differences between the pCR and non-pCR groups. To
evaluate the performance of the developed models, we calculated
six performance metrics: accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and F1-
score. The predicted performance was assessed by using receiver
operating characteristic (ROC) curves, and the area under the curve
(AUC) scores were compared. Then, the results were analysed to
select the best model to predict NAC response in patients with
breast cancer utilizing breast US images. P <.05 was considered to
indicate a significant difference. The performance results of the
model and other methods were compared by using the Mann-
Whitney U test. The 95% CIs for AUC were estimated by using the
DeLong method (39–41). Statistical computing was implemented
with the Scipy package, a Python-based open-source data
processing tool. For the prediction of pCR, DBNN was trained
on the training set and then validated on the test set.

F1-score conveys the balance between PPV and sensitivity.
The closer the value is to 1, the better the performance of the
method. The F1-score equation is defined as follows:

F1 − score =
2TP

2TP + FP + FN
(10)
RESULTS

Patient Characteristics
One hundred and fourteen women comprised the final study
group (age range: 26-72 years; mean age: 49.92 years). The median
maximum diameter of the tumours in the pretreatment US images
was 3.82 cm (range: 1.35-8.2cm). The patient characteristics and
FIGURE 7 | The loss curves of DBNN.
TABLE 1 | The hyperparameters of the DBNN architecture.

Hyperparameter Value

Optimizer Adam (37)
Learning rate 0.001
Loss function Cross entropy
Batch size 8
Epochs 500
April 2022 | Volume 12 | Article 812463
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the sizes of the tumours in the pCR and non-pCR groups are listed
in Table 2. Of the 114 patients, 39 (34.2%) achieved pCR at the
final pathologic evaluation. No significant differences were found
in age, molecular subtype, or maximum tumour diameter between
the pCR and non-pCR groups. For the 39 patients who achieved
pCR, no residual invasive carcinoma in the breast or axillary
lymph nodes was found in 37 (94.87%) patients. Thirty-seven
(85.29%) patients showed no evidence of malignant cells in the
breast, and 2 (8.82%) patients showed only ductal carcinoma in
situ. Of the 75 patients with non-pCR, partial response was
observed in 72 patients, and disease stability was observed in 3
patients. Disease progression was not observed for any patient in
this study cohort. The pCR group showed a higher proportion of
ER negativity (20 [51.3%], P <0.001), PR negativity (13 [33.3%],
P=0.029), HER2 positivity (20 [51.3%], P=0.042) and Ki-67 high
expression (36 [92.3%], P=0.044) than the non-pCR group. There
were significant differences in molecular types between the pCR
and non-pCR groups (P<0.001), although luminal B was the main
molecular type. The patient characteristics of the tumours in the
training and test cohorts are listed in Table 3. There was no
significant difference in the expression of biomarkers (i.e., ER, PR,
HER2, and Ki-67) between the training and test cohorts. Of the 39
patients who achieved pCR at the final pathologic evaluation, 30/
91 (32.97%) patients and 9/23 (39.13%) patients achieved pCR in
the training and test sets, respectively (Table 4).

Performance Analysis of DBNN
Feature Sharing
As mentioned above, it can be understood that the number of
layers in a CNN has a specific impact on the prediction and
classification performance of the model. Thus, CNNs with
different numbers of layers were designed in this experiment.
The experimental results were compared to determine the best
Frontiers in Oncology | www.frontiersin.org 8
layer number for the dual branch network. The performance of
different convolution layer numbers is shown in the first five
rows of Table 5. It can be seen that with the deepening of the
network, the performance indices of the dual branch model
increased first and then decreased in general. Here, X denotes the
number of layers of each branch network in CNN-X. CNN-9
performs the best out of the models with different numbers of
layers, and it has an accuracy of 81.77%. Moreover, it also ranks
the highest in specificity, PPV, and F1-score. Therefore, in this
study, the nine-layer CNN was selected as the backbone of the
model. Next, the influences of feature sharing and the weight
assignment strategy on the model are explored.

At present, there are many methods of feature sharing,
including feature element sum and feature concatenation,
which are the classic feature fusion methods (42–46). Thus, we
also explored the influence of two different strategies on model
performance. In the last two rows of Table 5, the performance
comparison results of the model with different feature-sharing
strategies are shown. CNN-9 FSS represents the CNNmodel that
uses the feature element sum method, while CNN-9 FSC
represents the CNN model that uses the feature concatenation
method. Table 5 shows that the model achieves better
performance when the feature element sum method is used.
The accuracy, sensitivity, NPV, and F1-score values were higher
than those obtained by the CNN with feature concatenation and
CNN-9 without feature sharing. Therefore, DBNN adopts the
feature element sum method as its feature-sharing method.

Weight Assignment of DBNN Feature
Connection
DBNN is a dual-branch network with two inputs and one output,
and the two inputs are NACpre and NAC1 chemotherapy data.
The output is the probability of predicting pathological results.
TABLE 2 | Clinical characteristics of pCR and non-pCR breast cancer patients.

Characteristics non-pCR Group(n= 75) pCR Group (n= 39) P Value

Age (y)* 50.6 ± 10.7 48.8 ± 11.3 0.367
Max tumour diameter (cm) 3.99 ± 1.49 3.51 ± 1.57 0.112
ER status <0.001
Negative 12 (16.0) 20 (51.3)
Positive 63 (84.0) 19 (48.7)
PR status 0.029
Negative 11 (14.7) 13 (33.3)
Positive 64 (85.3) 26 (66.7)
HER2 status 0.042
Negative 52 (69.3) 19 (48.7)
Positive 23 (30.7) 20 (51.3)
Ki-67 0.044
Low 19 (25.3) 3 (7.7)
High 56 (74.7) 36 (92.3)
Tumour molecular type 0.002
Luminal A 13 (17.3) 1 (2.6)
Luminal B 54 (72) 25 (64.1) 0.595
HER2 positive 19 (35.2) 11 (44.0)
HER2 negative 35 (64.8) 14 (56.0)
HER2 positive (Nonluminal) 3 (4.0) 9 (23.1)
Triple-negative cancer 5 (6.67) 4 (10.3)
April 2022 | Volume 12 | Article
Data represent the number of patients, and data in parentheses are percentages. *Data are ± standard deviations; ER, oestrogen receptor; PR, progesterone receptor; HER2, human
epidermal growth factor receptor 2; Ki-67, antigen Ki67.
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Therefore, a feature map from each branch network needs to
connect the features and then maps from a high-dimensional
vector to a low-dimensional vector to complete the classification
task. We compared the experimental results of the feature
element sum method, feature concatenation method, and
feature weight assignment method of the dual-branch network
to explore different feature connection methods (see Table 6).
CNN-9 FSS_concat represents the CNN model with the feature
concatenation method, and CNN-9 FSS_sum represents the
Frontiers in Oncology | www.frontiersin.org 9
CNN model with the feature element sum method. CNN-9
FSS (A, B) represents the CNN model with the weight
connection method, where A is the weight of the NACpre

branch and B is the weight of the NAC1 branch.
As shown in Table 6, when the feature weight of the NACpre

branch is 0.2 and when that of the NAC1 branch is 0.8, the
model’s performance is the best, with an accuracy of 87.50%. In
addition, the F1-score is higher than that of the other models,
which may be because NAC1 stage data contributed more to the
TABLE 4 | Clinical characteristics of the training and test sets containing pCR and non-pCR breast cancer patient data.

Variables Training set (n= 91) Test set (n= 23)

pCR (n=30) non-pCR (n=61) pCR (n=9) non-pCR (n=14)

Age (y)* 50.6 ± 11.3 50.9 ± 11.1 41.9 ± 8.81 49.21 ± 9.13
Max tumour diameter (cm) 3.44 ± 1.46 4.07 ± 1.63 2.71 ± 1.07 2.99 ± 1.38
ER status
Negative 15 (50.0) 11 (18.0) 5 (55.6) 1 (7.2)
Positive 15 (50.0) 50 (82.0) 4 (44.4) 13 (92.9)
PR status
Negative 10 (33.3) 8 (13.1) 3 (33.3) 3 (21.4)
Positive 20 (66.7) 53 (86.9) 6 (66.7) 11 (78.6)
HER2 status
Negative 15 (50) 40 (65.6) 4 (44.4) 12 (85.7)
Positive 15 (50) 21 (34.4) 5 (55.6) 2 (14.3)
Ki-67
Low 1 (3.3) 15 (24.6) 2 (22.2) 4 (28.6)
High 29 (96.7) 46 (75.4) 7 (77.8) 10 (71.4)
Tumour molecular type
Luminal A 0 (0) 10 (16.4) 1 (11.1) 3 (21.4)
Luminal B 20 (66.7) 44 (72.1) 5 (55.6) 10 (71.4)

HER2 positive 8 (40.0) 18 (40.9) 3 (60.0) 1 (10.0)
HER2 negative 12 (60.0) 26 (59.1) 2 (40.0) 9 (90.0)

HER2 positive (Nonluminal) 7 (23.3) 3 (4.9) 2 (22.2) 0 (0)
Triple-negative cancer 3 (10.0) 4 (6.6) 1 (11.1) 1 (7.1)
April 2022 | Volume 12
Data represent the number of patients, and data in parentheses are percentages. *Data are ± standard deviations; ER, oestrogen receptor; PR, progesterone receptor; HER2, human
epidermal growth factor receptor 2; Ki-67, antigen Ki67.
TABLE 3 | Clinical characteristics of the breast cancer patients in the training and test cohorts.

Variables Training set (n= 91) Test set (n= 23) P Value

ER status 1.000
Negative 26 (28.6) 6 (26.1)
Positive 65 (71.4) 17 (73.9)
PR status 0.569
Negative 18 (19.8) 6 (26.1)
Positive 73 (80.2) 17 (73.9)
HER2 status 0.478
Negative 55 (60.4) 16 (70.0)
Positive 36 (39.6) 7 (30.4)
Ki-67 0.381
Low 16 (17.6) 6 (26.1)
High 75 (82.4) 17 (73.9)
Tumour molecular type 0.823
Luminal A 10 (11.0) 4 (17.4)
Luminal B 64 (70.3) 15 (65.2) 0.480

HER2 positive 26 (40.6) 4 (26.7)
HER2 negative 38 (59.4) 11 (73.3)

HER2 positive (Nonluminal) 10 (11.0) 2 (8.7)
Triple-negative cancer 7 (7.7) 2 (8.7)
| Article
Data represent the number of patients, and data in parentheses are percentages. ER, oestrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2;
Ki-67, antigen Ki67.
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prediction than NACpre stage data. It can be seen from the last
nine rows of Table 6 that the average accuracy and F1-score
values are superior when the NAC1 branch is heavier than the
NACpre branch. Therefore, the method of weight connection is
adopted in the model, and the experimental results show that this
method can achieve the best results. In the following
experiments, CNN-9 FSS (0.2, 0.8) is called DBNN.

Results of DBNN Data Augmentation
As stated earlier, there was a data imbalance problem in RJNAC.
The amount of data with non-pCR pathological results was
approximately twice that with pCR pathological results,
affecting the model’s performance. Therefore, we explored the
impact of different data augmentation strategies on the
performance of DBNN. The experimental results were
compared using nonaugmented data, geometrical ly
transformed data (47), Mixup data (48), and small amounts of
upsampled data. Geometric transformation techniques include
rotations, flips, and zooming to generate new training samples to
maintain realistic tumour shapes. Moreover, small amounts of
data upsampling techniques apply geometric transformations to
non-pCR examples to achieve a quantity balance between the
two categories, solving the data imbalance problem manually.

As seen from Table 7, the performance of the model is better
without data augmentation. First, it can be seen that the
performance of the model on nonaugmented data was better
than that of the model on geometrically transformed data.
Augmenting both types of data aggravate the data imbalance,
leading to degradation in the performance of the model; hence,
Mixup data augmentation also degrades model performance.
Frontiers in Oncology | www.frontiersin.org 10
In addition, Mixup may not be suitable for the augmentation of
medical datasets because it disturbs the relationship between a
lesion and the surrounding area, making the model learn
incorrect information. Finally, we enhance the sample size of
the two types of data so that they are consistent by sampling
small numbers of samples. The experimental results on the
augmented data were not as good as the results on the
nonaugmented data. Perhaps DBNN learns the redundant
features of the data during the learning process, resulting in
model performance degradation.

Comparison With the Single
Branch Models
To further validate the potential of DBNN in predicting the
efficacy of NAC, it was used to predict the pathological
classification of patients early based on the different stage data
of NAC treatment in the RJNAC dataset. Compared with the AUC
value in the first two rows and the last row in Table 8, we know
that the model’s prediction results when using a single branch
network for single-stage data were not as good as those when using
multistage data. In addition, the performance of the model trained
on the NAC1 data was slightly superior to that trained on the
NACpre data when using single-stage data, which indicates the
necessity of DBNN weight assignment. From Table 8 and
Figure 8, we can see that the areas under the ROC curve for
NACpre (Azpre), NAC1 (Az1) and NACpre+NAC1 (Azpre+1) were
0.730, 0.739 and 0.939, respectively. The performance of the model
trained on the NAC1 data shows higher specificity than that
trained on the NACpre data. The sensitivity of the model trained
on NACpre was superior to that trained on NAC1 data. The value
TABLE 6 | Performance of the model with different feature connection methods.

Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score

CNN-9 FSS_contact 83.33 97.33 74.36 70.87 97.75 0.820
CNN-9 FSS_sum 82.81 82.67 82.91 75.61 88.18 0.790
CNN-9 FSS (0.9, 0.1) 85.94 82.67 88.03 81.58 88.79 0.821
CNN-9 FSS (0.8, 0.2) 83.85 85.33 82.91 76.19 89.81 0.805
CNN-9 FSS (0.7, 0.3) 82.81 81.33 83.76 76.25 87.50 0.787
CNN-9 FSS (0.6, 0.4) 77.08 85.33 71.79 65.98 88.42 0.744
CNN-9 FSS (0.5, 0.5) 83.33 78.67 86.32 78.67 86.32 0.787
CNN-9 FSS (0.4, 0.6) 84.38 81.33 86.32 79.22 87.83 0.803
CNN-9 FSS (0.3, 0.7) 82.29 73.33 88.03 79.71 83.74 0.764
CNN-9 FSS (0.2, 0.8) 87.50 90.67 85.67 80.00 93.46 0.850
CNN-9 FSS (0.1, 0.9) 83.85 82.67 84.62 77.50 88.39 0.800
April 2022
 | Volume 12 | Artic
Values in bold black font represent the best performance in each column.
TABLE 5 | Performance of the model with different convolution layer numbers and feature-sharing methods.

Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score

CNN-8 77.08 69.33 82.05 71.23 80.67 0.703
CNN-9 81.77 69.33 89.74 81.25 82.03 0.748
CNN-10 76.56 73.33 78.63 68.75 82.14 0.710
CNN-11 77.60 77.33 77.78 69.05 84.26 0.730
CNN-12 75.00 70.67 77.78 67.09 80.53 0.688
CNN-9 FSS 83.33 97.33 74.36 70.87 97.75 0.820
CNN-9 FSC 81.77 85.33 79.49 72.73 89.42 0.785
Values in bold black font represent the best performance in each column.
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of Azpre+1 was significantly higher than that of Azpre and Az1 (P
<0.01). However, there was no significant difference between the
values of Azpre and Az1 (P =0.3244).

Moreover, some more sophisticated deep learning models
were tested for single branch classification due to CNN-9 was
used to train single branch models. The experimental results are
shown in Table 9. The AUC of CNN-9 on NACpre data was the
highest (AUC=0.730), and the AUC value on NAC1 data was
very close to the optimal value (0.739 vs. 0.756). Therefore, we
believe that CNN-9 can be used as a representative of the classical
single branch network.

Comparison With the Latest Studies
At present, there are few studies on the prediction of NAC
response for breast cancer based on US images, and the datasets
used in each study and each imaging protocol are different, so it is
difficult to compare the results directly. However, to verify the
research value of DBNN, this study referred to the four latest
papers, reproduced the methods according to the technical details
described in the articles, and applied them to the RJNAC dataset
(5, 18, 19, 28). Two identical Inception-ResNet-V2 CNNs based
Siamese models without fine-tuning were reimplemented to
extract generic features. Then the difference between the feature
vectors was used to train a logistic regression model for the
prediction (5). We reimplemented a two-input CNN, in which
each input branch consisted of four blocks of 2D convolution
layers, each followed by a ReLU activation function and max-
pooling layer. A dropout layer was applied after every two
convolutional blocks. Then, the two branches were concatenated
after a fully connected layer followed by ReLU, dropout (with a
rate of 40%), and a Sigmoid function for the final classification
(18), while two dense layers were processed to yield the final
output (19). The developed multi-input deep learning architecture
contained two parallel sub-architectures with similar layers to the
single architecture, consisting of six blocks with multiple
convolutional layers, each followed by a ReLU activation
function and max-pooling layer. Then, a concatenation was
applied between two single architectures, a dropout of 50%, and
a fully connected layer was used at the end of the network to
Frontiers in Oncology | www.frontiersin.org 11
provide a classification result (28). In these studies, three of the
approaches were based on MRI data (18, 19, 28), and one was
based on US image data (5). In Figure 9, the area under the ROC
curve for DBNN (AzDBNN) was significantly higher than that of
AzByra (5) (P =0.004). However, there was no significant difference
in the values of AzDBNN and the values of the area under the ROC
curve for the other methods (Table 10). We also show the
prediction results and pathology labels of the model on NACpre

and NAC1 images and the probability of the model output
prediction results in Figure 10.
DISCUSSION

The early prediction of chemotherapy response in patients with
breast cancer is crucial for improving and personalizing patient
treatment. In this study, a novel deep learning method, DBNN,
based on US images for the early prediction of NAC response in
patients with breast cancer was proposed and validated. The
experimental results showed that the best prediction
performance was obtained with the DBNN model using feature
sharing and weight assignment. It was worth noting that all the
performances shown in Tables 5–10 were from the test set. The
highest diagnostic performance was obtained when the US image
information of NACpre and NAC1 was combined, in which the
accuracy, sensitivity, specificity, F1-score, and AUC values were
87.50%, 90.67%, 85.67%, 0.850, and 0.939, respectively.

The DBNN approach for the early prediction of NAC
proposed in this study has several advantages.

First, compared to the previous traditional machine learning
methods, which mainly depend on feature engineering and
require domain knowledge to build feature extractors, our deep
learning approach is automatic and does not require feature
engineering. Methods based on machine learning are limited in
their function, as they are dependent on handcrafted features.
Moreover, our model considers not only the tumoral region but
also the tumour’s surrounding tissue by using entire breast
tumour images. Supplementing the US features extracted from
a tumour itself with features computed within the tumour’s
TABLE 8 | Performance evaluation of DBNN using data from different chemotherapy stages.

Data Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score AUC (95% CI) P value

NACpre 71.35 76.00 68.38 60.64 81.63 0.675 0.730 (0.657,0.802) <0.01
NAC1 73.44 53.33 86.32 71.43 74.26 0.611 0.739 (0.664,0.813) <0.01
NACpre+NAC1 87.50 90.67 85.67 80.00 93.46 0.850 0.939 (0.907,0.972) -
April 2
022 | Volume 12 | Article
Values in bold black font represent the best performance in each column.
TABLE 7 | Performance of DBNN with different data augmentation strategies.

Strategies Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score

Nonaugmentation 87.50 90.67 85.67 80.00 93.46 0.850
Geometric transformation 76.04 64.00 83.76 71.64 78.40 0.676
Mixup 70.83 46.67 86.32 68.63 71.63 0.556
Small amount of upsampling 79.69 77.33 81.20 72.50 84.82 0.748
Values in bold black font represent the best performance in each column.
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surrounding tissue, such as the peritumoural region, may
improve the prediction of pCR from US images (49, 50).
Second, different from the existing deep learning algorithms,
DBNN fuses features of each branch in the process of extracting
low-level features, which may effectively screen out important
features through the training network to achieve more accurate
early prediction results. Third, in contrast to the existing
methods for predicting NAC response using two-stage data, we
assume that the importance of the data before and after
chemotherapy is inconsistent. Therefore, DBNN introduces the
weight assignment strategy to increase the weight of data features
after chemotherapy by using prior knowledge to guide network
training to affect the NAC response prediction results.
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It is difficult to directly compare our results to those of other
methods reported in other studies due to different data
acquisition techniques, analysis protocols and subject groups.
Moreover, there are few studies that use deep learning for NAC
response early prediction in breast cancer based on US images.
Nevertheless, we can compare our results with those of models
trained on our datasets. The studies performed by El Adoui et al.
(28), Braman et al. (19), and El Adoui et al. (18) were based on
MRI data, and the study designed by Byra et al. (5) was based on
US image data. All four methods are two-input CNN
architectures for the prediction of breast tumour NAC
response from follow-up images. Each branch was operated on
by a series of convolution-based operations and summarized into
a set of deep features, which were then combined and processed
by the feature fusion of two branches to generate a final score
representing the response probability. However, those methods
only considered the late fusion of deep features. The models
cannot effectively share data features at different stages in their
respective branches and may even filter out crucial features, such
as changes in lesion areas. Therefore, they cannot make full use
of the relationship between different data for model training. In
Table 10, comparisons of the performance of the state-of-the-art
methods and our method were made based on seven indices:
accuracy, sensitivity, specificity, PPV, NPV, F1-score and AUC.
Our method obtained better results on most of the evaluation
indices. The ROC curves based on the true positive rate (TPR)
and false positive rate (FPR) for the existing methods and our
proposed method are shown in Figure 9. The AUC values of all
the algorithms were over 0.8, and the largest AUC value (0.939)
was obtained by our model. The area under the ROC curve
obtained by DBNN (AzDBNN) was significantly higher than that
obtained by AzByra (5) (P =0.004). The model developed by Byra
et al. (5) was based on a small dataset with images from 30
patients, while our dataset contained images from 114 patients.
We can train our deep learning model from scratch because a
model pretrained on natural images is often not the best model
when applied to medical images. Moreover, we shared the data
features of the two streams in the training process and assigned
TABLE 9 | Comparison of CNN-9 and sophisticated DL models for single branch classification.

Methods Data Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score AUC

CNN-9 NACpre 71.35 76.00 68.38 60.64 81.63 0.675 0.730
NAC1 73.44 53.33 86.32 71.43 74.26 0.611 0.739

ResNet NACpre 70.83 60.00 77.78 63.38 75.21 0.616 0.681
NAC1 73.44 42.67 93.16 80.00 71.71 0.557 0.748

EfficientNet NACpre 67.19 70.67 64.96 56.38 77.55 0.627 0.710
NAC1 72.92 74.67 71.79 62.92 81.55 0.683 0.750

MobileNet NACpre 72.92 60.00 81.20 67.16 76.00 0.634 0.711
NAC1 73.96 46.67 91.45 77.78 72.79 0.583 0.756

ResNeXt NACpre 69.79 53.33 80.34 63.49 72.87 0.580 0.653
NAC1 71.35 33.33 95.73 83.33 69.14 0.476 0.639

ShuffleNet NACpre 66.15 42.67 81.20 59.26 68.84 0.496 0.640
NAC1 71.35 66.67 74.36 62.50 77.68 0.645 0.707

WRN NACpre 67.71 58.67 73.50 58.67 73.50 0.587 0.668
NAC1 72.92 57.33 82.91 68.25 75.19 0.623 0.726
April 2022 | Vol
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Values in bold black font represent the best performance in each column.
FIGURE 8 | ROC curves of DBNN using data from different
chemotherapy stages.
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the weights of the different stages by using prior knowledge to
obtain more accurate results.

Although the proposed method has improved the prediction
accuracy of NAC response, there are still some limitations in this
study. First, due to the small dataset of US images collected from
a single centre, the model’s generalization ability needs to be
further improved. Since there is currently no public dataset of
ultrasound images before and after the first stage of
chemotherapy for NAC, our next work will continue to collect
data from multi-centres to further verify our model’s
generalization ability. It is generally accepted that the larger a
dataset is, the better the performance of the deep learning models
(51, 52). Limited datasets are a prevalent challenge in medical
image analysis. Second, due to the heterogeneous nature of the
histopathologic and molecular subtypes of breast cancer
included in our study, the pathologic response to NAC may be
affected and may cause selection bias. Finally, we did not add
breast cancer molecular subtype to our method, which may help
to predict the response of breast cancer to NAC early. The
application of DBNN is only in the primary stage. Therefore,
how to extend our method to clinical decision-making is worthy
of in-depth study.

In the future, there will be at least two aspects of NAC
response prediction models based on different stages of data
Frontiers in Oncology | www.frontiersin.org 13
that can be further developed. On the one hand, DBNN should
also consider more feature methods, such as combining low-level
features and high-level features by utilizing residual cross-branch
connections. Moreover, adaptive weight allocation can be
regarded as the weight assignment strategy. On the other hand,
the robustness and generalization ability of DBNN need
further verification.

In conclusion, our study proposes a novel dual-branch DBNN
model based on feature sharing and weight assignment to predict
the efficacy of NAC treatment for breast cancer utilizing
greyscale US images. DBNN has two remarkable advantages:
feature sharing and weight assignment. Feature sharing can
make the model consider the correlations between data in
different stages of NAC during training. Moreover, weight
assignment, which provided prior knowledge, emphasizes the
importance of data at different NAC treatment stages. The results
show that DBNN has the potential to enable the early prediction
of pCR and achieved good prediction performance when applied
on NACpre and NAC1 data. However, a further large-scale study
with an independent external validation dataset is needed before
this approach can be used for actual clinical decision-making,
and it may become an important monitoring tool for the early
prediction of the response to NAC in patients with breast cancer.
TABLE 10 | Comparison of DBNN and other NAC prediction methods on the RJNAC dataset.

Methods Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score AUC (95% CI) P value

DBNN 87.50 90.67 85.67 80.00 93.46 0.850 0.939 (0.907,0.972) -
Byra (5) 77.08 52.00 93.16 82.98 75.17 0.639 0.804 (0.739,0.869) 0.004
El Adoui (28) 82.81 81.33 83.76 76.25 87.50 0.787 0.882 (0.830,0.930) 0.099
Braman (19) 87.50 82.67 90.60 84.93 89.08 0.838 0.932 (0.897,0.968) 0.500
El Adoui (18) 86.46 76.00 93.16 87.69 85.83 0.814 0.930 (0.894,0.966) 0.381
April 2
022 | Volume 12 | Article
Values in bold black font represent the best performance in each column.
FIGURE 10 | Diagram of the ground truth and prediction results.
FIGURE 9 | ROC curves of DBNN and other NAC prediction methods.
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