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Abstract: Length of Stay (LOS) is an important performance metric in Australian Emergency De-
partments (EDs). Recent evidence suggests that an LOS in excess of 4 h may be associated with
increased mortality, but despite this, the average LOS continues to remain greater than 4 h in many
EDs. Previous studies have found that Data Mining (DM) can be used to help hospitals to manage this
metric and there is continued research into identifying factors that cause delays in ED LOS. Despite
this, there is still a lack of specific research into how DM could use these factors to manage ED LOS.
This study adds to the emerging literature and offers evidence that it is possible to predict delays in
ED LOS to offer Clinical Decision Support (CDS) by using DM. Sixteen potentially relevant factors
that impact ED LOS were identified through a literature survey and subsequently used as predictors
to create six Data Mining Models (DMMs). An extract based on the Victorian Emergency Minimum
Dataset (VEMD) was used to obtain relevant patient details and the DMMs were implemented using
the Weka Software. The DMMs implemented in this study were successful in identifying the factors
that were most likely to cause ED LOS > 4 h and also identify their correlation. These DMMs can be
used by hospitals, not only to identify risk factors in their EDs that could lead to ED LOS > 4 h, but
also to monitor these factors over time.

Keywords: clinical decision support; data mining models; emergency department; length of stay;
predictive data mining; Weka

1. Introduction

A continual year on year increase in demand for emergency services in many Aus-
tralian EDs has created a challenging environment, with prolonged Emergency Department
(ED) waiting times, delays in service, and a potential for a decline in the quality of services
rendered [1,2]. As a result, patients frequently stay for longer durations of time in the
ED than is optimal. Studies found that managing the patient Length of Stay (LOS) in the
ED could be the key to improving the quality of emergency care offered in hospitals [3].
ED LOS can be defined as the time spent by a patient in the ED from the time of their
arrival until they physically leave the ED or are admitted into the hospital [4]. An increase
in in-hospital mortality has previously been observed to be associated with stays in ex-
cess of 4 h [5], but despite widespread attention to this metric, at least one-third of all
ED presentations in Australian hospitals still report an LOS greater than 4 h [6]. An ED
presentation can be defined as any individual who seeks treatment at an ED. This is used by
Australian hospitals as a measure to count patients arriving at their EDs [7]. These delays
in the EDs have been reported to occur due to the inefficiencies in the ED processes. This
study aims to identify factors associated with an ED LOS greater than 4 h and to determine
whether data mining (DM) techniques can be used for predictive modelling once these
factors have been identified. Previous published literature has reported several human and
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organizational factors to be responsible for ED LOS exceeding 4 h [4,6]. Since processes
in EDs vary throughout the world, this study only focuses on those factors relevant to
Australian EDs [8–10]. Controlling these factors could be beneficial for managing ED LOS.

In recent years, the large volume of data being generated and collected by hospitals has
contributed to the advancements in the applications of Data Mining (DM). This has led to
significant breakthroughs in using DM as part of Clinical Decision Support (CDS). Although
the value of applying DM techniques for CDS has been acknowledged, there is still limited
research into its potential. The application of DM tools can help hospital managements
manage ED LOS and allow them to implement strategies for meeting this metric.

The objective of this study is to build Data Mining Models (DMMs) for CDS using
factors shown to be associated with delays in ED LOS in the previously published literature.
These models could potentially be customized and used in hospitals to make evidence-
based strategic decisions to improve their ED processes. Building these DMMs will be
beneficial not only for identifying factors that impact ED LOS but also for establishing any
correlation between them.

This study was conducted in collaboration with one of Melbourne’s largest healthcare
providers (hereafter referred to as “Healthcare Service A”) with eight active locations
and three EDs. All healthcare providers in Victoria, Australia (where Melbourne is the
capital city) record administrative and clinical patient data for their ED presentations in the
Victorian Emergency Minimum Dataset (VEMD) [11]. Data collection across all jurisdictions
in Australia is aligned [12]. Hence, data collected in the VEMD are similar to data used in
other Australian studies in the ED LOS context, and to basic administrative data such as
that captured by the VEMD is highly representative of that captured by EDs throughout
Australia [6,13]. A deidentified data extract containing all elements from VEMD plus
additional administrative data were obtained from Healthcare Service A to be used in this
study. To ensure its quality, the dataset was pre-processed before analysis. Both the pre-
processing and data analysis were performed using the Weka software [14,15]. A total of six
DMMs: Random Forest (RF), Naïve Bayes (NB), K-Nearest Neighbour (K-NN), J48 Decision
Tree (DT), Logistic Regression (LR), and ZeroR were implemented in this study. The K-NN
algorithm was implemented using the LazyIBK model available on Weka. Many studies in
the healthcare DM context adopted the ROC curve, accuracy, precision, or f-measure as a
measure of model performance [13,16–18]. Only accuracy and ROC were adopted as model
performance measures in the Australian ED LOS context [6,13]. Hence, the performance of
these models was compared primarily using the Receiver Operating Characteristic (ROC)
value and model accuracy. The LazyIBK algorithm had the best performance out of the
six models, with an accuracy of 74% and an ROC value of approximately 0.82. This study
found that the quality of the data has a significant impact on the model performance.

The structure of this paper is outlined as the following. This paper firstly discusses the
findings from a systematic literature survey which aims to identify the current applications
of DM in the patient LOS context. This section also explores various factors that influence
patient LOS and determine which of them are most relevant to ED LOS, particularly in the
Australian ED context. Following this, the methodology of the research including dataset
selection, data quality, data pre-processing, and data analysis are discussed. Next, the
results from the data analysis are presented and discussed in comparison to similar studies.
Finally, limitations of the study and recommendations for future work are discussed, along
with a conclusion.

2. Literature Survey

This section firstly discusses the general processes in an Australian ED followed by
suitable DMMs that can be used in the ED LOS context. It also discusses the factors that are
likely to risk delays in the ED as suggested by other studies. Both the DMMs and factors
discussed in this section were identified by conducting a systematic literature survey based
on their suitability to the Australian ED context. PubMed and Scopus were the primary
databases used to identify literature for this study. Additionally, some other government
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websites were used when necessary. PubMed and Scopus were the primary databases used
for the identification of studies for this research. The studies were identified using three
sets of search terms (ST) (i = 3). The studies were initially identified from the databases
and additionally from other sources such as Google scholar, government websites and
references where applicable. All the studies were then screened to remove duplicates and
to ensure that they were relevant to the research. The studies were also filtered out based
on quality (quality of journal/conference, must be peer-reviewed). The number of studies
(ni) obtained from each of these searches is denoted in Figure 1. There was no restriction
enforced on the publication year since DM for CDSS, ED LOS and data quality are relatively
older concepts still applicable in present context. This literature survey explores studies
that use DM as part of CDSS in healthcare using studies selected from search i = 1. These
studies were also used to determine the most appropriate key performance indicators for
interpreting our results. We survey potential factors affecting LOS in Australian ED context
using studies from i = 2. Since we acknowledge the significance of data quality on accuracy
of results, we explored the impact of data quality in similar studies using literature from
i = 3.
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2.1. General Processes in Australian EDs

There is currently no standard around the world for EDs and processes such as
triage vary from country to country [19]. Hence, for this study, we exclusively take into
consideration the processes adopted in Australian EDs. There are three stages involved
in the working of an ED [20]. The first stage involves the assessment of the patient and a
high-level mapping resource that may be needed for that patient. At this stage, the patient
is assigned a triage category (Resuscitation, Emergency, Urgent, Semi-urgent, or Non-
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urgent) by ED staff based on the acuity [7]. Following this, staff is scheduled, and finally,
relevant internal departments are consulted, and further patient testing and assessments
are conducted.

This final stage was found to take the longest time to complete, usually affecting ED
LOS. There have been many efforts to streamline the ED process, for example introducing
measures to reduce the amount of paperwork at each stage. However, there have been no
efforts into reengineering the ED process and it has remained the same for many years.
Although limited, there has been some research into how DM can be used as part of CDS
to make the processes in EDs more efficient. Some instances of DM used as part of CDSS in
EDs are predicting patient pathway, predicting patient admissions, pathology ordering,
customer relationship management (CRM), and predicting ED LOS [21]. Several factors
were found to increase ED LOS and are discussed in the following sections.

2.2. Data Mining in Predicting LOS

As a result of digitization, hospitals are collecting and generating large volumes of
data each day. DM is now being used to extract value from these data to address challenges
faced in the healthcare industry. DM is a methodology that transforms data into useful
information primarily through relationship and pattern identification [20,21]. Building
DMMs is one aspect of DM that involves summarizing large portions of data into more
convenient forms. This process helps to uncover patterns and knowledge within data [22].
Many studies over the years successfully used DM in CDS. CDS provides healthcare
professionals or patients with intelligently filtered clinical knowledge, patient information,
or any other healthcare information at appropriate times to aid health-related decisions or
actions [23]. Clinical Decision Support Systems (CDSS) are a class of information systems
that aid clinical decision making. CDSS in some cases use artificial intelligence methods
such as DM together with the patient or clinical data to assist in decision making [24].
Through the use of DMMs, we can create effective CDSS [25]. The use of DM in predicting
patient LOS is still relatively unexplored when compared to other areas of healthcare and
CDSS. Although there are studies that explored factors impacting patient LOS, the research
into predicting these factors using DMMs is still limited. We are able to identify only two
other studies to our knowledge that used DMMs to predict ED LOS in an Australian ED
setting [4,6]. These studies both suggest that there is a potential to use DMMs to identify
factors that impact ED LOS.

A class of DMMs called Predictive DMMs (PDMM) were found to be successful in
predicting patient LOS [26,27]. PDMMs are primarily used for performing data classifi-
cation and pattern matching tasks [28]. Currently, there is no specific method defined in
the literature for PDMM selection. A PDMM can be selected based on several factors such
as dataset size, type of data available, aims of the research, and expected outcomes. For
example, the Random Forest (RF) algorithm was found to be a suitable PDMM to use on
a large dataset [29]. PDMMs such as DTs, NB, K-NN, Artificial Neural Networks (ANN),
and Gradient Boosting Machine (GBM) have been used previously in an LOS or ED LOS
context [6,30–32]. Another factor that determines PDMM selection is the number and type
of attributes being used for the study. These factors are discussed in the following section.

2.3. Factors Affecting Patient ED LOS

Factors such as patient age, gender, triage category, patient’s mode of arrival, needing
an interpreter, admission, complexities in diagnosis leading to additional diagnostics, and
availability of resources such as staff and beds are the most common previously identified
factors that impact the ED LOS [4–6,33–36]. Many studies reported patient age to have an
impact on ED LOS. It has been found that older patients were at a higher risk of having
undiagnosed underlying medical conditions, often leading to an increase in diagnosis time
and subsequently the LOS. These complexities in health conditions were also found to
result in the prescription of additional pathology testing and scans for accurate diagnosis,
and patients needing additional scans or pathology testing often experience delays in ED
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LOS [33,36,37]. It was also hypothesized that patients arriving by ambulance were more
likely to be presenting with severe conditions compared to those arriving by other means
of transport such as personal cars. This is why the arrival mode of a patient at the hospital
could determine their ED LOS [2,36].

Triage category is another important factor that has been found to impact ED LOS [38].
All Australian EDs follow a standardized triage category system which ranges from
1–6 with decreasing level of patient severity. All patients are assigned a code by the
triage nurse upon arrival at the ED based on their presenting condition. As a result of this,
medical attention is given sooner to those patients who appeared to be presenting with
more severe conditions (triage 1–3) than those with triage category above 3. This could
mean that patients assigned a less critical triage might end up having to wait longer to be
treated [36]. Time taken for doctors to first examine a patient and delays in diagnostics
is indicative of ED crowding. This also could indicate the resource availability for that
ED [34].

Some studies suggested that patient gender and ethnicity are also factors affecting ED
LOS, even though there was no sufficient evidence to prove this [4,39,40]. For instance,
it was found that ethnicity only impacted ED LOS in cases where there were language
barriers or communication issues [41]. Despite this, both these factors were considered for
this study. Other factors such as patient admission and requiring an interpreter were also
found to impact ED LOS. This is because those requiring admission or interpreters might
have to wait longer for diagnosis or scans due to severity in condition or complexities in
communication, respectively [6,42]. Even though other factors such as patient insurance
and number of staff available in the ED were found to impact ED LOS, they are considered
to be out of scope for this study as they were not included in the dataset [6,37,43]. Many
of these factors are either directly available in the VEMD or can be derived from VEMD
attributes. These factors can be used as predictors to build PDMMs as detailed in the
following sections.

3. Research Methodology

This section discusses the dataset used in this study along with an overview of the
dataset quality. Following this, steps involved in the pre-processing and analysis of these
dataset are discussed.

3.1. Dataset

A de-identified data extract containing all elements from VEMD plus additional
administrative data were obtained from three locations of Healthcare Service A. Data
collected at the three locations of Healthcare Service A for the year 2019 was obtained and
used for this study. The data obtained for this study was collected before the COVID-19
pandemic and does not take into account factors such as shortage of resources or any other
special circumstances.

3.2. Data Quality of the VEMD

Data quality is a crucial factor in DM and machine learning. Data that are deemed
suitable for personal or office use might not be considered fit to be used in machine
learning [44]. This is why data quality was considered to be a crucial part of this study. The
overall data standard and quality of the VEMD is regulated by the Health Data Standards
and Systems, Victoria. Each hospital using the VEMD is responsible for providing its staff
adequate information and training regarding its usage. To ensure data accuracy, the VEMD
is subject to frequent audits by the Victorian Agency for Health Information. Additionally,
the validity, completeness, coherence, accessibility, timeliness, and interpretability are
verified by health services [11].
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Along with the standard VEMD attributes, the dataset obtained for this study had
several additional attributes introduced by staff for internal uses. Many of these attributes
are either irrelevant to this research or of low data quality. For example, an attribute called
“presenting condition” had over 7000 unique values which were either misspellings or
a variation of the same values. Including this attribute in the analysis may have been
beneficial to the study by helping improve model utility and performance [6]. Despite this,
due to its low quality, it was removed from the analysis. This issue is consistent with the
findings from other studies that reported human-related data entry issues to be the biggest
reason for quality issues of the VEMD [45]. Data quality ultimately determines the accuracy
and reliability of a PDMM. Through exploration of the dataset and cleaning, the quality of
data can be improved [46]. This pre-processing of the dataset to improve data quality is
discussed further in Section 3.3.

3.3. Data Pre-Processing

The dataset for this study was created by merging VEMDs obtained from three lo-
cations of Healthcare Service A. There was a total of 92 attributes and 173,012 instances
present across all three datasets combined for the year 2019. This dataset consisted of
additional attributes (not specified in the VEMD documentation) added by the hospital
staff for internal purposes. With the exception of one attribute called “mental health”, all
additional attributes were found to be irrelevant to this research and were removed from
the dataset. The “mental health” attribute indicates whether a patient was reviewed by a
mental health professional, reviewed by the drug and alcohol unit, reviewed by both of
these, or by neither of these. This information can be useful to understand if presentations
requiring mental health or drug and alcohol assessments have a longer ED LOS [6].

To prepare the data for classification, a new “Class” attribute with values “>4” or
“≤4” was added to the dataset. Of the total presentations, 38.62% (66,819) were found
to have an ED LOS >4 h. This attribute was derived using the “ED LOS mins” attribute
from the dataset. Additionally, since we also hypothesized that performing additional
diagnostics might impact ED LOS, new attributes: “pathology needed?”; “MRI needed?”;
“ultrasound needed?”; “CT needed?”; and “X-ray needed?” were introduced. An attribute
called “doctor mins” was present in the dataset which captured the number of minutes
it took for the doctor to first examine the patient. It was suggested that delays in doctor
examinations could ultimately result in longer patient stays [47]. To capture this metric,
a new attribute called “greater than average?” was added to capture instances where the
doctor took greater than the average time to attend to a patient. The average time taken by
a doctor, in this case, was 73.88 min with 35.47% of the instances being above the average.
Here, the average time was calculated using the “doctor mins” column. Additionally, a
new age group “≤18” was added to the “age category” attribute to categorize pediatric
presentations and 7 instances in the dataset that had an invalid triage category of 0 were
removed. The dataset size after the removal of these 7 instances was 173,005. Missing values
were replaced with “nulls” and retained in the dataset for analysis. There were 4 missing
values in “age category” which with corresponding “class >4”. Hence, these missing
values were replaced with “nulls” and retained in the dataset. However, there was no
significant improvement in model performance with the removal of these “nulls”. Finally,
a Weka executable file with .arff extension was generated for further data pre-processing
and analysis.

Pre-processing of data was performed using the “Explorer” tab on Weka [19]. Two
attributes, “triage category” and “sex” were reclassified as nominal values. A total of
16 attributes either directly used from the VEMD or added to the dataset were used for
analysis. These attributes are listed in Table 1.
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Table 1. Summary of Attributes Included in Analysis.

Directly Used Derived/Changed from the Original

sex class
triage category X-ray needed?
indigenous status description pathology needed?
interpreter require description CT needed?
preferred language MRI needed?
arrival mode description ultrasound needed?
mental health greater than average?
admission flag age category

3.4. Data Analysis

Classification of the data was performed using ZeroR, J48 DT, RF, LazyIBK, and NB
models. The ZeroR model was used as a baseline classifier as it predicts the majority class
and ignores all other predictors [48]. Additionally, since the dataset had categorical values,
an LR model was also implemented [49,50]. Previous work has shown that performing
data analysis on a single dataset led to biased or exaggerated model accuracies [51,52].
Although methods such as k-fold cross validation can help overcome this issue, splitting
the dataset into training and test data was found to be more efficient especially on larger
datasets [18,32,53,54]. Considering the size of the dataset available and benefits associated
with splitting the dataset, this method was implemented during analysis.

For this study, 80% of the data were used for training and 20% for testing by using
Weka’s Percentage Split (PS) feature. Data are randomly shuffled into either training or test
subsets based on the “random seed” value specified in the model settings. To obtain the
correct accuracy, the model was run 10 times with seed values ranging from 1 to 10. The
average of model accuracies from each of these runs was adopted as the accuracy of that
model [55,56].

First, the ZeroR algorithm was executed to obtain the baseline accuracy for the study.
This baseline was used later to compare results from the other models. Next, the J48
algorithm was executed using the PS test option. Weka’s J48 DT algorithm produces a set of
nodes, leaves, and branches that are created based on test cases. The outcomes/decisions
for each of the tests are displayed as branches of the tree originating from nodes that hold
the test cases. For instance, the tree tests “greater than average?” at the node and produces
“Yes” or “No” branches along with the number of instances for each outcome or new branch
(see Figure 2).

For this study, a pruned DT with a confidence factor of 0.25 was produced. There was
no significant difference in model performance when the DT was left unpruned or reduced
error pruning was used. Following this, the RF algorithm was implemented. RF models
provide accurate results when bagging is performed as it is not prone to overfitting [29].
This is because the RF works by computing several small decision trees before producing
one final decision. Hence, RF models can be run on the complete dataset, unlike DTs,
which can overfit. The “bag size percent” value can be changed in RF model settings before
execution. For this study, the default “bag size percent” value of 100 was used. Next, the
K-NN model called the LazyIBK model on Weka was implemented. Similar to the RF,
the K-NN algorithm does not require training [57,58]. A k-value is to be specified in the
model settings before execution. Increasing or decreasing the k-value impacts the model
performance. It was reported that larger k-values improved model performances for larger
datasets [56,59]. For this study, a k-value of 1 was used. K values up to 50 in increments of
5 were tested, but these models had an insignificant change in accuracy. Following this,
both the LR and NB models were implemented using the PS method. The results obtained
from these models are presented in Section 4.
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4. Results

A total of 173,005 ED presentations recorded by three locations of Healthcare Service A
in the year 2019 were used in this study. Of these presentations, 38.62% reported having an
ED LOS > 4 h, while 61.38% reported an ED LOS ≤ 4 h. The average time it took for a doctor
to first examine a patient was 73.88 min. Six PDMMs were implemented for this study. Of
these six models, the J48 DT, LR, NB, and ZeroR algorithms were implemented using the
PS feature on Weka. The accuracy for these models was computed as the average accuracy
obtained over 10 iterations with different seed values [55,56]. The ROC and number of
correctly classified instances known as the accuracy of the model were adopted as the
primary performance metrics in this study. They were identified to be suitable to be used
in the ED LOS context [4,6].

The first model, ZeroR, had an average baseline accuracy of 61.41% and Standard
Deviation (SD) of 0.154. The ROC value for this model was 0.05 out of the maximum value
of 1. The next model, J48, had an average accuracy of 72.10%, SD of 0.1, and an ROC value
of 0.762. This model’s accuracy and ROC are significantly higher than the baseline accuracy.
The DT had a total of 944 leaves which were generated based on test cases. One part of this
DT can be seen in Figure 2.

In this figure, we see that a total of 23,087 patients experienced an ED LOS >4 h when
their first doctor visit lasted longer than the average time and were admitted into the
inpatient ward. On the other hand, if the patient waited less than the average time to first
be examined by a doctor but required a CT scan, the age of the patient determines their ED
LOS. In this case, 9988 patients aged >74 stayed longer.

The NB model yielded an average accuracy of 70.23% with an SD of 0.167 and an ROC
of 0.758. The LR model yielded an average accuracy 71.33% with an SD of 0.155 and ROC
value of 0.773. Both these models had an accuracy and ROC value lower than the J48 model.
However, they were still higher than the accuracy and ROC of ZeroR. Next, the LazyIBK
model was implemented with k = 1. This model had an accuracy of 74.04%, along with an
ROC value of 0.82. For the LazyIBK model, several k-values starting from k = 1 to k = 50
were tested in increments of 5. The model had an average accuracy of ≈72% when k values
other than 1 were tested out. Finally, the RF model had an accuracy of 74.024% with an
ROC value of 0.81. Both the RF and LazyIBK had the highest ROC and accuracies of all
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the models. The models implemented using PS did not show any significant change in
accuracy when varying the seed values. This is why there is no significant difference in
SD for these models. The f-measure, recall and precision of each of these models was also
computed. The ZeroR model did not produce any recall or precision as it focuses only on
the majority class, which is “≤4” in this study. The overall performance metrics form the
data analysis can be found in Table 2.

Table 2. Summary of the Performance Metrics.

Measure J48 LazyIBK LR NB RF ZeroR

Accuracy 72.10% 74.04% 71.33% 70.23% 74.024% 61.41%
ROC 0.762 0.82 0.773 0.758 0.81 0.05
F-Measure 0.716 0.735 0.706 0.699 0.736 -
Recall 0.72 0.74 0.713 0.701 0.74 0.613
Precision 0.716 0.736 0.707 0.698 0.736 -

5. Discussion

This study found that more than one-third of the ED presentations in the year 2019
had an ED LOS > 4 h. This was slightly higher than what was reported by other Australian
EDs [4,6]. Of the six models that were implemented in this study, RF and LazyIBK models
had the best model performance. The LazyIBK model had an ROC value of 0.82 and the RF
had an ROC of 0.81. An ROC value of 1 indicates a perfect test with any values close to
0.7 considered to be acceptable. ROC values above 0.8 for medical research are considered
to indicate excellent model performance [60]. The other three models, J48, LR, and NB had
acceptable ROC curve values, while the ZeroR model could be considered an imperfect test.
ROC values reported in other medical studies range from 0.6 to 0.86 [4,61,62]. The ROC
values of both the RF and LazyIBK were consistent with what was reported by another
study conducted in the Australian ED context [63].

LazyIBK, which is a Weka implementation of K-NN used in this study, had nearly the
same accuracy of 74% as RF, while J48, DT, NB and LR performed with a slightly lower
accuracy. The J48 DT, RF, and NB models had higher accuracies when compared to some
studies in the LOS context, which reported accuracies around 63–72% using variations on
classification [18,64]. There is only one other published study that used J48 DT to predict
LOS in the Australian ED context [6]. This study reported an accuracy of 85% which is
higher than our results. The inclusion of factors such as “presenting condition”, which
were removed from this study due to data quality issues could be a reason contributing to a
higher model accuracy in their study [63]. Consistent with this finding, model performance
for RF and DT in this study had increased to around 83% and 82%, respectively, with
the inclusion of the attribute “presenting condition”. Despite identifying this factor to be
significant in determining ED LOS, it was not included in the final study analysis and results
due to its poor quality. In our dataset, this attribute had nearly 7000 distinct values, many
misspellings or redundancies which could not be cleaned without domain knowledge.

This study found that the performance of all the models improved after the data
were pre-processed when compared to using the data in its original form. This confirms
pre-processing data to improve its quality is an important step when implementing DMMs
as suggested in literature [46]. The J48 DT implemented in this study was successful in
identifying 944 possible outcomes based on the factors used in the study. This DT helped
identify correlation between various factors used in analysis (see Figure 2 in Section 3.4).

Out of the 16 attributes used in the analysis, only six attributes were found to have a
significant impact on patient ED LOS. These include patient age, time taken for the doctor
to first see a patient, the patient mode of arrival, triage category, need for admission, and
performing CT scans. This study found that patients aged between 64 and 74 and patients
older than 74 were more likely to have an ED LOS greater than 4 h when compared to the
others. This is consistent with other studies that suggested that older patients were likely to
have a longer ED LOS [26,36,65]. The average time taken for a doctor to first see a patient
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was found to be 73.88 min. These results were consistent with the other Australian EDs,
but higher than some outside Australia [7,66]. This research found that around 66.7% of
the patients who were admitted into the hospital and waited longer than the average time
to first be seen by a doctor had an ED LOS greater than 4 h. Additionally, those patients
who had waited a greater than average time to first be seen by a doctor and also required a
mental health review were found to have an ED LOS greater than 4 h. This is consistent
with studies that suggested that patients who wait longer to be seen by a physician, require
admission or require a mental health review experience longer ED LOS [6,47].

Studies also suggest that a longer waiting time to be seen by a doctor could be
indicative of overcrowding [34,35,67,68]. Hospitals can customize these PDMMs to make
critical decisions for reducing delays in diagnosis based on their present ED conditions. It
was also found that around 43% of those who arrived by a mode of transport other than an
ambulance, police vehicle, or community transport had an ED LOS which was less than or
equal to 4 h. Those patients who arrived at the ED in any ambulance (air or road) had a
higher probability of experiencing an ED LOS of greater than 4 h. This is consistent with
findings from previous research [2,36].

Previous studies suggest that patients who required additional diagnostics were more
likely to experience longer ED LOS [69,70]. This was found to be true only for patients
requiring CT scans. This finding is consistent with other studies that suggest that CT scans
often cause delays in ED LOS [37]. Other tests such as MRIs, ultrasounds, pathology, and
X-rays were found to have the least impact on patient ED LOS out of all 16 factors. This is
contradictory to other research, which found that MRI scans and pathology such as blood
tests were equally responsible for delays in ED LOS as CT scans [69,71]. Based on the data
used in this study, the number of CT scans that were performed were significantly higher
than any other diagnostics tests. This could explain why the results from this study indicate
only the connection of CT scans to delayed ED LOS compared to any other diagnostics.
This may also confirm the hypothesis that CT scans are often over-prescribed in EDs [37,72].

Many studies also reported that patients with less severe triage codes (above 3) ex-
perience delays in diagnosis and treatment which impacted their LOS [6,47]. Contrary to
this, our study found that more patients with triage category 3, who were aged between
50–64 and those aged >74 experienced ED LOS > 4 h compared to the rest. In the dataset
used for this research, triage category 3 had a significantly higher number of patients than
triage categories above 3 when ED LOS exceeded 4 h. Furthermore, the DT yielded an
outcome of “>4” for triage category, mostly when patient age was considered. This is
consistent with other studies that suggest that triage category impacts ED LOS based on
the age of a patient [36].

The DT obtained in this study indicated a total of 944 possible outcomes and attribute
relationships in the form of DT branches. Based on these relationships, it was also found
that the admission of a patient into the hospital is classified based on factors such as age,
triage category, and mode of arrival. This is why it was determined to have an impact on
patient ED LOS. This is consistent with previous studies that considered age to determine
patient admission and the delays in ED LOS due to these factors [6,63]. Along with
confirming this, our study was also able to determine that factors such as triage category
and mode of arrival to also determine patient admission and subsequent delays in ED LOS.
Factors such as indigenous status, gender, preferred language, and needing an interpreter
were found to have the least impact on ED LOS. Although most studies found language
not to be significant, some still suggested that language barriers caused ED delays [41].

This study also confirmed that using the column “presenting condition” resulted in
improved model performance as suggested by other studies [6,63]. We found data quality
to be a significant factor in our research and believe that adopting measures to govern data
quality would have a major impact on improving future research and the overall usability
of data available [44]. One way to govern data to improve its quality is to standardize the
information being collected. By establishing the purpose for collecting data could help
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decide rules around its collection and storage. Adopting these practices will be beneficial
to not only hospitals but also to those using these data for research [73].

6. Conclusions and Recommendations

This study found that it is possible to predict patient ED LOS using factors impacting
ED LOS as identified in studies. The PDMMs built in this study can offer useful insights
into ED processes and also factors that risk delays in EDs. This information can be used by
hospitals to monitor their EDs and make strategic decisions for improvement. Currently,
there is limited research into the applications of DM in CDS. This study has shown that
PDMMs can be used in CDS to help address challenges such as ED LOS. To our knowledge,
only the J48 DT and GBM models were implemented in the Australian ED LOS context [4,6].
This study addresses the current lack of research in this context and shows that other
PDMMs can also be used in predicting ED LOS. This study provides evidence that PDMMs
such as RF, NB, LazyIBK, and LR can be implemented to address delays in LOS in Australian
EDs. The results obtained in this study can offer insights for future research for both the
applications of PDMMs in predicting ED LOS and the applications of DM in CDS. Future
work can utilize machine learning and deep learning algorithms and frameworks for CDS
and predicting ED LOS. This will help to determine predictive accuracy of more advanced
models when compared to DM [74–76].

The DT obtained in this study was useful in identifying useful relationships between
the various factors and their impact on the ED LOS. This study found that factors such
as patient age, patient admission, the time taken to first be seen by a doctor, the arrival
mode of the patient, requiring a CT scan, and triage category have the most impact on ED
LOS. Those patients who waited longer than the average time to first be seen by a doctor
and those who required a CT scan were at the greatest risk of experiencing ED LOS > 4 h.
It was also found that those patients older than 64 years of age were at a higher risk of
experiencing ED LOS > 4 h. This study also confirmed the correlation between patient
age and admission and their role in causing delays in ED LOS. In addition to age, both
triage category and arrival mode were found to be related to patient admission eventually
resulting in delayed ED LOS. The DT also revealed that triage category had an impact on
ED LOS based on other factors such as patient age. Additionally, the gender, indigenous
status, or language of a patient were found to have the least impact on ED LOS. Contrary
to other studies this study also found diagnostics like X-rays, pathology, MRI scans, and
ultrasounds also had the least impact on ED LOS.

Studies also identified data quality to be an important factor when implementing a
DMM. This study confirms data quality to be an important factor in data analysis. This
study found that by pre-processing the data before analysis resulted in better model
performance. Therefore, attributes such as “presenting condition” were excluded from
this study. Future work can include such attributes as part of their data analysis. Future
work could also investigate how these predictions vary based on hospital and data being
used. This study was conducted in the Australian ED context. The models developed in
this study need to be validated prior to international use, as ED processes differ around the
world [77]. Customizing and using these models in other hospitals could vary the impact
of certain factors such as diagnostics. Contrary to other research, this study found that only
those needing CT scans were associated with ED LOS > 4 h, while other diagnostic tests
had no impact on ED LOS. This finding could vary based on the hospital and resources
available. The results in this study were reported as an average of 10 runs as recommended
in the Weka documentation [56]. Future works could run experiments with the models a
higher number of times and report on parameters such as outliers in the data.

This study was limited to the data readily available via the VEMD, with the addition
of some other data points routinely collected by the industry partner. Factors such as
vital signs, pain scores, along with social factors, insurance status and ED crowding could
be incorporated into future research. This study also did not take into consideration the
number of beds or staff in the ED. It was suggested that the number of staff working could
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impact ED LOS. This is because a shortage in staff and beds results in delayed patient
diagnosis and testing [4,78,79]. Diagnostic results handover time was also found to be
significant in increasing ED LOS. The handover time can be defined as the time taken for
the diagnostician to handover the results of the test (for example, CT scan results) to the
doctor [4]. Future work could include these factors as part of their research.
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