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Liver cirrhosis is a form of liver fibrosis resulting from chronic hepatitis caused by various
liver diseases, such as viral hepatitis, alcoholic liver damage, nonalcoholic steatohepatitis,
autoimmune liver disease, and by parasitic diseases such as schistosomiasis. Liver fibrosis
is the common pathological base and precursors of cirrhosis. Inflammation and disorders
of lipid metabolism are key drivers in liver fibrosis. Studies have determined that parts of the
arachidonic acid pathway, such as its metabolic enzymes and biologically active products,
are hallmarks of inflammation, and that aberrant peroxisome proliferator-activated
receptor gamma (PPARγ)-mediated regulation causes disorders of lipid metabolism.
However, despite the ongoing research focus on delineating the mechanisms of liver
fibrosis that underpin various chronic liver diseases, effective clinical treatments have yet to
be developed. Berberine (BBR) is an isoquinoline alkaloid with multiple biological activities,
such as anti-inflammatory, anti-bacterial, anti-cancer, and anti-hyperlipidemic activities.
Many studies have also found that BBR acts via multiple pathways to alleviate liver fibrosis.
Furthermore, the absorption of BBR is increased by nitroreductase-containing intestinal
flora, and is strengthened via crosstalk with bile acid metabolism. This improves the oral
bioavailability of BBR, thereby enhancing its clinical utility. The production of butyrate by
intestinal anaerobic bacteria is dramatically increased by BBR, thereby amplifying butyrate-
mediated alleviation of liver fibrosis. In this review, we discuss the effects of BBR on liver
fibrosis and lipid metabolism, particularly the metabolism of arachidonic acid, and highlight
the potential mechanisms by which BBR relieves liver fibrosis through lipid metabolism
related and intestinal flora related pathways. We hope that this review will provide insights
on the BBR-based treatment of liver cirrhosis and related research in this area, and we
encourage further studies that increase the ability of BBR to enhance liver health.
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1 INTRODUCTION

Liver cirrhosis is a major global disease burden and leads to increased morbidity.(de Marco et al.,
1999). The major causes of liver cirrhosis are viral hepatitis, alcoholic liver diseases and nonalcoholic
fatty liver diseases, and some parasitic diseases. (Pinzani et al., 2011; Tsochatzis et al., 2014; Itaba
et al., 2019). Liver fibrosis is the pathological hallmark and precursor of cirrhosis, and it is dependent
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on the activation of hepatic stellate cells (HSCs). (Tsuchida and
Friedman 2017; Kisseleva and Brenner 2021). Recently, it has
been determined that the balance between liver tissue
regeneration and fibrosis, and their relationship with disorders
of the liver microenvironment, play an important role in the
pathology of liver fibrosis. (Poisson et al., 2017; Faillaci et al.,
2018). Aberrant inflammatory processes in the liver and primary
metabolic pathways in hepatocytes, together with intestinal flora,
shape the liver microenvironment, with lipid metabolism playing
a crucial role in this regard. Liver cirrhosis is thus a complicated,
multi-phase, multi-pathway disease, whose pathogenesis remains
to be fully characterized.

2 MECHANISMS OF HEPATIC STELLATE
CELLS ACTIVATION AND LIVER FIBROSIS

Liver fibrosis is a wound healing process that is triggered by
chronic liver damage. A central event of fibrogenesis is the trans-
differentiation of quiescent HSCs to a myofibroblastic phenotype.
(Friedman 2008; Wilson et al., 2015). Vitamin A-rich, lipid-
storing HSCs show increased proliferative activity and fibrotic
potential when activated by various types of liver stimuli. (Iredale
2007; Ramachandran et al., 2012). These activated HSCs can also
release inflammatory signals to maintain myofibroblast activity
and recruit adjacent normal cells for further activation and
extracellular matrix (ECM) deposition, resulting in liver
metabolism dysfunction and intrahepatic reconstruction.
(Tsuchida and Friedman 2017; Henderson et al., 2020; Ginès
et al., 2021; Kisseleva and Brenner 2021). HSC activation is
controlled by multiple mechanisms, such as Hedgehog
signalling, nuclear factor kappa B (NF-κB) signalling and
mitogen-activated protein kinase (MAPK) activity.
(Hellerbrand et al., 1998; Choi et al., 2009; S et al., 2009; Kim
et al., 2017). Abnormal endoplasmic reticulum (ER) stress,
oxidative stress, autophagy and ferroptosis, accompanied by
inflammasome-associated signals, are common features of
fibrogenesis. (Koo et al., 2016; Kim et al., 2017; Yang et al.,
2021; Yi et al., 2021; Zhang et al., 2021). However, the
pathogenesis of HSC activation and liver fibrosis remains unclear.

A growing body of evidence has revealed that HSC activation
and fibrogenesis are associated with the versatility of liver
metabolism and the tightly controlled homeostasis of intestinal
flora. The dysregulation of lipid metabolism often presents as an
imbalance between lipid synthesis, uptake and oxidation, which
in turn causes liver inflammation and fibrosis.(Moustafa et al.,
2012; Ristić-Medić et al., 2013; Arain et al., 2017). Acetyl-CoA
carboxylase (ACC) inhibition has been shown to perturb fatty
acid β-oxidation and de novo lipogenesis to reduce the sources of
energy for HSC activation. (Hernández-Gea and Friedman 2012;
Trivedi et al., 2021). Interestingly, peroxisome proliferator-
activated receptor-gamma (PPAR-γ) and sterol regulatory
element binding protein-1c (SREBP-1c), which are markers of
quiescent HSCs, have been shown to modulate the adipogenic
programme and thereby regulate HSC activation. (Eberlé et al.,
2004; Tsukamoto 2005; Tsukamoto et al., 2006; Shao et al., 2016).
The activation of farnesoid X receptors (FXRs) can suppress HSC

activation and liver fibrosis via the reduction of triglycerides.
(Maloney et al., 2000; Fiorucci et al., 2004). Surprisingly, it has
also been suggested that intestinal flora can serve as independent
regulators of liver metabolism, thereby influencing the
progression, prognosis and regression of liver fibrosis. (Wei
et al., 2013). This insight has been conceptualised as the gut-
liver axis and has been a focus of recent studies on fibrogenesis.
(Albillos et al., 2020; Bajaj and Khoruts 2020). Chen et al. showed
that compared to healthy patients, cirrhosis patients have higher
proportions of pathogenic Enterobacteriaceae and
Streptococcaceae and lower proportions of beneficial
Lachnospiraceae. (Chen Y. et al., 2011). In addition, the
experimental antibiotic-mediated reduction of intestinal flora
has been shown to decrease the abundance of microorganisms
in the liver microenvironment, thereby alleviating liver fibrosis.
(Seki et al., 2007). Conversely, germ-free mice show more severe
ECM deposition and liver fibrosis than normal mice. (Mazagova
et al., 2015; Henderson et al., 2020). These results suggest that
some intestinal flora are hepatoprotective and others are harmful,
and that the dysbiosis of intestinal flora is a key driver of HSC
activation and liver fibrosis. Thus, lipid metabolism and intestinal
flora may warrant exploration as targets for drugs for the
treatment of liver fibrosis.

Despite mounting histological evidence suggesting that liver
fibrosis is reversible, (Ni et al., 2014; Mogler et al., 2015) no
methods can completely halt the pathological process. Current
drugs applied in liver fibrosis treatment are primarily based on
anti-inflammation and oxidative stress with limited effects.
(Czaja 2014). Therefore, there is an urgent need to develop
and validate effective therapies that specifically target liver
fibrosis. Data show that berberine (BBR) functions via
multiple networks to protect liver, resisting fibrosis and
improving metabolism. (Zhang BJ. et al., 2008; Sun et al.,
2009; Kumar et al., 2015; Zhang et al., 2016). In this review,
we examine the underlying lipid metabolism-related and
intestinal flora-related mechanisms of the biological activity of
BBR and its therapeutic potential against liver fibrosis.

3 Sources, Bioavailability and
Pharmacokinetic Characteristics of
Berberine and its Derivatives
BBR, or 2,3-methylenedioxy-9,10-dimethoxyprotoberberine
chloride, is a quaternary ammonium salt with a molar mass of
336.36122 g/mol. (Caliceti et al., 2016). It is one of a group of
benzylisoquinoline alkaloids found in plants of the genus Berberis,
such as B. vulgaris (barberry), Phellodendron amurense (Amur cork
tree), and Coptis chinensis (Chinese goldthread), and the latter two
species are used in Chinese herbal medicines. (Yin et al., 2008). BBR
has a plethora of biological activities, such as antibacterial,
antiinflammatory, (Kumar et al., 2015) anticancer, (Pandey et al.,
2008) antidiabetic, (Zhang Y. et al., 2008) and hypolipidemic (Kong
et al., 2004a) activities. However, BBR self-aggregates, does not
effectively permeate into tissues, is subject to efflux and
hepatobiliary re-excretion, (Feng et al., 2015) and undergoes first-
pass processing in the small intestine. Thus, BBR is poorly absorbed
in the body, and has an absolute bioavailability of 0.36%. (Liu et al.,
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2010a). BBR is metabolized in the liver by oxidative demethylation,
which is performed by the cytochrome P450 enzyme system (mainly
by CYP2D6, CYP1A2 and CYP3A4), to yield four major phase I
metabolites (demethyleneberberine, berberrubine, jatrorrhizine, and
thalifendine) (Liu et al., 2016); these are subsequently glucuronidated
via UDP-glucuronosyltransferase (UGT) to their corresponding
phase II metabolites. (Guo et al., 2016; Liu et al., 2016). These
BBRmetabolites act on the same targets as BBR (e.g., AMPK and the
low-density lipoprotein receptor (LDLR)) but with a lower potency.
(Li et al., 2011a). Ultimately, BBR and its derivatives are excreted
primarily by hepatobiliary and renal pathways. Thus, there is a need
for effective strategies to improve the oral bioavailability of BBR to
enable its effective use in clinical settings.

4 ANTI-FIBROSIS EFFECTS OF BERBERINE
IN THE LIVER

Several studies have demonstrated the efficacy of BBR against
fibrotic diseases in vivo, including pulmonary fibrosis, (Chitra
et al., 2015) myocardial fibrosis, (Zhang et al., 2014) renal
fibrosis, (Wang et al., 2014) and adipose tissue fibrosis, (Xu X.
et al., 2021) and multifaceted causal relationships illustrate the
efficacy of BBR against liver fibrosis. (Wang et al., 2016; Bansod
et al., 2021). As a multifunctional drug used in traditional Chinese
medicine, berberine (BBR) can be used to treat various liver diseases.
(Yang et al., 2021). The latest study from our team shows that BBR is

a potential anti-liver fibrosis agent. In fibrotic mouse models, we
found that BBR alleviates liver fibrosis by inducing ferrous-ion redox
reactions to activate reactive oxygen species (ROS)-mediated
ferroptosis in hepatic stellate cells, which suggests a possible
strategy for the treatment of liver fibrosis. (Yi et al., 2021).
Similar effects of BBR in carbon tetrachloride (CCl4)-induced
liver fibrosis models were also demonstrated by other team
recently. (Bansod et al., 2021). The activity of BBR against these
multifactorial chronic diseases may be attributable to its multi-
targeted mode of action. (Zhang et al., 2011). Inflammation and
oxidative stress are key drivers of liver fibrosis, and it has been clearly
demonstrated that BBR has anti-inflammatory and anti-oxidative
activities. (Zhou et al., 2008; Jeong et al., 2009; Shang et al., 2010). It is
therefore that the activity of BBR against liver fibrosis has been
explored in many studies during recent years. (Zhang BJ. et al., 2008;
Sun et al., 2009; Zhang et al., 2016). As shown in Figure 1, various
mechanisms of action of BBR have been widely explored, such as its
regulation of HSC activation, oxidative stress, inflammation, lipid
metabolism, AMPK and ER stress, and NF-κB- and PPARγ-related
signalling pathways.

4.1 Direct Effects of Berberine on Liver
Fibrosis
The fundamental feature of liver fibrosis is the abnormal
activation of HSCs, and BBR has been shown to be a potential
treatment for thioacetamide (TAA)-, CCl4-, ethanol- and high

FIGURE 1 | Therapeutic effects of berberine (BBR) on liver cirrhosis are associated with lipid metabolism and intestinal flora. BBR is converted to dihydroberberine
(dhBBR) and other metabolites by the action of nitroreductase or specific intestinal microorganisms. dhBBR, other metabolites and unmetabolised pro-BBR in turn act
on intestinal flora (such as anaerobes) to regulate the microorganism ecosystem and concentrations of intestinal metabolites, such as short-chain fatty acids.
Unmetabolised pro-BBR, BBR derivatives and intestinal metabolites enter the liver through the portal vein, and thereafter relieve liver fibrosis by modulating lipid
metabolism and regulating hepatic signalling. The potential mechanisms by which BBR reduces fibrosis include the regulation of oxidative stress, ER stress, AMPK, NF-
κB and PPARγ signalling and the modulation of immune and inflammatory responses through the production of lipid mediators.
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cholesterol-induced liver fibrosis models; in these contexts, it
likely acts by suppressing HSC activation and downregulating
alpha-smooth muscle actin (α-SMA) and transforming growth
factor-β1 (TGF-β1) levels. (Sun et al., 2009; Domitrovic et al.,
2013; Eissa et al., 2018; Bansod et al., 2021). Previous studies have
indicated that the direct beneficial effects of BBR involving
modulation of the expression of multiple genes involved in
HSC activation, cholangiocyte proliferation and liver fibrosis
are linked to the downregulation of two important
ribonucleotide molecules that promote liver fibrosis
progression: microRNA34a and long noncoding RNA H19.
(Wang et al., 2021). Another commonly reported mechanism
is the induction of HSC cycle arrest in G1 phase, which inhibits
HSC activation and prevents liver fibrosis. (Zhou et al., 2021). In
addition, BBR has been revealed to have direct antifibrotic activity
in bile duct ligation-induced liver fibrosis, due to its suppression
of HSCs activation, and (partly) due to its inhibition of the AMPK
signalling pathway. (Wang et al., 2016). However, other studies
have found that BBR exerts hepatoprotective effects and prevents
liver fibrosis by activating the AMPK signalling pathway. (Li et al.,
2014; Wang et al., 2016; Bansod et al., 2021). BBR was also shown
to activate the AMP-activated protein kinase (AMPK) pathway
and inhibit macrophage polarisation and TGF-β1/Smad3
signalling, thereby alleviating tissue fibrosis. (Xu X. et al.,
2021). ER stress may be another target of BBR treatment, and
it has indeed been confirmed that a reduction in ER stress was the
most logical explanation for the fact that BBR hinders the
progression of hepatic steatosis to fibrosis. (Zhang et al.,
2016). Moreover, BBR was shown to directly relieve liver
injury-induced hepatic metabolic disorders by decreasing ER
stress in hepatocytes (Yang et al., 2021), and the inhibition of
Akt/FoxO1 signalling-mediated reduction of oxidative ER stress
has been associated with BBR treatment of liver fibrosis. (Bansod
et al., 2021). In other work, Zhang et al. reported that BBR
prevents hepatic fibrosis by regulating the antioxidant system and
lipid peroxidation in multiple hepatotoxic factor-induced fibrosis
models, which was reflected by improved liver function, an
increased antioxidant index and a decrease in fibrosis markers.
(Zhang BJ. et al., 2008; Bansod et al., 2021). BBR-mediated
normalization of liver function, suppression of inflammation,
amelioration of ECM deposition and prevention of fibrosis
correlate with NF-κB- and PPARγ-regulation. (Cao H. et al.,
2018).

Many anticancer agents, such as methotrexate, (Sadeghian
et al., 2018) doxorubicin (Zhao et al., 2012) and
cyclophosphamide, (Germoush and Mahmoud 2014) are
hepatotoxic (and thus cause hepatitis, steatohepatitis, liver cell
necrosis, liver fibrosis or cirrhosis), and it is imperative to identify
ways to limit this hepatotoxicity. It is therefore encouraging that
anticancer drug-induced liver histopathological changes,
including fibrosis, are significantly decreased by BBR treatment
in animal studies. (Zhao et al., 2012; Germoush and Mahmoud,
2014).

Orally administered BBR displayed therapeutic effects in
cirrhotic patients in a 1982 Japanese clinical study, with these
effects being due to BBR inhibiting intestinal bacterial tyrosine
decarboxylase. (Watanabe et al., 1982). Moreover, some

randomized, placebo-controlled trials have found that BBR has
positive effects in hyperlipidemic patients with virus hepatitis-
related cirrhosis. (Riccioni et al., 2018). However, there are few
clinical reports proving that BBR can alleviate cirrhosis, and
properly designed clinical trials must be performed to
determine this. To this end, our group is currently performing
a randomized controlled trial to assess whether BBR can trigger
the regression of hepatitis B-related fibrosis
(ChiCTR1900023426), and our preliminary results are
encouraging.

4.2 Effects of Berberine Metabolites on
Liver Fibrosis
As the absolute bioavailability of BBR is extremely low (<1%) and
more than half of the pro-BBR is not absorbed by the intestine,
BBR is converted by intestinal flora into absorbable metabolites
such as dihydroberberine (dhBBR), oxyberberine (OBB),
canadine and other compounds. (ENRIZ et al., 2006; Liu et al.,
2010a; Chen W. et al., 2011; Feng et al., 2015). Two of these
metabolic products of BBR, dhBBR and OBB, exhibit superior
anti-inflammatory and anti-oxidant functions compared to pro-
BBR as they modulate intestinal flora and inhibit TLR4-MyD88-
NF-κB and MAPK signalling, resulting in the reduction of levels
of the pro-inflammatory cytokines tumour necrosis factor (TNF)-
α, interleukin (IL)-17, interferon (IFN)-γ, IL-1β and IL-6 and
immunoglobulin IgA. (Li et al., 2019; Tan et al., 2019; Li et al.,
2020). Previous studies have revealed that dhBBR reduces
inflammation via an NOD-like receptor pyrin domain-
containing 3 (NLRP3) inflammasome-related mechanism,
which likely reduces the release of caspase-1,apoptosis-
associated speck-like protein (ASC) and IL-1β to inhibit
pyroptotic cell death, which is a form of programmed cell
death that occurs in liver fibrosis. (Xu et al., 2021a; de
Carvalho Ribeiro and Szabo, 2021). dhBBR may even have
better anti-sclerotic effects than BBR. (Chen et al., 2014).

It has been reported that OBB treatment enhances superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GSH-Px) activities and decreases reactive oxygen species
(ROS), malondialdehyde (MDA) and myeloperoxidase (MPO)
concentrations to reduce oxidative stress. Liver function recovery
mediated by OBB might therefore hinder the progression of liver
diseases and promote liver regeneration. (Dou et al., 2021). OBB
has also been shown to ameliorate the pathological deterioration
of adipocytes and hepatocytes via the AMPK pathway and
stimulate energy expenditure to control lipid homeostasis at
smaller dosages than BBR. Moreover, OBB was demonstrated
to inhibit macrophage migration and trigger a phenotypic
conversion of M1 macrophages to M2 macrophages to relieve
the inflammatory burden of the liver. (Li et al., 2021).
Surprisingly, the BBR derivatives dhBBR, canadine, stylopine
and coptisine were reported to inhibit TGF-β1-induced
collagen secretion in vitro fibrotic conditions and possess anti-
inflammatory, anti-fibrotic, wound-healing promoting and
cytoprotective activities. (Pietra et al., 2015).

In summary, the metabolites of BBR appear to have similar
effects to those of BBR prodrug in terms of anti-inflammatory,
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anti-oxidant and anti-fibrosis activities. Moreover, the former
appears safer and more efficacious than BBR itself. Thus, BBR and
its derivatives must be examined in future research on liver fibrosis.

5 BERBERINE ALLEVIATES LIVER
FIBROSIS BY MODIFYING LIPID
METABOLISM
Pharmacological and clinical evidence has clearly demonstrated
the efficacy of BBR in the treatment of metabolic diseases,
including non-alcoholic fatty liver disease and
hyperlipidaemia. These effects are partly based on the
regulation of various metabolic processes, such as the
inhibition of lipogenesis and adipose tissue fibrosis and the
mechanical reduction of hepatic steatosis. (Xu X. et al., 2021).
The liver is a major site of lipid metabolism and there is a
potential link between liver fibrosis and disorders of lipid
metabolism. Moreover, the dysregulation of arachidonic acid
metabolic pathways are partly responsible for disorders of the
liver microenvironment, which lead to liver fibrosis or cirrhosis
with various etiologies. (Hayashi et al., 2001; Song et al., 2008;
Isomoto 2009; Ishihara et al., 2012; Ristić-Medić et al., 2013; Arain
et al., 2017). Rather than only being a consequence of liver
cirrhosis, dysfunctional lipid metabolism forms a vicious cycle
with cirrhosis. (Moustafa et al., 2012; Gaggini et al., 2019). Changes
in the lipid profiles of patients with chronic liver disease may
indicate a progression towards fibrosis, and certain lipid profiles
represent different stages of liver fibrosis. (Gaggini et al., 2019).
Yang et al. recently reported that BBR improves lipid metabolic
disorder in tunicamycin-induced liver injury. (Yang et al., 2021).
BBR could also significantly reduce hepatic lipid accumulation by
modulating fatty acid synthesis and metabolism to prevent the
progression of non-alcoholic steatohepatitis and liver fibrosis.
(Wang et al., 2021). Several latent mechanisms, such as
oxidative stress (Zhang BJ. et al., 2008) and ER stress
mechanisms, (Zhang et al., 2016; Yang et al., 2021) have been
extensively explored for their roles in the ability of BBR and its
metabolites to treat hepatic injury, progressive fibrosis and
cirrhosis, but few details are known on the mechanism by
which BBR regulates lipid metabolism in liver fibrosis patients.

The administration of BBR has been found to simultaneously
mitigate the expression of genes related to lipogenesis,
inflammation and fibrosis; this represents another possible
mechanism underpinning the effect of BBR against liver
fibrosis, and is likely related to hypolipidemic
mechanisms.(Luo et al., 2019). Non-alcoholic fatty liver
diseases (NAFLDs) are chronic progressive diseases, and
approximately one third of NAFLD cases progress from
hepatitis to non-alcoholic steatohepatitis (NASH) to liver
fibrosis or cirrhosis. (Cicero et al., 2018). A meta-analysis of
the efficacy of BBR in NAFLDs found that BBR delayed or
repressed the fibrotic process in the development of NAFLDs
by improving lipid parameters and alleviating hepatic steatosis.
(Wei et al., 2016). Moreover, clinical findings have indicated that
BBR increases liver function in hyperlipidemic patients with
alcoholic liver cirrhosis or hepatitis C cirrhosis by creating a

positive feedback loop with serum cholesterol, triglyceride and
low-density lipoprotein-c (LDL-C), without causing any adverse
effects. (Zhao et al., 2008a).

5.1 Regulation of Triacylglycerol
Metabolism by Berberine
Elevated concentrations of triglycerides are a key contributor to lipid
profile disorders and metabolic syndrome, and the ability of BBR to
decrease hepatic and blood concentrations of triglycerides has been
convincingly proven in both animal experiments and human
studies.(Hu et al., 2012; Li et al., 2018). As such, BBR is used in
many countries as a lipid-lowering drug for hyperlipidemia
treatment. (Affuso et al., 2010). Animal experiments
demonstrated that the pre-administration of BBR can reduce
triglyceride accumulation in the liver caused by tunicamycin
administration, thus treating liver injury. In particular, compared
with the control group, the BBR group downregulated lipid
metabolism-related gene expression of stearoyl-Coenzyme A
desaturase 1 (SCD1). (Yang et al., 2021). The triglyceride-
reducing efficacy of BBR is attributable to its decreasing
triglyceride biosynthesis and increasing triglyceride oxidation.
AMPK is essential for the control of lipid metabolism in terms of
lipogenesis or lipid degradation, due to its affecting transcription
factors and metabolic enzymes. (Fryer and Carling 2005). BBR also
decreases the deposition of lipids in the liver by regulating AMPK,
which balances fatty acid biosynthesis and oxidation. (Boudaba et al.,
2018). Zhu et al. discovered that BBR can activate the AMPK-
SREBP-1c pathway, which results in downregulation of the
expression of hepatic stearoyl CoA desaturase 1 and other
triglyceride (TG)-biosynthesis related genes, and in the
attenuation of hepatic TG deposition, which alleviates NAFLD.
(Zhu et al., 2019). Animal studies show that BBR can improve
high fat diet-induced increases in serum triglyceride concentrations,
thereby ameliorating hepatic steatosis and fibrosis via the SIRT3/
AMPK/ACC pathway. (Yu-pei et al., 2019). Moreover, high-fat diet-
induced hepatic steatosis is significantly inhibited by BBR treatment
as reflected by the upregulated expression of proteins implicated in
fatty acid oxidation, including ACC and carnitine
palmitoyltransferase IA. (Zhang et al., 2019b). BBR can also
regulate the LDLR pathway, by which BBR downregulates fatty-
acid biosynthesis genes and upregulates fatty acid oxidation genes in
adipocytes. (Lee et al., 2006; Lee et al., 2007). Xu et al. also found that
BBR could improve systematic lipid homeostasis by promoting fatty
acid β-oxidation; specifically, it causing deacetylation of long-chain
acyl-CoA dehydrogenase via SIRT3 activation. (Xu et al., 2019). A
meta-analysis of clinical trials was consistent with the evidence
reviewed above, as it found that BBR lowered blood TG
concentrations in a dose-dependent manner. (Dong et al., 2013).
Therefore, the regulation of triacylglycerol metabolism may be a
critical part of the mechanism of action of BBR (Figure 2).

5.2 Regulation of Cholesterol Metabolism
by Berberine
The ability of BBR to decrease cholesterol concentrations was first
described in human, animal and cell test in 2004, (Kong et al.,
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2004a) and BBR was subsequently found to have the same effect
in diabetes mellitus (Zhang Y. et al., 2008) and cirrhosis (Zhao
et al., 2008a) patients. It was also found that the phase I BBR
metabolite berberrubine may decrease cholesterol concentrations
by targeting LDLR expression. (Cao S. et al., 2018). The utility of
BBR as a cholesterol-lowering drug has been consistently
validated in clinical research, and it is widely used as a drug
in Asian populations. Clinical trials and diverse disease models
have been designed to confirm the beneficial effects of BBR on the
regulation of cholesterol homeostasis. Abnormal cholesterol
homeostasis was reversed to varying degrees after BBR
intervention, and this was extensively probed in human
studies and in hyperlipidemic and diabetic animal models.
(Wang and Zidichouski 2018). Numerous randomized
controlled trials have demonstrated that BBR supplementation
improves blood profiles of total cholesterol, LDL-C, and high-
density lipoprotein C (HDL-C), but some studies have not
observed in HDL-C. (Kong et al., 2004a; Derosa et al., 2013;
Wei et al., 2016). Moreover, the ability of statins to reduce
cholesterol concentrations is significantly enhanced by BBR.
(Moss and Ramji 2016).

The mechanisms by which BBR regulates cholesterol
concentrations are related to anti-inflammatory processes or
the post-transcriptional upregulation of LDLR
expression.(Kong et al., 2004a; Pirillo and Catapano 2015).
Proprotein convertase subtilisin/kexin type 9, which controls
LDLR degradation, is inhibited by BBR, and is thus linked to
the ability of BBR to decrease cholesterol concentrations.
(Barbagallo et al., 2015). In addition, the adenosine
triphosphate-binding cassette transporter A1 gene, which is
involved in cholesterol efflux, is upregulated by BBR
administration. (Lee et al., 2010). Similarly, BBR accelerates
cholesterol excretion by inhibiting adipocyte enhancer-binding
protein 1 (Huang et al., 2012) or augmenting cholesterol-binding

receptor, which account for its hepatoprotective properties.
(Zarei et al., 2015) (Figure 2).

5.3 Effects of Berberine on the Arachidonic
Acid Pathway
Arachidonic acid is an essential unsaturated fatty acid that is
stored under physiological conditions in cell membranes in the
form of phospholipids. It is released from the phospholipid pool
under various stimuli with the aid of phospholipase A2 (PLA2),
and is subsequently converted into a wide variety of biologically
active metabolites that induce the inflammatory cascade, such as
15-deoxy-Δ12,14-prostaglandin J2 (15 days-PGJ2), thromboxane
B2 and prostaglandin E2 (PGE2). (Funk 2001). Cycloxygenase
(COX), lipoxygenase (LOX) and cytochrome P450 (CYP450) are
key enzymes in the metabolism of arachidonic acid. (Funk 2001;
Calder 2009). Some metabolic enzymes involved in the
arachidonic acid pathway can be inhibited by BBR, and this
has been illustrated in various pathological processes. Specifically,
BBR can affect the activity of metabolic enzymes such as
PLA2(Huang et al., 2002; Li et al., 2015; Yarla et al., 2016a;
Zhao et al., 2017), arachidonate 5-lipoxygenase (5-LOX) (Li et al.,
2012) and COX-2 (Guo et al., 2008; Feng et al., 2012; Li et al.,
2012; Wang and Zhang 2018), and in turn affects the production
of downstream metabolites such as PGE2 and 5-
hydroxyeicosatetraenoic acid to regulate disease course.
(Huang et al., 2002; Zeng et al., 2011). A MetaboAnalyst
system analysis showed that the arachidonic acid pathway
affects biological activity of BBR in cancer interventions. (Li
et al., 2017). For example, the anti-hepatocellular carcinoma
effects of BBR involve inhibition of cytosolic PLA2 and COX-
2. (Li et al., 2015). Extensive studies by various research groups
have proven that BBR inhibits COX-2 expression and thereby
decreases the production of PGE2. (Kuo et al., 2005; Singh et al.,

FIGURE 2 | BBR improves liver fibrosis via lipid metabolism modification.①Regulation of BBR on triacylglycerol metabolism.②Regulation of BBR on cholesterol
metabolism. ③ Regulation of BBR on cholesterol metabolism and PPARγ as a potential target in BBR treated fibrosis.
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2011). BBR is also a major element of a traditional Chinese
medicine recipe, and in this form has been found to inhibit the
expression of COX-2 and 5-LOX, and decrease the production of
the inflammatory metabolites PGE2 and leukotriene B4, thereby
ameliorating the effects of the inflammatory cascade. (Li et al.,
2012).

Furthermore, studies of metabolic enzymes (particularly COX-
2) have suggested that BBR benefits liver fibrosis in an arachidonic
acid pathway-dependent manner. Domitrović et al. discovered that
BBR provides protection against CCl4-induced liver injury in a
concentration-dependent manner, which is partly attributable to a
reduced COX-2 related-inflammatory response. (Domitrović et al.,
2011). Similarly, the suppression of COX-2-driven inflammatory
responses is also involved in the protective effects of BBR against
drug-induced hepatotoxicity. (Germoush and Mahmoud 2014).
Liver fibrosis is preceded by inflammation and can ultimately lead
to liver cancer, and both of the latter have been widely reported to
benefit fromBBR treatment, due to its inhibition of the arachidonic
acid pathway, (Domitrović et al., 2011; Germoush and Mahmoud
2014; Li et al., 2015; Yarla et al., 2016a; Zhang F. et al., 2019) which
contains calcium-independent PLA2 and COX-2. These findings
regarding the pathological development of chronic liver diseases
and the biological function of BBR suggest that BBR and its
derivatives could be used to treat liver fibrosis via arachidonic
acid related mechanisms (Figure 2).

5.4 Peroxisome Proliferator-Activated
Receptor Gamma as a Potential Target of
Berberine
It is well accepted that PPARγ is a key molecule involved in the
pathogenesis of liver fibrosis. (Zardi et al., 2013). PPARγ is encoded
by the gene PPARG, and agonists of PPARG (e.g., IFC305 and
pioglitazone) obstruct liver fibrosis by inhibiting HSC activation
and regulating the expression of adipogenic- and fibrogenic-related
genes. (Yuan et al., 2004; Perez-Carreon et al., 2010). PPARγ is also
a crucial transcriptional regulator of genes involved in lipid
metabolism, liver fibrosis, fat metabolism and adipocyte
differentiation for adipose tissue development and functional
maintenance. (Hazra et al., 2004; Ueki et al., 2004).
Interestingly, BBR regulates lipid metabolism by precisely
controlling the transcription and translation of nuclear
reporters. (Zhou et al., 2008). PPARs have one of two different
types of effects on fatty acid metabolic process, depending on their
subtype. On the one hand, BBR inhibits TG production by acting
with PPARα to enhance the expression of the gene coding for the
fatty-acid oxidation enzyme carnitine palmitoyltransferase IA.
(Zhou et al., 2008; Yu et al., 2016). On the other hand, PPARγ
supports de novo fatty acid synthesis and fatty acid uptake. (Zhou
et al., 2008). Zhou et al. showed that reduced PPARγ expression
may be associated with the downregulation of adipogenic genes in
the presence of BBR. (Zhou et al., 2008). High-throughput
screening assays have also suggested that natural extract of BBR
contains potential agonists of all PPAR subtypes (Xia et al., 2013;
Tu et al., 2016; Yu et al., 2016) and that these can regulate the
progression of liver diseases by acting as ligands. Interestingly,
arachidonic acid metabolic products have also been reported to be

PPARγ ligands and transcriptional activators (Xu et al., 1999; Choi
and Bothwell 2012) that inhibit the activation of inflammatory
signals, thereby modulating hepatic fibrosis via PPARγ regulation
(Figure 2). The anti-fibrosis effect of PPARγ agonists (such as
15 days-PGJ2) has been observed in scarring models and has
manifested as TGF-β-induced decreases in the extracellular
matrix of HSCs. These findings imply that BBR acts on liver
fibrosis via arachidonic acid pathway-mediated PPARγ activation.
This is supported by research showing that arachidonic acid
derived 15dPGJ2 attenuates fibrotic diseases by activating
PPARγ, and that this effect is potentiated by co-administration
of 15dPGJ2 and BBR. (Guan et al., 2018). Thus, it appears that
PPARγ is a key target of BBR.

In conclusion, studies have confirmed the relationship between
BBR, lipidmetabolism pathways and subsequent signalling cascades,
especially the arachidonic acid pathway. BBR may therefore relieve
fibrosis by regulating PPARγ and restoring lipid homeostasis via
modulation of arachidonic acid metabolism. More comprehensive
studies on the effects of BBR on PPARγ, enzymes and downstream
metabolites in the arachidonic acid pathway are needed to further
elucidate appropriate clinical applications.

6 CONTRIBUTIONS OF INTESTINAL FLORA
TO THE BIOLOGICAL FUNCTION OF
BERBERINE
The regulation of intestinal flora by BBR application is a novel
treatment strategy. BBR improves intestinal flora dysregulation
and restores the gut barrier, effectively reducing plasma lipid
concentrations and lipolysis. (Xu X. et al., 2021). BBR can also
significantly reduce the levels of the opportunistic pathogens and
increase the levels of probiotics. (Xu X. et al., 2021).With respect to
the contributions of intestinal flora to the biological function of
BBR in the treatment of liver diseases, Yang et al. showed that BBR
alleviates tunicamycin-induced liver injury by regulating intestinal
flora in mice, which it achieves by modulating the ratios of
Prevotellaceae and Erysipelotrichaceae in the intestine. (Yang
et al., 2021).

6.1 Intestinal Flora Improve the Efficiency of
Berberine Absorption
Although the oral bioavailability of BBR is limited, intestinal flora
promotes the absorption and enhance the efficacy of BBR. The
BBRmetabolites generated by intestinal flora are considered to be
crucial to the biological activity of BBR; in particular,
dihydroberberine (dhBBR), which has less biological activity
than BBR but approximately five times the intestinal
absorption rate of BBR. (Feng et al., 2015). Thus, the
conversion of BBR to dhBBR, which is catalysed by
nitroreductase, is the rate-limiting step that controls the
amount of BBR entering the blood. Nitroreductase is present
in many intestinal bacteria, such as Staphylococcus aureus,
Enterococcus faecium, Lactobacillus casei and L. acidophilus.
(Feng et al., 2015). The role of intestinal nitroreductase in
potentiating BBR bioavailability is supported by the fact that
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BBR has greater efficacy in individuals with higher nitroreductase
activity. (Wang et al., 2017b). Moreover, BBR increases the
populations of probiotics containing nitroreductase, such as
Clostridia. (Lemmon et al., 1997; Cui et al., 2018). After
entering intestinal tissues, dhBBR is immediately reoxidised to
BBR. (Feng et al., 2015). These findings indicate that intestinal
flora derived nitroreductase may be a biomarker of the
therapeutic efficacy of BBR (Figure 3).

6.2 Crosstalk Between Bile Acid and
Intestinal Flora
BBR also restores bile acid homeostasis by targeting multiple
pathways that markedly inhibit inflammation, thereby alleviating
non-alcoholic steatohepatitis and liver fibrosis. (Wang et al.,
2021). Bile acids serve as key regulators of lipid and glucose
homeostasis, energy consumption and inflammation. (Yuan and
Bambha 2015). Additionally, bile acids play critical roles in the
homeostasis of intestinal flora, whichmay in turn regulate the size
and composition of the bile acid pool that maintains normal bile
acid excretion and hepatoenteral circulation. (Hofmann 1999;
Ridlon et al., 2006; Rajilic-Stojanovic 2013). However, abnormal
biliary secretion results in the destruction of microfloral structure,
which adversely effects the abundance of bacteria responsible for
bile acid catabolism, resulting in the improper excretion and
reabsorption of conjugated bile acid. (Hedenborg et al., 1991).
Nuclear receptor FXR and cell-surface receptor Takeda G

protein-coupled receptor 5 (TGR5) can alter bile acid-
mediated metabolism by binding to bile acids. (Pathak et al.,
2018). Thus, BBR continues to be pursued as a potential agonist of
FXR (Sun et al., 2017) and TGR5 (Yang et al., 2016) binding of
bile acids, as this may offer ways to increase the abundance of
bacteria that promote the decomposition of conjugated bile acids
and regulate bile acid signalling. Furthermore, BBR significantly
increases the abundance of intestinal Firmicutes, especially
Clostridium scindens, which primarily maintain metabolism
and the hepatoenteral circulation of bile acids. (Gu et al.,
2015). Studies have revealed that the lipid-modification
function of BBR is possibly achieved via the modulation of
bile acid metabolism, (Sun et al., 2017; Meng et al., 2018)
given that BBR regulates intestinal flora. (Gu et al., 2015).
Thus, crosstalk between bile acid metabolism and intestinal
flora might affect the absorption efficiency of BBR, which
could be exploited in treatments for cirrhosis (Figure 3).

6.3 Berberine Enhances the Endocrine
Function of Intestinal Flora to Further
Regulate the Liver Microenvironment and
Ameliorate Fibrosis
6.3.1 Berberine Increases the Yield of Intestinal Flora
Derived Butyrate
As mentioned, BBR is a promising candidate for the treatment of
metabolic diseases by improving intestinal flora disorders.(Xu X.

FIGURE 3 | Contributions of intestinal flora to the biological function of berberine (BBR). Intestinal flora and bile acid improve the efficiency of absorption of BBR.
BBR and its metabolites enhance the endocrine function of intestinal flora to further regulate the liver microenvironment and alleviate fibrosis.①Butyrate enhanced fatty
acid oxidation by activating PGC1α, Pex11a, PPARα and PPARα-mediated FGF21. (Weng et al., 2015; He and Moreau 2019).②AMPK-dependent phosphorylation of
SREBP (Li et al., 2011b) and enhancive expression of ATGL and phosphorylation of HSL (Jia et al., 2017) also offer promising pathway for butyrate to alleviate
hepatic steatosis and lipid deposition through lipogenesis breakdown and lipolysis promotion.③ Butyrate treatment obviously inhibited arachidonic acid metabolism by
altering the expression of metabolic enzymes (COX, LOX) together with synthesis of arachidonic acid metabolites (PGE2). (Ardaillou et al., 1985; Kamitani et al., 1998).
④Butyrate mediated inflammation remission and further liver fibrosis alleviation via promoting anti-inflammatory cytokines IL-4, IL-10 and inhibiting inflammatory genes
TGF -β1, IL-1α, IL-17α, TNF-α, F4/80. (Ye et al., 2018).
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et al., 2021). It is currently thought that microflora function as a
virtual “endocrine organ” (Clarke et al., 2014) that generates a
wide variety of products to regulate host metabolism through
homologous receptors. Short-chain fatty acids (SCFAs),
particularly butyrate, acetate and propionate, which are the
final products of the fermentation of indigestible
carbohydrates by anaerobic microbes, exert profound effects
on intestinal function and host energy metabolism. (Nicholson
et al., 2012). The regulation of lipid profiles by BBR is realized not
only via its direct effects on the blood concentrations of lipids, but
also via its promoting the generation of SCFAs (mainly butyrate)
to indirectly affect the blood concentrations of lipids. (Wang
et al., 2017a). Zhang et al. proved this by demonstrating that
concentrations of SCFAs in the intestine were increased by BBR
treatment, which improved resistance to metabolic diseases.
(Zhang et al., 2012). It has also been reported that BBR
treatment leads to increases in the abundance of intestinal
flora that secrete SCFAs and maintain host health, (Zhang
et al., 2015) particularly Clostridia. (Gu et al., 2015; Byndloss
et al., 2017; Cui et al., 2018).

6.3.2 Effects of Butyrate on Lipid Metabolism
4-Phenylbutyric acid (PBA), a bioactive butyrate derivative with a
long half-life, decreases ER stress and downregulates the
transcription of numerous SREBP1-dependent lipogenic genes,
which eventually leads to the inhibition of fatty acid biosynthesis.
(Ren et al., 2013). However, butyrate also enhances fatty acid
oxidation by activating peroxisome proliferator-activated
receptor-γ coactivator 1-α, peroxisomal biogenesis factor 11 α,
PPARα and PPARα-mediated fibroblast growth factor 21. (Weng
et al., 2015; He and Moreau 2019). Moreover, butyrate-mediated
ACC1 phosphorylation and inactivation not only inhibit fatty
acid synthesis but also promote fatty acid oxidation by relieving
malonyl CoA-induced carnitine palmitoyltransferase IA
suppression. (McGarry et al., 1977; Hillgartner et al., 1995;
Heimann et al., 2015). Additionally, AMPK-dependent
phosphorylation of SREBP, (Li et al., 2011b) enhancement of
the expression of adipose triglyceride lipase and phosphorylation
of hormone-sensitive lipase (Jia et al., 2017) are pathways by
which butyrate can alleviate hepatic steatosis and lipid deposition
by inhibiting lipogenesis and promoting lipolysis. In particular,
butyrate treatment inhibits arachidonic acid metabolism and thus
suppresses inflammation, whereas reductions in butyrate
concentrations aggravate NASH via an arachidonic acid-
induced exaggerated inflammatory reaction. (Zhuang et al.,
2017; Ye et al., 2018). Moreover, the administration of
butyrate alters the expression of metabolic enzymes (e.g., COX
and LOX) and thus affects the biosynthesis of arachidonic acid
metabolites (e.g., PGE2). (Ardaillou et al., 1985; Kamitani et al.,
1998).

Butyrate has also been reported to improve impaired liver
function and alleviate the progression of fibrosis, which has a
protective effect in NASH via arachidonic acid metabolism
regulation. (Ye et al., 2018). In contrast, another study found
that SCFAs adversely affect lipid metabolism: Yu et al. showed
that SCFAs, including butyrate, exacerbate lipid accumulation in
3T3-L1 cells (a type of adipocyte) by promoting the expression of

lipogenic genes and proteins. (Yu et al., 2018). Overall, butyrate
appears to decrease inflammation and improve lipid metabolism
in the liver (Figure 3), but further studies are needed to fully
characterize its mode of action.

6.3.3 Effects of Butyrate on Inflammatory/Immune
Reactions
Research has shown that butyrate acts as a histone deacetylase
inhibitor or acts on signalling receptors to suppress inflammation
and thus postpone the development of liver diseases.(Le Poul
et al., 2003; Donohoe et al., 2012; Gill et al., 2018). Butyrate
decreases inflammation and alleviates further liver fibrosis by
promoting production of the anti-inflammatory cytokines
interleukin 4 (IL-4) and IL-10, and by inhibiting the
expression of the genes coding for the inflammatory molecules
transforming growth factor β 1, interleukin 1α (IL-1α), IL-17α,
tumour necrosis factor α and F4/80. (Ye et al., 2018). Butyrate also
suppresses the phosphorylation of MAPKs, the activation of NF-
κB and the expression of downstream inflammatory signalling,
thereby inhibiting inflammatory responses. (Ohira et al., 2013).
Yukihiro et al. studied the important reciprocal interaction
between immunity and inflammation, and revealed that
microbiota-derived butyrate regulates transcription of the
forkhead box protein P3 gene, which is positively correlated
with concentrations of SCFAs and numbers of regulatory
T cells. This resulted in the inhibition of inflammatory
responses and ameliorated the development of colitis in T-cell-
abnormal mice. (Furusawa et al., 2013). Overall, the above
findings indicate that excessive inflammation and immune
dysregulation are largely responsible for disorders in the liver
microenvironment that lead to liver fibrosis. Furthermore, the
positive effects of butyrate on inflammatory and immune
responses provide a reliable theoretical basis for the effects of
BBR in liver cirrhosis therapy (Figure 3).

6.3.4 Effects of Butyrate on Liver Fibrosis
Researchers are increasingly exploring the ability of intestinal
bacteria derived butyrate to alleviate liver fibrosis. For example, it
has been found that the progression of fibrosis in methionine
choline deficient diet induced NASH mice is substantially slowed
by butyrate treatment, evidenced by a significant downregulation
of the early fibrosis markers transforming growth factor-β1,
smooth muscle α−actin and α-actin 2. (Ye et al., 2018).
Butyrate’s effects on intestinal flora, lipid metabolism and
inflammation have been proposed to underlie its effects in
these mice. (Ye et al., 2018). Additionally, butyrate hinders the
progression of NASH to fibrosis by regulating arachidonic acid
metabolism. (Ye et al., 2018). These results indicated that butyrate
may decrease liver fibrosis (Figure 3), but the mechanism of this
remains to be fully delineated.

A balanced liver microenvironment is the basis for
maintaining normal physiological functions, and an
imbalanced liver microenvironment results in metabolic
abnormalities, inflammatory activation and immune system
perturbation. Butyrate produced by intestinal bacteria is
absorbed through the intestinal mucosa, and then primarily
distributed to the liver via portal veins, where it improves the
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liver microenvironment via mechanisms related to PPARγ
activation. (Byndloss et al., 2017; Ye et al., 2018). Lipid
metabolism and its interactions with inflammation and
immunity may therefore account for the effects of butyrate
treatment, and also create a link between BBR and cirrhosis.
Thus suggests the possibility of a BBR–intestinal
flora–butyrate–lipid metabolism–liver fibrosis interactive
network.

7 CONCLUSION, PERSPECTIVES AND
FUTURE DIRECTIONS

BBR is a natural product with many useful biological effects and
few adverse effects. Its effects on inflammatory and metabolic
disturbances are particularly impressive. BBR has been confirmed
to decrease liver fibrosis via multiple biochemical mechanisms,
such as by regulating oxidative stress, ER stress, and the activity of
AMPK, NF-κB and PPARγ (as shown in Figure 1). However, the
complex mechanisms of action of BBR are not yet fully
understood. Early studies on BBR highlighted its favorable
effects on lipid profiles and interactions with inflammatory
immune responses. We conclude from this review that BBR
may exert its effects via the regulation of enzymes involved in
arachidonic acid metabolism and downstream inflammatory
pathways. Nevertheless, this has yet to be confirmed in
cirrhosis models and further studies are warranted.

The poor oral bioavailability of BBR is a major hindrance to its
clinical application. Fortunately, nitroreductase-containing
intestinal flora or specific intestinal microorganisms can
transform BBR into dhBBR, OBB, canadine and other
derivatives, which are much more soluble and have better
efficacy than BBR. These derivatives also have superior anti-
inflammatory, anti-oxidant and anti-fibrosis functions, and bile
acid metabolism has been shown to increase their formation via
crosstalk with intestinal flora. BBR increases the production of
butyrate by anaerobic bacteria, and the resulting higher
concentrations of butyrate in circulation lead to improvements
in host metabolism, decreases in inflammation, enhanced

immunity and decreased liver fibrosis. The mechanism by
which BBR promotes the metabolites of intestinal flora to
further improve liver fibrosis by regulating the liver
microenvironment remains largely elusive.

Beyond association studies, future research should develop a
deeper understanding of the roles of the intestinal flora,
arachidonic acid pathways and downstream targets (e.g.,
PPARγ) in liver fibrosis. Large-scale and multi-centre clinical
trials are also required to verify the biological functions of BBR in
cirrhosis. In addition, the safety, optimal dose and drug
interactions of BBR must be taken into account. The
bioavailability of BBR needs to be further improved by
pharmaceutical techniques or medicinal chemistry approaches
and by determining the precise mechanism of drug–host
interactions.

This review summarizes current knowledge of the role of BBR
in liver fibrosis in terms of its effects on lipid metabolism and
intestinal flora. It is hoped that it will encourage future studies on
BBR and lead to the development of novel strategies for the use of
BBR in cirrhosis treatment, given the positive effects of BBR on
liver fibrosis. Ultimately, this may yield personalized BBR-based
approaches to treat liver fibrosis that are tailored to a patient’s
unique intestinal microbiota profile.
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