
The cancer genome challenge and the importance 
of analytical pipelines
Recent progress in incorporating genomic information 
into clinical practice means that it is becoming increas
ingly feasible to personalize treatment according to the 

composition of the patient’s genome [1]. Indeed, bio
medicine seems to be moving rapidly in this direction [2]. 
Current estimates predict that the cost of sequencing will 
drop to below US$1,000 per genome and that when 
sequencing 1  million bases costs less than $1 it will 
become economically feasible to systematically imple
ment this type of clinical approach [36]. The full implica
tions of massive sequencing in a clinical setting have 
been discussed extensively [710], including discussion of 
some of the economic considerations, which are of con
siderable general interest [11].

There are already a number of exciting examples of the 
application of wholegenome sequencing to the study of 
Mendelian diseases. For example, in one family with four 
siblings affected by CharcotMarieTooth disease (a peri
pheral polyneuropathy), a direct relationship between a 
specific gene locus and this disease was demonstrated 
[12]. Moreover, analyses of individual genomes have also 
now been published [1317], including the first complete 
individual highthroughput approach [18].

Cancer is a general class of diseases that may benefit 
from the application of personalized therapeutic 
approaches, particularly given the wide spectrum of 
mutations that must be analyzed and the complexity of 
cancerrelated genome variation: germline susceptibility, 
somatic single nucleotide and small insertion/deletion 
mutations, copy number alterations, structural variants 
and complex epigenetic regulation.

Initial wholegenome sequencing studies have included 
the sequencing of the genome of a patient with chronic 
lymphocytic leukemia, in which novel somatic mutations 
were identified by comparing the variations in the tumor 
with both control tissue and the available database 
information [19]. Alternative approaches involve the 
sequen cing of coding regions alone (exomes), with the 
implicit reduction in the cost and effort required. Such 
analyses have also led to significant advances in our 
under standing of several types of cancer (see, for 
example, [2024]).

Our work in this area is strongly motivated by the case 
of a patient with advanced pancreatic cancer who 
responded dramatically to mitomycin C treatment [25]. 
The molecular basis for this response, the inactivation of 
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the PALB2 gene, was discovered by sequencing almost all 
the coding genes in the cancer cells from this patient [26]. 
Approximately 70 specific variations were detected in the 
tumor tissue and they were analyzed manually to search 
for mutations that might be related to the onset of the 
disease and, more importantly from a clinical point of 
view, that could be targeted with an existing drug. In this 
case, the mutation in the PALB2 gene was linked to a 
deficiency in the DNA repair mechanism [27] and this 
could be targeted by mitomycin C.

The obvious challenge in relation to this approach is to 
develop a systematic form of analysis in which a bioinfor
maticsassisted pipeline can rapidly and effectively 
analyze genomic data, thereby identifying targets and 
treatment options. An ideal scenario for personalized 
cancer treatment would require performing the sequen
cing and analysis steps before deciding on new treatments.

Unfortunately, there are still several scientific and 
technical limitations that make the direct implementation 
of such a strategy unfeasible. Although pipelines to 
analyze nextgeneration sequencing (NGS) data have 
become commonplace, the systematic analysis of muta
tions requires more time and effort than is available in 
routine hospital practice. A further challenge is to predict 
the functional impact of the variations discovered by 
sequencing, which presents serious obstacles in terms of 
the reliability of current bioinformatics methods. These 
difficulties are particularly relevant in terms of protein 
structure and function prediction, the analysis of non
coding regions, functional analyses at the cellular and 
subcellular levels, and the gathering of information 
about the relationships between mutations and drug 
inter actions.

Our own strategy is focused on testing the drugs and 
treatments proposed by the computational analysis of 
genomic information in animal models as a key clinical 
element. The use of xenografts, in which nude mice are 
used to grow tumors seeded by implanting fragments of 
the patient’s tissue, may be the most practical model of 
real human tumors. Despite their limitations, including 
the mixture of human and animal cells and the possible 
differences in the evolution of the tumors with respect to 
their human counterparts, such ‘avatar’ models provide 
valuable information about the possible treatment options. 
Importantly, such xenografts allow putative drugs or 
treatments for individual tumors to be assayed before 
applying them in clinical practice [25].

A summary of the elements that are required in an 
ideal data analysis pipeline is depicted in Figure  1, 
including: the analysis of genomic information; predic
tion of the consequences of specific mutations, particu
larly in protein coding regions; interpretation of the 
variation at the gene/protein network level; and the basic 
approaches in pharmacogenomic analysis to identify 

potential drugs related to the predicted genetic altera
tions. Finally, the pipeline includes the interfaces necessary 
to integrate the genomic information with other resources 
required by teams of clinicians, genome experts and bio
informaticians to analyze the information.

In this review, we outline the possibilities and limita
tions of a comprehensive pipeline and the future develop
ments that will be required to generate it, including a 
brief description of the approaches currently available to 
cover each stage. We begin by examining the bioinfor
matics required for genome analysis, before focusing on 
how mutation and variation data can be interpreted, then 
explore network analysis and the downstream applica
tions available for selecting appropriate drugs and 
treatments.

Genome analysis
Array technologies are relied on heavily to analyze 
diseaserelated tissue samples, including expression 
arrays and single nucleotide polymorphism (SNP) arrays 
to analyze point mutations and structural variations. 
However, personalized medicine platforms are now ready 
to benefit from the transition from these arraybased 
approaches towards NGS technology [28].

The detection of somatic mutations by analyzing 
sequence data involves a number of steps to filter out 
technical errors. The first series of filters are directly 
related to the sequencing data and they vary depending 
on the technical setup. In general, this takes into 
consideration the basecalling quality of the variants in 
the context of the corresponding regions. It also con
siders the regions covered by sequencing and their 
representativeness or uniqueness at the genome level.

As the sequencing and software analysis technologies 
are not fully integrated, errors are not infrequent and, in 
practice, thousands of false positives are detected when 
the results move on to the validation phase. In many 
cases, this is due to the nonunique placement of the 
sequencing reads in the genome or the poor quality of 
alignments. In other cases, variants can be missed 
because of insufficient coverage of the genomic 
regions.

The analysis of tumors is further complicated by their 
heterogeneous cellular composition. New experimental 
approaches are being made available to address the 
heterogeneity of normal and disease cells in tumors, 
including singlecell sequencing [29,30]. Other intrinsic 
difficulties include the strong mosaicism recently dis
covered [3133], and thus greater sequencing quality and 
coverage is necessary and more stringent sample selec
tion criteria must be applied. These requirements place 
additional pressure on the need to acquire samples in 
sufficient quantity and of appropriate purity, inevitably 
increasing the cost of such experiments.
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After analyzing the sequence data, putative mutations 
must be compared with normal tissue from the same 
individual, as well as with other known genetic variants, 
to identify true somatic mutations related to the specific 
cancer. This step involves comparing the data obtained 
with information regarding variation and with complete 
genomes, which can be obtained from various databases 
(see below), as well as with information on rare variants 
[34,35]. For most applications, including the possible use 
in a clinical setup, a subsequent validation step is neces
sary, which is normally carried out by PCR sequen cing of 
the variants or, where possible, by sequencing biological 
replicates.

Exome sequencing
The cost of wholegenome sequencing still remains high. 
Furthermore, when mutations associated with diseases 
are mapped in genomewide association studies (GWASs) 
[36], they tend to map in regulatory and functional 
elements but not necessarily in the conserved coding 
regions, which actually represent a very small fraction of 
the genome. This highlights the importance of studying 
mutations in noncoding regions and the need for more 
experimental information on regulatory ele ments, 
including promoters, enhancers and microRNAs 
(miRNAs; see below). Despite all these considerations, 
the current alternative for economic and technical 

Figure 1. Scheme of a comprehensive bioinformatics pipeline to analyze personalized genomic information. The five steps in the pipeline 
are shown in the top row, with the main methods that have so far been developed for each step the middle and outstanding problems in the 
bottom row. (1) Revision of genomic information. In this rapidly developing area methods and software are continuously changing to match the 
improvements in sequencing technologies. (2) Analysis of the consequences of specific mutations and genomic alterations. The analysis needs 
go from the area of point mutation prediction in proteins to the much more challenging area of prediction of mutations in non-coding regions, 
including promoter regions and TF binding sites. Other genetic alterations important in cancer must also be taken into consideration, such as 
copy number variation, modification of splice sites and altered splicing patterns. (3) Mapping of gene/protein variants at the network level. At this 
point, the relationships between individual components (genes and proteins) are analyzed in terms of their involvement in gene control networks, 
protein interaction maps and signaling/metabolic pathways. It is clearly necessary to develop a network analysis infrastructure and analysis 
methods capable of extracting information from heterogeneous data sources. (4) Translation of the information into potential drugs or treatments. 
The pharmacogenomic analysis of the information is essential to identify potential drugs or treatments. The analysis at this level integrates genomic 
information with that obtained from databases linking drugs and potential targets, combining it with data on clinical trials drawn from text or web 
sources. Toxicogenomics information adds an interesting dimension that enables additional exploration of the data. (5) Finally, it is essential to 
make the information extracted by the systems accessible to the end users in adequate conditions, including geneticists, biomedical scientists and 
clinicians.
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reasons is often to limit sequencing to the coding regions 
in the genome (exome sequencing), which can be 
performed for less than $2,000. Indeed, sequencing all 
the exons in a genome has already provided useful data 
for disease diagnosis, such as in identifying the genes 
responsible for Mendelian disorders in studies of a small 
number of affected individuals. Such proofofconcept 
studies have correctly identified the genes previously 
known to underlie diseases such as FreemanSheldon 
syndrome [37] and Miller syndrome [38].

A key step in exome sequencing is the use of the 
appropriate capturing technology to enrich the DNA 
samples to be sequenced with the exons desired. There 
has been considerable progress in developing and com
mercializing arrays to capture specific exons (for 
example, see [39]), which has facilitated the standardi
zation and systematization of such approaches, thereby 
increasing the feasibility of applying these techniques in 
clinical settings.

Despite the current practical advantages offered by 
exome sequencing, it is possible that technological 
advances will soon mean that it will be replaced by whole
genome sequencing, which will be cheaper in practice and 
requires less experimental manipulation. However, such a 
scenario will certainly increase the complexity of the 
bioinformatic analysis (see, for example, [40] for an 
approach using wholegenome sequencing, or [19] for the 
combined use of wholegenome sequencing as a discovery 
system, followed by exome sequencing validation in a 
larger cohort).

Sequencing to study genome organization and expression
NGS can provide sequence information complementary 
to DNA sequencing that will be important for cancer 
diagnosis, prognosis and treatment. The main applica
tions include RNA sequencing (RNAseq), miRNAs and 
epigenetics.

NGSbased approaches can also be used to detect 
structural genomic variants, and these techniques are 
likely to provide better resolution than previous array 
technologies (see [41] for an initial example). Cancer 
research is an obvious area in which this technology will 
be applied, as chromosomal gains and losses are very 
common in cancer. Further improvements in this sequen
cing technology, and in the related computational 
methods, will enable more information to be obtained at 
a lower cost [42] (see also a recent application in [43] and 
the evolution of computational approaches from [4446] 
to [47]).

RNA-seq
DNA sequencing data, particularly data from noncoding 
regions (see below), can be better understood when 
accompanied by gene expression data. Direct sequencing 

of RNA samples already provides an alternative to the use 
of expression arrays, and it promises to increase the 
accessible dynamic range and limits of sensitivity [4850]. 
RNAseq could be used to provide a comprehensive view 
of the differences in transcription between normal and 
diseased samples but also to correlate alterations in 
structure and copy number that may affect gene 
expression, thereby helping to interpret the consequences 
of mutations in gene control regions. Furthermore, RNA 
sequencing data can be used to explore the capacity of 
the genome to produce alternative splice variants [5155]. 
Indeed, the prevalence of splice variants at the genomic 
level has been assessed, suggesting a potential role for the 
regulation of alternative splicing in different stages of 
disease, and particularly in cancer [56,57]. Recent 
evidence clearly points to the importance of mutations in 
splicing factors and RNA transport machinery in cancer 
[24,58].

miRNAs
NGS data on miRNAs can also complement sequencing 
data. This is particularly important in cancer research 
given the rapidly expanding roles proposed for miRNAs 
in cancer biology [59]. For example, interactions have 
been demonstrated between miRNA overexpression and 
the wellcharacterized Sonic hedgehog/Patched signaling 
pathway in medulloblastoma [60]. Moreover, novel 
miRNAs and miRNAs with altered expression have also 
been detected in ovarian and breast cancers [61,62].

Epigenetics
NGS can provide invaluable data on DNA methylation 
(methylseq) and the epigenetic modification of histones  
for example, through chromatin immunoprecipitation 
sequencing (ChIPseq) with antibodies corresponding to 
the various modifications. Epigenetic mechanisms have 
been linked to disease [63,64] (reviewed in [65]).

The wealth of information provided by all these NGS
based approaches will substantially increase our capacity 
to understand the complete genomic landscape of the 
disease, although it will also increase the complexity of 
the analysis at all levels, from basic data handling to 
problems related to data linking to interpretation. There 
will also be complications in areas in which our 
knowledge of the basic biological processes is developing 
at the same rhythm as the analytical technology (for a 
good example of the intrinsic association between new 
discoveries in biology and the development of analytical 
technologies, see recent references on chromothripsis 
[6668]). Furthermore, it is important to keep in mind 
that, from the point of view of clinical applications, most 
if not all drugs available target proteins. Thus, even if it is 
essential to have complete genomic information to 
understand a disease and to detect disease markers and 
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stratification, as well as to design clinical trials, the 
identification of potential drugs and treatments will still 
be mainly based on the analysis of alterations in coding 
regions.

interpreting mutation and variation data
The growing number of largescale studies has led to a 
rapid increase in the number of potential disease
associated genes and mutations (Table 1). An overview of 
these studies can be found in [69] and the associated web 
catalog of GWASs [70].

Interpreting the causal relationship between the 
mutations considered to be significant in GWASs and the 
corresponding disease phenotypes is clearly complicated, 
and serious concerns about the efficacy of GWASs have 
been much discussed [71,72]. In the case of cancer 
research, the interpretation of mutations is additionally 
complicated by the dynamic nature of tumor progression, 
and also the need to distinguish between mutations 
associated with the initiation of the cancer and others 
that accumulate as the tumors evolve. In this field, the 
potential cancer initiators are known as ‘drivers’ and 
those that accumulate during tumor growth as ‘passen
gers’ (terminology taken from [73], referring metaphori
cally to the role of certain viruses in either causing or 
merely being passengers in infected cells).

In practice, the classification of mutations as drivers 
and passengers is based on their location at positions 
considered to be important because of their evolutionary 
conservation, and on observations in other experimental 
datasets (for a review of the methods used to classify 
driver mutations and the role of tumor progression 
models, see [74]). Ultimately, more realistic biological 
models of tumor development and a more comprehensive 
understanding of the relationship between individual 
mutations will be necessary to classify mutations accord
ing to their role in the underlying process of tumor 
progression (reviewed in [75]).

Despite the considerable advances in database develop
ment, it will take additional time and effort to fully 
consolidate all the information available in the scientific 
literature into databases and annotated reposi tories. To 
alleviate this problem, efforts have been made to extract 
mutations directly from the literature by systematically 
mapping them to the corresponding protein sequences. 
For example, CJO Baker and D RebholzSchuhmann 
organize a biennial workshop focusing on this particular 
approach (the ECCB Work shop: Annotation, Interpre
tation and Management of Mutations; the corresponding 
publication is [76]).

In the case of protein kinases, one of the most impor
tant families of proteins for cancer research, many 
mutations have been detected that are not currently 
stored in databases and that have been mapped to their 

corresponding positions in protein sequences [77]. 
However, for a large proportion of the mutations in 
kinases already introduced into databases, text mining 
provides additional links to stored information and 
mentions of the mutations in the literature.

These automated approaches, when applied not only to 
protein kinases but to any protein family [7884], should 
be viewed as a means of facilitating rapid access to 
information, although they are not aimed at replacing 
databases, as the text mining results require detailed 
manual curation. Therefore, in the quest to identify and 
interpret mutations, it is important to bear in mind that 
text mining can provide additional information comple
mentary to that retrieved in standard database searches.

Information about protein function
Accurately defining protein function is an essential step 
in analyzing mutations and predicting their possible 
consequences. Databases are annotated by extrapolating 
the functions of the small number of proteins on which 
detailed experiments have been carried out (estimated to 
be less than 3% of the proteins annotated in the UniProt 
database). The protocols for these extrapolations have 
been developed over the past 20  years and they are 
continually adjusted to incorporate additional filters and 
information sources [8587]. Interestingly, several on
going communitybased efforts aim to evaluate the 
methods used to predict and extract information regard
ing protein function, such as Biocreative in the field of 
text mining [88,89], CASP for predicting function and 
binding sites [90], and challenge in function prediction 
organized by Iddo Friedberg and Predrag Radivojac [91].

Protein function at the residue level
The analysis of diseaseassociated mutations naturally 
focuses on key regions of proteins that are directly related 
to their activity. The identification of binding sites and 
active sites in proteins is therefore an important aid to 
interpreting the effects of mutations. In this case, and as 
in other areas of bioinformatics, the availability of large 
and wellannotated repositories is essential. The annota
tions of binding sites and active sites in SwissProt [92], 
the main database with handcurated annotations of 
protein characteristics, provide a combination of experi
mental information and patterns of conservation of key 
regions. For example, the wellcharacterized GTP 
binding site of the Ras family of small GTPases is divided 
into four small sequence regions. This definition is based 
on the conservation of these sequences, despite the fact 
that they include residues that do not directly contact 
GTP or participate in the catalytic mechanism. 
Obviously, the ambiguity of this type of definition tends 
to complicate the interpretation of mutations in such 
regions.
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Various tools have been designed to provide validated 
annotations of binding sites (residues in direct contact 
with biologically relevant compounds) in proteins of 
known structure; these include FireDB and FireStar [93]. 
This information is organized according to protein 
families so as to help analyze the conservation of the 
compounds bound and the corresponding binding 
residues. Other resources, such as the Catalytic Site Atlas 
[94], provide detailed information about protein residues 
directly involved in the catalysis of biochemical reactions 
by enzymes. In addition to substrate binding sites, it is 
also important to interpret the possible incidence of 
mutations at sites of interaction between proteins. Indeed, 
there are a number of databases that store and annotate 
such interaction sites [95].

Given that there are still relatively few proteins for 
which binding sites can be deduced from their corres
ponding structures, it is particularly interesting to be able 
to predict substrate binding sites and regions of 
interaction with other protein effectors. Several methods 
are currently available for this purpose [9698]; for 
example, a recently published method [99] automatically 
classifies protein families into functional subfamilies, and 
detects residues that may functionally differentiate 
between subfamilies (for a userfriendly visualization 
environment, see [100]).

Prediction of the consequences of point mutations
Several methods are currently used to predict the 
functional consequences of individual mutations. In 
general, they involve a combination of parameters related 
to the structure and stability of proteins, interference 
from known functional sites, and considerations about 
the evolutionary importance of sites. These parameters 
are calculated for a number of mutations known to be 
linked to diseases and in the majority of systems they are 
extrapolated to new cases using machine learning 
techniques (support vector machines, neural networks, 
decision trees and others; for a basic reference in the 
field, see [101]).

The process of predicting the consequences of 
mutations is hampered by numerous inherent limitations, 
such as those listed below.

(1) Most of the known mutations used to calibrate the 
system are only weakly associated with the corres
ponding disease. In some cases the relationship is 
indirect or even nonexistent (for example, mutations 
derived from GWASs; see above).

(2) The prediction of the structural consequences of 
mutations is a new area of research, and thus the risks 
of misinterpretation are considerable, particularly 
given the flexibility of proteins and our limited 
knowledge of protein folding.

(3) The consequences of mutations in protein structures 
should ideally be interpreted in quantitative terms, 
taking energies and entropies into account. This 
requires biophysical data that are not yet available for 
most proteins.

(4) Predictions are made on the assumption that proteins 
act alone when, in reality, specific constraints and 
interactions within the cellular or tissue environment 
can considerably attenuate or enhance the effects of a 
mutation.

(5) The current knowledge of binding sites, active sites 
and interaction sites is limited (see above). The 
accuracy of predictions regarding the effects of muta
tions at these sites is thus similarly limited.

Despite such limitations, these approaches are very 
useful and they currently represent the only means of 
linking mutations with protein function (Table 2). Many 
of these methods are userfriendly and well documented, 
with their limitations emphasized to ensure careful 
analysis of the results. Indeed, an initial movement to 
assess prediction methods has been organized (a recent 
evaluation of such methods can be found in [102]).

For example, the PMUT method [103] (Table  2) is 
based on neural networks calibrated using known muta
tions, integrating several sequence and structural para
meters (multiple sequence alignments generated with 
PSIBLAST and PHD scores for secondary structure, 
conservation and surface exposure). The input required is 
the sequence or alignment, and the output consists of a 
list of the mutations with a corresponding disease 
prediction presented as a pathogenicity index that ranges 
from 0 to 1. The scores corresponding to the neural 
network’s internal parameters are interpreted in terms of 

Table 1. Some of the main data repositories of genetic variation associated with human phenotypes and disease

Name Description URL Reference

dbSNP General catalog of polymorphisms http://www.ncbi.nlm.nih.gov/SNP [142]

Ensembl Maps known mutations and SNPs in the human genome from  http://www.ensembl.org [143] 
 other databases

OMIM Online Mendelian Inheritance in Man; a large collection of disease  http://www.ncbi.nlm.nih.gov/omim/ [144] 
 annotations, often for monogenetic diseases

COSMIC Catalog of somatic mutations in cancer http://www.sanger.ac.uk/genetics/CGP/cosmic/ [145]

CGC  Cancer Gene Census http://www.sanger.ac.uk/genetics/CGP/Census/ [146]
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the level of confidence in the prediction. The system also 
provides precalculated results for large groups of 
proteins, thereby offering a fast and accessible web 
resource [103].

Perhaps the most commonly used method in this area 
is SIFT [104] (Table 2), which compiles PSIBLAST align
ments and calculates the probabilities for all the 20 
possible amino acids at that position. From this infor
mation it predicts to what degree substitutions will affect 
protein function. In its predictions, SIFT does not use 
structural information from the average diversity of the 
sequences in the multiple sequence alignments. The 
infor mation provided about the variants in protein 
coding regions includes descriptions of the protein 
sequences and the families, the estimated evolutionary 
pressure and the frequency of SNPs at that position (if 
detected), as well as the association with diseases as 
found in the Online Mendelian Inheritance in Man 
(OMIM) database (Table 1).

In the light of the current situation, it is clearly 
necessary to move beyond the simple predictive methods 
that are currently available to fulfill the requirements for 
personalized cancer treatment. As in other fields of 
bioinformatics (see above), competitions and community
based evaluation efforts that openly compare systems are 
of great practical importance. In this case, Yana Brom
berg and Emidio Capriotti are organizing an interesting 
workshop on the prediction of the consequences of point 
mutations [105], and Steven E Brenner, John Moult and 
Sadhna Rana organize the Critical Assessment of 
Genome Interpretation (CAGI) to assess computational 
methods for predicting the phenotypic impacts of 
genomic variation [106].

A key technical step in analyzing the consequences of 
mutations in protein structures is the ability to map the 
mutations described at the genome level onto the 
corresponding protein sequences and structures. The 
difficulty of translating information between coordinate 
systems (genomes and protein sequences and structures) 
is not trivial, and current methods only provide partial 
solutions to this problem. The protein structure classi
fication database CATH [107] has addressed this issue 
using a system that allows the systematic transfer of DNA 
coordinates to positions in threedimensional protein 
structures and models [108].

In addition to the general interpretation of the con
sequences of mutations, there is a large body of literature 
on the interpretation of mutations in specific protein 
families. By combining curated alignments and the 
detailed analysis of structures or models with sophis ti
cated physical calculations, it is possible to gain addi
tional insight into specific cases. For example, mutations 
in the protein kinase family have been analyzed, 
comparing the distribution of these mutations in terms of 
protein structure and their relationship with active sites 
and binding sites [109]. The conclusion of this study [109] 
was that putative cancer driver mutations tend to be 
more closely associated with key protein features than 
are other more common variants (nonsynonymous 
SNPs) or somatic mutations (passengers) that are not 
directly linked to tumor progression. These driver
specific features include molecule binding sites, regions 
of specific binding to other proteins and positions con
served generally or in specific protein subfamilies at the 
sequence level. This observation fits well with the 
implication of altered protein kinase function in cancer 

Table 2. Methods for predicting the consequences of point mutations

Name URL How it works

SIFT http://sift.jcvi.org Uses sequence homology scores that are calculated using position-specific  
  scoring matrices with Dirichlet priors

Polyphen 2 http://genetics.bwh.harvard.edu/pph2/ Uses sequence conservation, structure and Swiss-Prot annotations

PMUT http://mmb2.pcb.ub.es:8080/PMut/ Formulates predictions with neural networks, using internal databases,  
  secondary structure prediction and sequence conservation

SNPs3D http://www.snps3d.org/ Based on a support vector machine that uses structural or sequence  
  conservation parameters

PantherPSEC19 http://www.pantherdb.org/tools/csnpScoreForm.jsp Uses sequence homology scores calculated using PANTHER hidden Markov  
  model families

Mutationassessor http://mutationassessor.org Provides predictions using additional information based on the specific 
  patterns of conservation of protein families

VEP (Variant Effect  http://www.ensembl.org/info/docs/variation/vep This system categorizes Ensembl genomic variants in known transcripts by 
Predictor)   their potential effect

KinMut http://kinmut.bioinfo.cnio.es Prediction of the consequences of mutations in protein kinases; the system  
  was trained with specific information about the kinase subfamilies, and  
  together with the predictions provides general information about the  
  corresponding proteins, a comparison with other predictors and links to the  
  related literature
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pathogenicity, and it supports the link between cancer
associated driver mutations and altered protein kinase 
structure and function.

Familyspecific prediction methods based on the 
association of specific features in protein families [110], 
and on other methods that exploit familyspecific 
information [111,112], pave the way to the development 
of a new generation of prediction methods that can assess 
all protein families using their specific characteristics.

Mutations do not only affect binding sites and 
functional sites but, in many cases, they also alter sites 
that are subject to posttranslational modifications, 
poten tially affecting the function of the corresponding 
proteins. Perhaps the largest and most effective resource 
to predict the mutational effects on sites subject to post
translational modification is that developed by Søren 
Brunak’s group [113], which encompasses leucinerich 
nuclear export signals, nonclassical secretion of 
proteins, signal peptides and cleavage sites, arginine and 
lysine propeptide cleavage sites, generic and kinase
specific phosphorylation sites, cmannosylation sites, 
glycation of ε amino groups of lysines, Nlinked 
glycosylation sites, OGalNAc (mucin type) glycosylation 
sites, aminoterminal acetylation, OβGlcNAc glycosyla
tion and ‘YinYang’ sites (intracellular/nuclear proteins). 
The output for each sequence predicts the potential of 
mutations to affect different sites. However, there is as 
yet no predictor capable of combining the output of this 
method and applying it to specific mutations. An example 
of a system to predict the consequences of mutations in 
an information rich environment is provided in Figure 2.

Mutations in non-coding regions
Predicting the consequences of mutations in noncoding 
regions presents particular challenges, especially given 
that current methods are still very limited in formulating 
predictions based on gene sequence and structure, 
miRNA and transcription factor (TF) binding sites, and 
epigenetic modifications. For a review of our current 
knowledge of TFs and their activity, see [114]; the main 
data repositories are TRANSFAC, a database of TFs and 
their DNA binding sites [115], JASPAR, an openaccess 
database of eukaryotic TF binding profiles [116], and 
ORegAnno, an openaccess communitydriven resource 
for regulatory annotation [117].

In principle, these information repositories make it 
possible to analyze any sequence for the presence of 
putative TF binding sites and to predict how binding 
would change following the introduction of mutations. In 
practice, however, the information relating to binding 
preferences is not very reliable as it is generally based on 
artificial in vitro systems. Furthermore, it is difficult to 
account for the effects of gene activation based on this 
information and it is also impossible to take into account 

any cooperation between individual binding sites. 
Although approaches based on NGS or ChIPseq experi
ments would certainly improve the accuracy of the infor
mation available regarding true TF binding sites in differ
ent conditions, predicting the consequences of individual 
modifications in terms of the functional alterations 
produced is still difficult. The mapping of mutations in 
promoter regions and their correlation with TF binding 
sites thus provides us with only an indication of poten
tially interesting regions, but it does not yet represent an 
effective strategy to analyze mutations.

In the case of miRNAs and other noncoding RNAs, 
the 2012 Nucleic Acids Research database issue lists more 
than 50 databases providing information on miRNAs. As 
with the predictions of TF binding, it is possible to use 
these resources to explore the links between mutations 
and their corresponding sites. However, the methods 
currently available still cannot provide systematic predic
tions of the consequences of mutations in regions coding 
for miRNAs and other noncoding RNAs. Indeed, such 
approaches are becoming increasingly more difficult 
owing to the emergence of new forms of complex RNA, 
which pose further challenges to these prediction methods 
(reviewed in [118]).

Even if sequence analysis alone cannot provide a 
complete solution to the analysis of mutations in non
coding regions, combining such approaches with targeted 
gene expression experiments can shed further light on 
such events. In the context of personalized cancer treat
ment, combining genome and RNA sequencing of the 
same samples could enable the variation in coding capacity 
of different variants to be assessed directly. Hence, new 
methods and tools will be required to support the 
systematic analysis of such combined datasets.

In summary, predicting the functional consequences of 
point mutations in coding and noncoding regions still 
remains a challenge, requiring new and more powerful 
computational methods and tools. However, despite the 
inherent limitations, several useful methods and resources 
are now available, which, in combination with targeted 
experiments, should be explored further to analyze 
mutations more reliably in a context of personalized 
medicine.

Network analysis
Cancer and signaling pathways
Cancer has been repeatedly described as a systems 
disease. Indeed, the process of tumor evolution from 
primary to malignant forms, including metastasis to 
other tissues, involves competition between various cell 
lineages struggling to adapt to the changing conditions, 
both within and around the tumor. This complex process 
is closely associated with the occurrence of mutations 
and genetic alterations. In fact, it seems likely that rather 
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than individual mutations themselves, combinations of 
mutations provide cell lineages with an advantage in 
terms of growth and their invasive capabilities. Given the 
complexity of this process, more elaborate biological 
models are needed to account for the role of networks of 
mutations in this competition between cell lineages [74].

Analyzing alterations in signaling pathways, as opposed 
to directly comparing mutated genes, has produced signi
fi cant progress in interpreting cancer genome data [26]. 
In this study [119], a link between pancreatic cancer and 
certain specific signaling pathways was detected by care
fully mapping the mutations detected in a set of cases. 
From this analysis, the general DNA damage pathway 

and several other pathways were broadly identified, 
highlighting the possibility of using drugs that target the 
proteins in these pathways to treat pancreatic cancer. 
Indeed, it was also relevant that the results from one 
patient in this study contradicted the relationship 
reported between pancreatic cancer and mutations in the 
DNA damage pathway. A manual analysis of the 
mutations in this patient revealed the crucial importance 
for treatment of a mutation in the PALB2 gene, a gene 
not considered to be a component of the DNA damage 
pathway in the signaling database at the time of the initial 
analysis, even though it was clearly associated with the 
pathway in the scientific literature [27]. This observation 

Figure 2. Screenshots representing the basic information provided by the wKinMut system for analyzing a set of point mutations in 
protein kinases [147,148]. The panels present: (a) general information about the protein kinase imported from various databases; (b) information 
about the possible consequences of the mutations extracted from annotated databases, each linked to the original source; (c) predictions of the 
consequences of the mutations in terms of the principal features of the corresponding protein kinase, including the results of the kinase-specific 
system KinMut [110] (Table 2); (d) an alignment of related sequences, including information about conserved and variable positions; (e) the 
position of the mutations in the corresponding protein structure (when available); (f) sentences related to the specific mutations from [77]; 
(g) information about the function and interactions of the protein kinase extracted from PubMed with the iHOP system [149,150]. A detailed 
description of the wKinMut system can be found in [147] and in the documentation of the web site [148].

(a) (b)

(c)

(d) (e)

(f)
(g)
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serves as an important reminder of the incomplete nature 
of the information organized in the current databases, 
the need for careful factchecking and the difficulty in 
separating reactions that are naturally linked in cells into 
human annotated pathways.

From a systems biology viewpoint, it is clear that 
detecting common elements in cancer by analyzing 
muta tions at the protein level is fraught with difficulty. 
Thus, shifting the analysis to the systems level by 
considering the pathways and cellular functions affected 
might offer a more general view of the relationship 
between mutations and phenotypes, helping to detect 
common biological alterations associated with specific 
types of cancer.

This situation was illustrated in our systematic analysis 
of cancer mutations and cancer types at the pathway and 
functional levels [120]. The associated system (Figure 3) 
allows the types of cancer and associated pathways to be 
explored, and it identifies common features in the input 
information (mutations obtained from small and large
scale studies).

To overcome the limitations in defining the pathways 
and cell functions, as demonstrated in the study of 
pancreatic cancer [119], more flexible definitions of path
ways and cell functions must be considered. Improve
ments to the main pathway information databases (that 
is, KEGG [121] and Reactome [122]), might be made 
possible by incorporating text mining systems to facilitate 
the task of annotation [123]. A further strategy to help 
detect proteins associated with specific pathways that 
might not have been detected by earlier biochemical 
approaches is to use information relating to the func
tional connections between proteins and genes, including 
gene control and protein interaction networks. For 
example, proteins that form complexes with other 
proteins in a given pathway can be considered as part of 
that pathway [124]. Candidates to be included in such 
analyses would be regulators, phosphatases and proteins 
with connector domains, in many cases corresponding to 
proteins that participate in more than one pathway and 
that provide a link between related cellular functions.

Even if the network and pathwaybased approaches 
are a clear step forward in analyzing the consequences of 
mutations, it is necessary to be realistic about their 
present limitations. Current approaches to network 
analysis represent static scenarios where spatial and 
temporal aspects are not taken into account: for example, 
the tissue and stage of tumor development are not con
sidered. Furthermore, important quantitative aspects, 
such as the amount of proteins and the kinetic para
meters of reactions, are generally not available. In other 
words, we still do not have at hand the comprehensive 
quantitative and dynamic models necessary to fully 
understand the consequences of mutations at the 

physiological level. Indeed, generating such models 
would require considerable experimental and computa
tional effort, and as such it remains as one of the main 
challenges in systems biology today, if not the main 
challenge.

Linking drugs to genes/proteins and pathways
Even if comprehensive networkbased approaches provide 
valuable information about the distribution of mutations 
and their possible functional consequences, they are still 
far from helping us reach the final objective of designing 
personalized cancer treatment. The final key preclinical 
stage is to associate the variation in proteins and path
ways with drugs that directly or indirectly affect their 
function or activity. This is a direction that opens up a 
world of possibilities and may change the whole field of 
cancer research [125].

To go from possibilities to realities will require tools 
and methods that bring together the protein and 
pharmaceutical worlds (Table 3). The challenge is to 
identify proteins that when targeted by a known drug will 
interrupt the malfunctions in a given pathway or 
signaling system. This means that to identify potentially 
appropriate drugs, their effects must be described in 
different phases. First, adequate information must be 
compiled about the drugs and their targets in the light of 
our incomplete knowledge on the action in vivo of many 
drugs and the range of specificity in which many current 
drugs work. Second, the extent to which the effect of 
mutations that interrupt or overstimulate signaling 
pathways can be counteracted by the action of drugs 
must be assessed. This is a particularly difficult problem 
that requires an understanding of the consequences of 
the mutations at the network level, and the capacity to 
predict the appropriate levels of the network that can be 
used to counteract them (see above). Furthermore, the 
margin of operation is limited because most drugs tend 
to remove or diminish protein activity, as do most 
mutations. Hence, potential solutions will often depend 
on finding a node of the network that can be targeted by 
a drug and upregulated.

Given the limited precision of current genome analysis 
strategies (as described above), the large number of 
potential mutations and possible targets related to cancer 
phenotypes are difficult to disentangle. Similarly, the 
limited precision of the drugprotein target relationships 
makes reducing the genome analysis to the identification 
of a single potential drug almost impossible. Fortunately, 
the use of complementary animal models (avatar mice, 
see above) consistently increases the number of possible 
combinations of drugs that can be tested for each specific 
case. Perhaps the best example of the possibilities of 
current systems is the PharmGKB resource [126] 
(Table 3), which was recently used to calculate the drug 
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Figure 3. See overleaf for legend.
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response probabilities after a careful analysis of the 
genome of a single individual [127]. Indeed, this approach 
provided an interesting example of the technical and 
organizational requirements of such an application 
(reviewed in [128]).

Toxicology is as an increasingly important field at the 
interface between genomics and disease, not least 
because of its influence on drug administration and its 
strategic importance for pharmaceutical companies. An 
important advance in this area will be to integrate 
information on mutations (and predictions of their 
consequences) within the context of a gene/protein, 
disease and drug network. In this area, the cooperation 
between pharmaceutical companies and research groups 
in the eTOX project [129] of the European ‘Innovative 
Medicine Initiative’ platform is particularly relevant (see 
also other IMI projects related to subjects discussed in 
this section [130]).

From our knowledge of diseaselinked genes and 
proteinrelated drugs, the connection between toxicology 
and the secondary effects of drugs has been used to find 
associations between necrosis of breast and lung cancer 
[131]. Recent work has also achieved drug repositioning 
using analysis of expression profiles [132,133] and 
analyzed drug relationships using common secondary 
effects [134].

Conclusions and future directions
We have presented here a global vision of the issues 
associated with the computational analysis of person a
lized cancer data, describing the main limitations and 
possible developments of current approaches and the 
currently available computational systems.

The development of systems to analyze individual 
genome data is an ongoing activity in many groups and 
institutions, with diverse implementations tailored to 
their bioinformatics and clinical units. In the future, this 
type of pipeline will allow oncology units at hospitals to 
offer treatment for individual cancer patients based on 
the comparison of their normal and cancer genomic 
compositions with those of successfully treated patients. 
However, this will require the exhaustive analysis of 
genomic data within an analytical platform that covers 
the range of topics described here. Such genomic 
information has to be considered as an addition to the 
rest of the physiological and medical data that are 
essential for medical diagnosis.

In practice, it seems likely that the initial systems will 
work in research environments to explore genomic 
information in cases of palliative treatment and most 
probably in cancer relapse. Specific regulations apply in 
these scenarios, and the time between the initial and 
secondary events provides a wider time window for the 

Figure 3. An interface (CONTEXTS) that we have developed for the analysis of cancer genome studies at the level of biological networks 
[122,151]. The upper panel shows the menus for selecting specific cancer studies, databases for pathway analysis (or set of annotations) and the 
level of confidence required for the relationships. From the user’s requests, the system identifies the pathways or functional classes common to 
the different cancer studies, and the interface allows the corresponding information to be retrieved. The graph represent various cancer studies 
(those selected in the ‘tumor types’ panel are represented by red circles) using the pathways extracted from the Reactome database [152] as the 
background (the reference selected in the ‘Annotation databases’ panel and represented by small triangles). For the selected lung cancer study, 
the ‘Lung tumor mutated genes’ panel provides a link to the related genes indicating the database (source) from where the information was 
extracted. The lower panel represents the information on the pathways selected by the user (‘innate immunity signaling’) as directly provided by 
the Reactome database.

Table 3. resources with information connecting proteins and drugs

Name Details URL

ChEBI (Chemical Entities of Biological  Contains more than half a million chemical compounds classified http://www.ebi.ac.uk/chebi/ 
Interest) according to their biological activity 

DrugBank  Contains detailed chemical, pharmacological and pharmaceutical  http://www.drugbank.ca 
 data linked with information on the sequence, structure and  
 pathways of potential targets. The database contains information  
 on almost 500 drugs

Resources from Peer Bork’s group,  Bork’s group has developed a number of systems that help link http://www.embl.de/~bork 
including STITCH, SuperDrug,  drugs to their protein and genomic targets, including data on  
SuperNatural and  adverse drug effects and symptoms  
SuperTarget/Matador  

PharmGKB  Repository linking genomic information on 2,500 genetic variants  http://www.pharmgkb.org 
 with clinical data derived from pharmacogenomics studies, and  
 the corresponding diseases and phenotypes

TTD (Therapeutic Target Database) Contains data for relations between 2,000 targets and more than  http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp 
 15,000 drugs, including information extracted from clinical trials
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analysis. These systems, such as the one we use in our 
institution, will combine methods and results in a more 
flexible and exploratory setup than will need to be 
implemented in regulated clinical setups. The transition 
from such academic software platforms will require 
professional software development following industrial 
standards, and it will need to be developed in consortia 
between research and commercial partners. Initiatives 
such as the European flagship project proposal on 
Information Technology Future of Medicine (ITFoM) 
[135] could be an appropriate vehicle to promote such 
developments.

The incorporation of genomic information into clinical 
practice will require consultation with specialists in rele
vant areas, including genomics, bioinformatics, systems 
biology, pathology and oncology. Each of the profes
sionals involved will have their own specific require
ments, and thus the driving forces for users and 
developers of this system will naturally differ:
(1) Clinicians, the end users of the resulting data, will 

require an analytical platform that is sufficiently 
accurate and robust to work continuously in a clinical 
setting. This system must be easy to understand and 
capable of providing validated results at each stage of 
the analysis.

(2) Bioinformaticians developing the analytical pipeline 
will require a system with a modular structure that is 
based on current programming paradigms and that 
can be easily expanded by incorporating new 
methods. New technology should be easy to intro
duce, so that the methods used can be continuously 
evaluated, and they should be capable of analyzing 
large amounts of heterogeneous data. Finally, this 
system will have to fulfill stringent security and 
confidentiality requirements.

(3) Computational biologists developing these methods 
will naturally be interested in the scientific issues 
behind each stage of the analytical platform. They will 
be responsible for designing new methods, and they 
will have to collaborate with clinicians and biologists 
studying the underlying biological problems (the 
molecular mechanisms of cancer).

A significant part of the challenge in developing 
personalized cancer treatments will be to ensure effective 
collaboration between these heterogeneous groups (for a 
description of the technical, practical, professional and 
ethical issues see [127,136]), and indeed, better training 
and technical facilities will be essential to facilitate such 
cooperation [137]. In the context of the integration of 
bioinformatics into clinical practice, ethical issues emerge 
as an essential component. The pipelines and methods 
described here have the capacity to reveal unexpected 
relationships between genomic traces and disease risks. It 
is currently of particular interest to define how such 

findings that are not directly relevant for the medical 
condition at hand should be dealt with  for example, the 
possible need to disclose this additional information to 
the family (such as children of the patient), as they could 
be affected by the mutations. For a discussion on the 
possible limitations of release of genome results, see 
[138141].

At the very basic technical level, there are at least two 
key areas that must be improved to make these develop
ments possible. Firstly, the facilities used for the rapid 
exchange and storage of information must become more 
advanced and, in some cases, additional confidentiality 
constraints will need to be introduced on genomic 
information, scientific literature, toxicology and drug
related documentation, ongoing clinical trial information 
and personal medical records. Secondly, adequate inter
faces must be tailored to the needs of the individual 
professionals, which will be crucial to integrate the 
relevant information. User accessibility is a key issue in 
the context of personalized cancer treatment, as well as 
in bioinformatics in general.

The organization of this complex scenario is an impor
tant aspect of personalized cancer medicine, which must 
also include detailed discussions with patients and the 
need to deal with the related ethical issues, although this 
is beyond the scope of this review. The involvement of 
the general public and of patient associations will be an 
important step towards improved cancer treatment, 
presenting new and interesting challenges for bioinfor
maticians and computational biologists working in this 
area.
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