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The outcome for metastatic pediatric osteosarcoma (OS) remains poor. Thus, there is an
urgent need to develop novel therapies, and immunotherapy with CAR T cells has the
potential to meet this challenge. However, there is a lack of preclinical models that mimic
salient features of human disease including reliable development of metastatic disease
post orthotopic OS cell injection. To overcome this roadblock, and also enable real-time
imaging of metastatic disease, we took advantage of LM7 OS cells expressing firefly
luciferase (LM7.ffLuc). LM7.ffLuc were implanted in a collagen mesh into the tibia of mice,
and mice reliably developed orthotopic tumors and lung metastases as judged by
bioluminescence imaging and histopathological analysis. Intratibial implantation also
enabled surgical removal by lower leg amputation and monitoring for metastases
development post-surgery. We then used this model to evaluate the antitumor activity
of CAR T cells targeting B7-H3, an antigen that is expressed in a broad range of solid
tumors including OS. B7-H3-CAR T cells had potent antitumor activity in a dose-
dependent manner and inhibited the development of pulmonary metastases resulting in
a significant survival advantage. In contrast T cells expressing an inactive B7-H3-CAR had
no antitumor activity. Using unmodified LM7 cells also enabled us to demonstrate that B7-
H3-CAR T cells traffic to orthotopic tumor sites. Hence, we have developed an orthotopic,
spontaneously metastasizing OS model. This model may improve our ability not only to
predict the safety and efficacy of current and next generation CAR T cell therapies but also
other treatment modalities for metastatic OS.
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INTRODUCTION

Osteosarcoma (OS) is the most common tumor of bone in
children and adolescents, and the third most common solid
tumor encountered in this age group. While great success has
been achieved with local control modalities over the last thirty
years, resulting in a survival rate from primary OS of
approximately 60 – 75% depending on histologic response, the
treatment of recurrent and metastatic disease remains less
effective (1–3). This is in part due to a lack of highly relevant
pre-clinical models (4), prohibiting the realistic screening and
modeling of therapeutic approaches.

Current preclinical orthotopic models of OS have varying
success in reproducing clinically relevant metastatic processes,
which include escape from the primary tumor, navigation of
stromal interactions, bloodstream entry, vascular arrest,
extravasation, and establishment of a pro-tumorigenic
microenvironment in the metastatic niche (5–7). Limitations of
current models include a low rate of systemic or pulmonary
metastasis in subcutaneous and fragment-implantation models,
and inadvertent seeding of the pulmonary vasculature with
tumor cells after marrow-cavity orthotopic injections. These
models, while contributing substantially to the preclinical
literature in OS, either do not reliably recapitulate the clinical
metastatic process or have lower rates of metastasis that hamper
feasibility of use.

Here, we developed a novel spontaneously metastasizing
orthotopic OS model and explored its utility to evaluate the
efficacy of chimeric antigen receptor (CAR) T cells. CAR T cell
therapy has shown considerable preclinical promise in pediatric
sarcoma models (8–12). However, while early clinical trials have
demonstrated feasibility and safety, clinical responses have thus
far been disappointing, highlighting the need to ensure that
preclinical models mimic the clinical setting while maintaining
feasibility (12–14).

We show that collagen-tumor cell scaffolds surgically
implanted into the tibia of mice reliably produced local and
systemic metastatic OS. Likewise, we demonstrate that CAR T
cells targeting B7-H3, a tumor antigen that is expressed in a high
percent of OS (15–17), have antitumor activity in a dose
dependent fashion against primary and metastatic OS. Thus,
the described model should be highly relevant for the preclinical
evaluation and optimization of cell-based immunotherapies.
MATERIALS AND METHODS

Cell Lines
The OS cell line LM7, a derivative of SaOS-2, was kindly
provided by Dr. Eugenie Kleinerman (MD Anderson Cancer
Center, Houston, TX, USA) (18). LM7 cells expressing green
fluorescent protein (GFP) and firefly luciferase (ffluc) (LM7.ffluc)
previously generated in our laboratory were used for all
experiments (15). LM7 was grown in DMEM (GE Healthcare,
Marlborough, MA, USA) supplemented with 10% fetal bovine
serum (GE Healthcare) and 1% Glutamax (Thermo Fisher
Frontiers in Immunology | www.frontiersin.org 2
Scientific, Waltham, MA, USA). Cell subculture was performed
by detaching adherent cells using 0.05% trypsin-EDTA (Thermo
Fisher Scientific). BV173 leukemic cells (German Collection of
Microorganisms and Cell Cultures, Braunschweig, Germany)
were cultured in RPMI (GE Healthcare) supplemented with
10% fetal bovine serum and 1% Glutamax. All cells were
maintained at 37°C in 5% CO2. Cell lines were authenticated
by STR profiling and checked routinely while in culture for
mycoplasma using the MycoAlert mycoplasma detection
kit (Lonza).

Generation of B7-H3-CAR and Control
Lentiviral Vectors
The lentiviral vectors encoding B7-H3.CD8a.CD28z and B7-
H3.CD8a.D (nonsignaling control) CARs were previously
described (15). VSVG-pseudotyped lentiviral particles were
produced by St. Jude Children’s Research Hospital Vector Core
as previously described (19).

Generation of B7-H3-CAR and Control
CAR T Cells
Human peripheral blood mononuclear cells (PBMCs) were
obtained from whole blood of healthy donors under an
Institutional Review Board (IRB)-approved protocol at St. Jude
Children’s Research Hospital after informed written consent was
obtained in accordance with the Declaration of Helsinki. The
generation of CAR T cells was previously described (15). Briefly
PBMCs were isolated by Lymphoprep (Abbott Laboratories,
Abbott Park, IL, USA) gradient centrifugation. On day -1,
CD4+ and CD8+ T cells were enriched from PBMCs by
immunomagnetic separation using CD4 and CD8 microbeads
(Miltenyi, Germany), an LS column (Miltenyi), and a MidiMACS
separator (Miltenyi). Enriched T cells were resuspended at 1 x 106

cells/mL in RPMI 1640 (GE Healthcare) supplemented with 10%
FBS (GE Healthcare), 1% GlutaMAX (Thermo Fisher Scientific),
and cytokines IL7 and IL15 (10 ng/mL each) (Biological
Resources Branch, National Cancer Institute, Frederick, MD,
USA, and PeproTech, Rocky Hill, NJ, USA) and stimulated
overnight on 24-well non-tissue-culture treated plates that were
precoated with CD3 and CD28 antibodies (Miltenyi).
Transduction was performed on day 0 by adding LV particles
at an MOI of 50 TU/cell and protamine sulfate at 4 mg/mL. On
day 3, T cells were transferred into new 24-well tissue culture
treated plates and subsequently expanded with IL7 and IL15 (10
ng/mL each). All experiments were performed 7 – 14 days post-
transduction. Biological replicates were performed using PBMCs
from different healthy donors.

Flow Cytometry
A FACSCanto II (BD Biosciences) instrument was used to
acquire flow cytometry data, which was analyzed using FlowJo
v10.7 (BD Biosciences). For surface staining, samples were
washed with and stained in PBS (Lonza) with 1% FBS (GE
Healthcare). For all experiments, matched isotypes or known
negatives (e.g. nontransduced T cells or B7-H3-negative cell
lines) served as gating controls. CAR detection was performed
June 2021 | Volume 12 | Article 691741
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using F(ab’)2 fragment-specific antibody (polyclonal, Jackson
ImmunoResearch, West Grove, PA, USA). T cells were stained
with fluorochrome-conjugated antibodies using combinations of
the following markers: CD4 (clone SK3, BD Biosciences), CD8
(clone SK1, BD Biosciences), CCR7 (clone G043H7, BioLegend,
San Diego, CA, USA), and CD45RO (clone UCHL1, BD
Biosciences). LM7 and the negative control leukemia cell line
BV173 were evaluated for expression of B7-H3 using B7-H3
antibody (clone 7-517, BD Biosciences, or clone FM276,
Miltenyi). Cells were additionally stained with DAPI (BD
Biosciences) to gate for live cells.

Analysis of Cytokine Production
T cells were cultured alone or with LM7 tumor cells at a 1:1
effector to target ratio without the provision of exogenous
cytokines. Approximately 24 hours after coculture initiation,
supernatant was collected and frozen for later analysis.
Production of IFNg and IL2 was measured using a quantitative
ELISA per the manufacturer’s instructions (R&D Systems,
Minneapolis, MN, USA).

Antigen-Stimulated Expansion Assay
T cells were cultured alone or with LM7 tumor cells at a 1:1
effector to target ratio without the provision of exogenous
cytokines. Approximately 72 hours after coculture initiation, T
cells were removed from coculture and replated in fresh
complete media. Following 4 additional days of culture, T cells
were counted and fold change from baseline was calculated.

Cytotoxicity Assay
The xCELLigence real-time cell analyzer (RTCA)MP instrument
(Agilent Technologies, Santa Clara, CA, USA) was used to assess
CAR T cell cytotoxicity. All assays were performed in triplicate
and without the addition of exogenous cytokines. First, 30,000
LM7 cells in complete RPMI were added to each well of a 96-well
E-plate (Agilent). After LM7 cells adhered to the E-plate for
approximately 24 hours and reached a cell index (relative cell
impedance) plateau, 150,000 T cells in complete RPMI were
added. LM7 cells alone served as a tumor only control and LM7
cells in DMSO served as a full lysis control. The cell index was
monitored every 15 minutes for 24 hours and normalized to the
maximum cell index value immediately prior to T cell plating.
Percent cytotoxicity was calculated using the RTCA Software Pro
immunotherapy module (Agilent) (20).

Orthotopic Modeling Technique
Mice
Eight-week-old, female, NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ)
mice were purchased from The Jackson Laboratory (Bar Harbor,
ME, USA), with all animal procedures reviewed and approved by
the St. Jude Children’s Research Hospital Institutional Animal
Care and Use Committee. Mice underwent orthotopic tibial
implantation as described below and were followed by weekly
bioluminescence. They underwent hindlimb amputation when
they reached a humane endpoint that included lameness, large
tumor burden interfering with the animal’s ability to reach food or
water, significant tumor ulceration, guarding behavior, or upon
Frontiers in Immunology | www.frontiersin.org 3
becoming moribund. After hindlimb amputation, mice were
followed with weekly bioluminescence imaging until they
reached a total body bioluminescent flux of 1 x 1010 photons or
if other endpoints were seen such as persistent poor grooming or
lethargy; > 20% body weight loss post-amputation, respiratory
difficulty or upon becoming moribund.

Tibial Implants
LM7.ffluc cells were harvested at confluence and pelleted by
centrifugation. 5X collagen neutralization buffer was prepared by
mixing 2.5 g minimum essential media (MEM) alpha powder
without nucleosides (Thermo Fisher Scientific, Waltham, MA)
and 2% wt/vol NaHCO3 in 45 ml demineralized water, adding
5 ml of 1 M HEPES (Thermo Fisher Scientific, Waltham, MA),
and filtering through a 0.22 mm filter. Neutralized high-
concentration type I rat-tail collagen was prepared fresh by
mixing high-concentration rat tail collagen I (Corning, New
York, USA; concentration range 8 – 11 mg/ml) and 5X
collagen neutralization buffer in a 5:1 vol/vol ratio on ice. LM7
cells were then resuspended in neutralized high-concentration
collagen at 1 x 106 cells per 10 mL collagen, taking care to
maintain reagents and pelleted cells on ice during resuspension
process and pipetting using wide-bore pipette tips. Once
resuspended, cell mixture was pulse-vortexed and pulse-
centrifuged for < 5 seconds to disrupt bubbling in mixture.
Cells were then plated for individual implants at 10 mL cell
mixture per well in a 96-well ultra-low-attachment round-
bottom plate (Corning, NY, USA) and allowed to solidify at
37°C in 5% CO2 for 20 minutes. DMEM supplemented with 10%
fetal bovine serum and 1% Glutamax was then added and
implants allowed to mature overnight at 37°C in 5% CO2. The
collagen preparation and neutralization protocol described above
is as that previously described (21).

Orthotopic Implantation
Prior to beginning the implantation procedure, mice are
anesthetized using inhaled isoflurane at a MAC of 2, depilated,
and the right hindlimb prepped from the inguinal area to the paw
using 70% alcohol and chlorhexidine solution. Multimodal
analgesia was administered both preemptively with meloxicam
5 mg/mL (Boehringer Ingelheim, St . Joseph, MO),
subcutaneously at 1 mg/kg and post-operatively with
buprenorphine 0.03 mg/mL (Patterson Veterinary, Greeley,
CO), subcutaneously at 0.1 mg/kg. The mouse is placed in
dorsal recumbency with the right hindfoot gently grasped
while flexing the knee. A 5 mm skin incision is made proximal
to the patella (Figure 1A) and retracted using gentle traction
below the patella to expose the proximal anterior tibia
(Figure 1B). The musculature and soft tissue are gently
dissected away from the anterior tibia using a fine hemostat
(Figure 1C; Fine Science Tools, Foster City, CA, USA). Once
cleared of soft tissue, a 2 mm fragment of anterior tibial cortical
bone is removed using a 2 mm sharp Rongeur (Figures 1D, E;
Fine Science Tools). Care is taken to avoid the inferior patellar
tendon and to avoid significant entry into the marrow cavity or
tibial fracture. An LM7 collagen implant (Figure 1F) is then
grasped with forceps and placed gently into the cavity left at the
June 2021 | Volume 12 | Article 691741
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osteotomy site (Figure 1G). The distal aspect of the skin incision
is then gently raised over the implant and the incision allowed to
recoil back to its original position proximal to the patella, leaving
the implant secured in place by intact skin (Figure 1H). Gentle
pressure is applied to ensure hemostasis and implant adherence
to the bony surface. The skin incision is closed with Vetbond®

surgical glue (3M Animal Care Products, St. Paul, MN). Mice are
monitored through until completely recovered from anesthesia
Frontiers in Immunology | www.frontiersin.org 4
(Figure 1I), with the entire procedure from incision to closure
taking 2 – 5 minutes to perform.

Hindlimb Amputation
Mice are anesthetized with surgical prep performed from the
right hindlimb to the umbilicus. Preemptive analgesia is
administered as described above and a 1 mL bolus of sterile
saline is administered subcutaneously. The surgical area is
FIGURE 1 | Tibial osteotomy implantation procedure. (A) Incision is made over distal femur. (B) Incision retracted distally to expose anterior tibia. (C) Soft tissue
dissected away from anterior tibia. (D) 2 mm tip Rongeur used for osteotomy. (E) Tibial osteotomy. (F) LM7-collagen implant. (G) Implant in place over osteotomy.
(H) Final position of implant and incision. (I) Mice demonstrating exploration and weight bearing behavior minutes after anesthesia emergence.
June 2021 | Volume 12 | Article 691741
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draped with the hindlimb extended and secured in place with a
sterile adhesive bandage.

A skin incision is made in an elliptical fashion along the
inguinal canal from the rostral dorsal iliac spine to the level of the
pubic ramus. Gentle blunt dissection with a cotton tipped
applicator is used to push the peritoneum and abdominal
musculature rostrally to expose the proximal aspect of the
femoral neurovascular bundle (artery, vein, and nerve). The
bundle is carefully dissected with a fine hemostat and
controlled proximally and distally with 5-0 Vicryl® (Ethicon
Inc, Somerville, NJ) braided absorbable suture ties. Axonotmesis
is performed on the femoral nerve as the bundle is divided with
sharp fine scissors. The musculature overlying the femur is gently
divided using sharp dissection and the femur grasped distally
using toothed forceps. A heavy scissor is used to divide the femur
at the mid-shaft. The distal femur is elevated, allowing
visualization of the caudal musculature, which is sharply
divided. Axonotmesis is performed on the sciatic nerve as it is
visualized caudally using smooth forceps 3 mm proximal to the
division site and then ligated. The remaining soft tissue is sharply
divided, and the skin incision completed to remove the hindlimb.
Care is taken to leave a sufficient posterior muscle flap to cover
the proximal femur stump.

After removal of the hindlimb from the field, gentle pressure
is used to ensure hemostasis. A single figure of eight suture is
used to cover the proximal femur stump with the caudal muscle
flap. Skin edges are adhered with an intradermal suture pattern
using 5-0 Vicryl® suture. Vetbond® surgical glue is applied. The
animal is maintained on heat throughout the surgery and during
anesthetic recovery with continuous monitoring. The entire
procedure from incision to closure lasts 15 – 25 minutes.
Amoxicillin 400 mg/50 mls (Sandoz, Princeton, NJ) is added to
a 350 ml water bottle at a dosage of 50 mg/kg for one week. Mice
are monitored closely at least twice a day, in addition to regular
health checks following surgery for 7-10 days by experienced
veterinary technologists.

Xenograft In Vivo Antitumor Model
For the B7-H3-CAR dose escalation experiment, mice
underwent orthotopic LM7 implantation as described above
and were monitored for engraftment and growth by weekly
bioluminescent imaging. Each mouse was imaged from the
ventral aspect both with and without lower extremity shielding
to allow for assessment for pulmonary metastases. At day 47
post-implantation, based on bioluminescent flux of 108 – 109

photons/second (p/s) and visible tumor masses, mice were
injected via tail vein with either B7-H3-CAR T cells at 3x105,
1x106, 3x106, or 1x107 T cells per mouse, or control T cells at 3 x
106 per mouse. Only mice with demonstrably engrafted tumors
on bioluminescent imaging were treated, leaving groups of 4 – 5
mice each. Mice were then monitored weekly using
bioluminescence imaging. At reaching physical endpoints as
described above, mice underwent hindlimb amputation with
harvest of tumor tissue and ongoing bioluminescence imaging.
Mice subsequently underwent ongoing imaging and sacrifice at
physical humane endpoints or when systemic metastatic spread
Frontiers in Immunology | www.frontiersin.org 5
was consistently present in multiple organ systems and for at
least 2 consecutive weeks. The right lung of each euthanized
animal was reserved for dissociation and flow cytometry, and the
left lung submitted for pathologic analysis.
Xenograft In Vivo CAR T Cell
Trafficking Model
For the in vivo CAR T cell trafficking assay, mice underwent
orthotopic unlabeled LM7 implantation as described above. On
day 28 post implantation, mice were injected via tail vein with
3x106 B7-H3-CAR T cells or control T cells labelled with ffluc.
Mice were then followed by daily bioluminescence imaging for 5
days, followed by 2 times per week for a total of 14 days.
Bioluminescent Imaging
Mice were injected i.p. with 150 mg/kg of d-luciferin 5 minutes
before imaging, anesthetized with isoflurane (1.5% - 2% delivered
in 100% oxygen at 1 L/min), and imaged with an in vivo imaging
system (IVIS 200; PerkinElmer, Waltham, MA, USA). The
photons emitted from the luciferase-expressing cells were
quantified using Living Image software (PerkinElmer). Mice
were imaged once per week to track tumor burden, and once
per day to track T cell trafficking.
Histopathological Examination
All mice, either upon sacrifice or upon reaching the end of the
study, underwent necropsy. The primary tumor site, the left lung
of each mouse, and any sites of obvious extrapulmonary
metastatic disease were harvested and fixed in 10% neutral-
buffered formalin, embedded in paraffin, sectioned at 4 µm,
and stained with hematoxylin and eosin (HE). Bony tissues
were decalcified in 10% formic acid. Stained sections were
visually reviewed using a Nikon Eclipse Ni upright microscope
(Nikon Instruments Inc., Melville, NY) by a board-certified
veterinary pathologist.

Immunohistochemistry
All formalin-fixed, paraffin-embedded (FFPE) tissues were
sectioned at 4 mm, mounted on positively charged glass slides
(Superfrost Plus; Thermo Fisher Scientific, Waltham, MA), and
dried at 60°C for 20 min. The following antibodies and
procedures were used to detect immunohistochemical markers.
CD276 (Clone RBT-B7-H3, Rabbit Monoclonal, IgG) and GFP
(Clone JL8, Clontech, #632381,1:2000) were separately detected
using HIER with cell conditioning media 1 (CC1, 950-224,
Ventana Medical Systems, Tucson, AZ) for 32 minutes at 37°C
followed by visualization with DISCOVERY OmniMap anti-Rb
HRP (760-4311; Ventana Medical Systems, Tucson, AZ), and
DISCOVERY ChromoMap DAB kit (760-159; Ventana Medical
Systems, Tucson, AZ) or DISCOVERY ChromoMap Purple kit
(760-229; Ventana Medical Systems, Tucson, AZ), respectively.
Positive and negative tissue controls and isotype controls for
monoclonal antibodies were used to assess the specificity
of immunostaining.
June 2021 | Volume 12 | Article 691741
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Flow Cytometric Assessment for Primary
and Pulmonary Metastatic Lesions
At necropsy, half of any residual primary tumor and the right
lung of each mouse was harvested and dissociated manually.
Dissociated tissue was passed through a 70 mm cell strainer and
washed. Cells were resuspended in PBS with 1% FBS. Flow
cytometry was performed as detailed in section 2.4. Tumor
cells were detected by GFP fluorescence and the percent of
GFP-positive cells in each lung specimen was quantified.

Statistical Analysis
For comparison of 3 or more groups with a single independent
variable, statistical significance was determined by one-way ANOVA
with a Tukey’s multiple comparison test. For comparison of three or
more groups with two or more independent variables, statistical
significance was determined by two-way ANOVA with Sidak’s
multiple comparison test. Cumulative incidence and survival curves
were plotted using the Kaplan-Meier method. Statistical significance
between survival curves was determined using the long-rank (Mantel-
Cox) test. For curves generated over time (cytotoxicity,
bioluminescence over time), where appropriate, area under the
curve was determined for each subject. Mean AUC was compared
between groups using either two-tailed student’s t test for two group
analyses or one-way ANOVA for three or more groups with a single
independent variable.
RESULTS

B7-H3-CAR T Cells Exhibit
Anti-Osteosarcoma Activity Ex Vivo
To establish CAR T cell activity against OS in our novel
spontaneously metastasizing orthotopic model (Figures 1A–I),
we first evaluated their function ex vivo. We chose to target B7-
H3 in these studies because B7-H3 i) is highly expressed in a
majority of OS samples (15–17), ii) is associated with OS
progression/metastasis (22), and iii) has limited expression in
normal human tissues (15, 16, 23, 24). Likewise, the LM7 OS cell
line (25) we used to develop this model expresses high levels of
B7-H3 (Figure 2A). We chose LM7 for this model given its
development as a lung metastatic derivative of the well-
characterized SaOS OS cell line (18).

B7-H3-CAR T cells or T cells expressing a nonsignaling
version of the B7-H3-CAR (Control (Ctrl)-CAR T cells) were
generated by lentiviral transduction as previously described (15),
with resultant high level CAR expression (Figure 2B).
Phenotyping of CAR-positive cells demonstrated comparable
CD4:CD8 ratios and a predominance of T cells with a memory
phenotype (CD45RO+/CCR7+ or CD45RO+/CCR7-)
(Figures 2C, D). To evaluate their effector function, CAR T
cells were incubated with LM7 tumor cells and supernatant was
collected 24 hours later to measure cytokine production. B7-H3-
CAR T cells secreted significantly greater IFNg and IL-2
compared to Ctrl CAR T cells (Figures 2E, F; N = 7 donors;
p < 0.0001 for IFNg; p < 0.05 for IL-2). No significant cytokine
production was observed by T cells in the absence of tumor cells,
Frontiers in Immunology | www.frontiersin.org 6
confirming that cytokine production occurred due to CAR
recognition of the tumor cells. B7-H3-CAR T cells also
expanded in the presence of LM7 cells in contrast to Ctrl-CAR
T cells (Figure 2G; N= 4-5 donors; p < 0.05). This expansion was
antigen specific since no significant difference was observed in
the absence of tumor cells between B7-H3- and Ctrl-CAR T cell
populations. -CAR T cell cytotoxicity was measured using an
xCELLigence impedance-based assay. B7-H3-CAR T cells
rapidly killed LM7 OS cells, reaching > 95% cytolysis 5 hours
post co-culture (Figure 2H). In contrast, Ctrl CAR T cells
exhibited minimal antitumor activity (N = 4 donors, statistical
analysis by AUC and one-way ANOVA; *p < 0.05; **p < 0.01;
****p < 0.0001).

B7-H3-CAR T Cells Exhibit Dose-
Dependent Antitumor Activity in the
Established Orthotopic Spontaneously
Metastasizing Xenograft Model
Twenty-five 8-week old NSGmice were implanted with collagen-
embedded LM7.GFP.ffluc in the anterior tibial crest according to
the procedure described in the Material and Methods section and
shown in Figures 1A–I. All mice survived general anesthesia and
were weight-bearing, grooming, and had normal cage
exploration behaviors within 10 minutes of anesthetic recovery.
There were no perioperative complications such as wound
dehiscence, infection, bleeding, intractable pain, or evidence of
osteomyelitis. A perioperative analgesic regimen of daily
meloxicam and buprenorphine for 5 – 7 days resulted in
satisfactory pain control after tibial osteotomy. Out of 25
implanted mice, 22 (88%) developed robust tibial tumors
detectable by bioluminescent imaging and visual inspection
and were used for further studies.

Four escalating doses of B7-H3-CAR T cells derived from a
single healthy donor were injected by tail vein (iv) (3x105, 1x106,
3x106, or 1x107 cells/mouse) 48 days post tumor implantation. In
addition, Ctrl-CAR T cells were injected iv at 3x106 cells per
mouse. Post injection, B7-H3-CAR T cells exhibited antitumor
activity in a dose-dependent manner (Figures 3A, B). All Ctrl-
and low-dose B7-H3-CAR (3x105) T cell treated mice had
progressive primary disease and required hindlimb amputation
by day 100. Overall, 14 mice achieved baseline primary tumor
control with CAR T cell therapy. All mice in the intermediate
(1x106), intermediate-high (3x106), and high (1x107) dose groups
initially had complete primary tumor response to CAR T cell
treatment (Figures 3A, B). However, 2 mice in the intermediate
dose group recurred at the primary site and required amputation
at day 135. At intermediate-high and high doses, primary tumors
responded completely to B7-H3-CAR T cell treatment and none
required amputation, demonstrating robust CAR T cell
antitumor activity (Figures 3A, B). At study completion, mice
in the intermediate-high and high dose treatment groups were
euthanized and pathologic examination of the tibial implantation
sites revealed no tumor cells, confirming the complete responses
determined by bioluminescence imaging.

As one of the major goals of this study was to evaluate systemic
metastatic disease, amputation was performed to enable survival,
June 2021 | Volume 12 | Article 691741
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and not to prevent disease spread. Development of imaging-
defined systemic metastasis was defined as two consecutive weeks
of extra-tibial bioluminescent signal above flux of 1 x 106 p/s. Our
orthotopic implantation method resulted in a high propensity for
spontaneous OS metastasis. All Ctrl- and low dose B7-H3-CAR T
cell treated mice developed systemic metastatic disease despite
hind limb amputation (Figures 3B, C). Notably, two mice in the
Frontiers in Immunology | www.frontiersin.org 7
control group had evidence of metastatic disease prior to
hindlimb amputation performed on day 100 (Figure 3B). At
the intermediate dose two mice developed metastatic disease
despite showing a complete response at the primary tumor site
without amputation (Figures 3B, C), and 2 mice in the
intermediate-high dose group developed metastatic disease
despite B7-H3-CAR T cell control of the primary tumor. No
A B D

E F

G H

C

FIGURE 2 | LM7 OS B7-H3 expression, CAR T cell transduction, phenotype, and in vitro effector function. (A) The LM7 OS cell line was evaluated by flow
cytometry for surface B7-H3 expression and shows robust expression. BV173 cells served as known negative controls. Activated T cells were transduced with
lentiviral particles encoding B7-H3.CD28z CARs or a control CAR (B7-H3.CD8a.D). B-D) Representative flow plots of transduced T cells. (B) Percent transduction of
B7-H3-CAR and control CAR T cells. (C) CAR T cell CD4+/CD8+ phenotype. (D) CAR T cell CD45RO+/CCR7+ memory phenotypes. E-F) CAR T cells were placed
in coculture with LM7 tumor cells or plated alone at a 1:1 effector:target ratio. After 24 hours, supernatant was removed and assessed by ELISA for cytokine
production. B7-H3-CAR T cells demonstrated robust (E) IFN-g (p < 0.0001) and (F) IL-2 (p < 0.05) production. N = 7 donors; performed in duplicate. Statistical
analysis by one-way ANOVA. (G) CAR T cells were placed in coculture with LM7 tumor cells or plated alone and fold change from baseline quantified as described in
the text (N = 4 donors; performed in duplicate; p < 0.05; statistical analysis by one-way ANOVA). (H) Impedance-based cytotoxicity assay (xCELLigence) using LM7
cells as targets demonstrated robust cytotoxicity of B7-H3-CAR T cells compared to controls (N = 4 donors; E:T ratio = 5:1; statistical analysis by AUC and one-way
ANOVA; *p < 0.05; **p < 0.01; ****p < 0.0001). ns, not significant.
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mice in the high dose treatment group developed systemic
metastasis detectable by bioluminescent imaging. At 6 months,
there was a clear and statistically significant dose-dependent
difference in metastasis development (Figure 3C) and survival
advantage for B7-H3-CAR T cell treated mice (Figure 3D). In
total, 8 mice remained long-term survivors: 1/5 in the
intermediate dose group, 3/5 in the intermediate-high dose
group, and 4/4 in the high dose group.

These data demonstrate utility of this model for evaluating
CAR T cell activity and demonstrate that B7-H3-CAR T cells
control local OS and prevent metastatic disease in a dose-
dependent fashion.

Established Orthotopic Spontaneously
Metastasizing Xenograft Model Allows
Non-Invasive Monitoring of B7-H3-CAR
T Cell Trafficking to Tumors
We next explored if the orthotopic implant OS model could be
used to monitor T cell trafficking and expansion at the primary
tumor site. Ten mice were implanted with collagen-embedded
LM7 cells, and twenty-eight days later, 3x106 ffluc-expressing B7-
Frontiers in Immunology | www.frontiersin.org 8
H3- or Ctrl-CAR T cells were injected via tail vein into 9
surviving mice (one mouse unexpectedly died before
treatment). Bioluminescent imaging was performed daily for 5
days, followed by 2 times per week to track T cells in vivo. After
exiting the pulmonary vasculature, B7-H3-CAR T cells trafficked
to engrafted right tibial tumors beginning on day 3 post
implantation and exhibited significantly (Figures 4A–C; p <
0.01) greater tibial expansion on day 4 post-injection compared
to Ctrl-CAR T cells. In addition, B7-H3-CAR T cells persisted at
the primary tumor site through 14 days post-injection. In
contrast, Ctrl-CAR T cells, while exhibiting similar early
trafficking to right tibial tumors, did not expand and had
minimal pers i s tence beyond 7 days post- in ject ion
(Figures 4A, B).

Orthotopic LM7 Tumor Implantation
Produces Robust Primary and Metastatic
Disease and Tumors Have Essential
Characteristics of OS
All mice in the dose-escalation CAR T cell treatment experiment
underwent tissue harvest at hindlimb amputation, and necropsy
A

B

D

C

FIGURE 3 | Growth and metastasis of LM7 OS cells in orthotopic model. LM7 OS cells expressing firefly luciferase were embedded in highly-viscous collagen and
implanted into the tibia of NSG mice on Day 0. On day 48, CAR T cells were injected by tail vein at indicated doses (blue arrows). Mice were followed by serial
bioluminescence imaging and underwent hindlimb amputation or sacrifice as described in the text. (A) Quantified growth of OS tumors after implantation (total flux
(p/s) per ROI). (B) Serial imaging of implanted mice over time. (C) Cumulative incidence curve indicating development of systemic disease as determined by non-tibial
bioluminescent signal appearance in two consecutive images. (D) Kaplan-Meier curve indicating overall survival of mice. N = 4-5 mice/group, 1 healthy T cell donor.
Statistical analysis performed by log-rank testing. *p < 0.05; **p < 0.01. ns, not significant.
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was performed at terminal endpoints to allow pathologic
evaluation of tumor and lung tissues. Extrapulmonary sites of
metastasis were quantified at necropsy and selectively sampled
for further studies. Engrafted tumors demonstrated cortical
disruption and intramedullary extension of tumor burden.
Figure 5A demonstrates a representative coronal section
through the proximal tibia, showing both the distal femur and
proximal tibia, the associated joint space, and surrounding soft
tissue. Engrafted OS disrupted the cortical surface, extends into
the medullary cavity, and established on both the anterior surface
of the tibia and extended posteriorly into the soft tissue of
the thigh and calf. All engrafted primary tumors exhibited
pleomorphic spindle-shaped cells with a high mitotic index
and nuclear pleomorphism. In addition, deposition of
malignant osteoid was observed, consistent with OS
(Figure 5A). Additionally, all engrafted tumors exhibited
strong B7-H3 immunostaining, consistent with expression of
B7-H3 in the LM7 cell line (Figure 5B).

Of the 8 mice in the control and low dose treatment groups, 6
had evidence of pulmonary metastasis on lung H&E sections.
Five of these exhibited multifocal nodular metastases, and 1 in
the low dose group exhibited multifocal neoplastic emboli
without established metastasis. Of the 6 mice in the
intermediate- and intermediate-high treatment groups that
were euthanized due to progression of systemic metastasis, 4
showed evidence of micro-metastasis on H&E. Nodular lung
metastases exhibited similar characteristics to the primary tumor
site, with high nuclear pleomorphism, high mitotic rates, and
Frontiers in Immunology | www.frontiersin.org 9
malignant osteoid deposition (Figure 5C). Pulmonary lesions
also stained positive for B7-H3 (Figure 5D). Primary and
pulmonary specimens were additionally assessed for surface
B7-H3 expression and evidence of metastatic spread to the
lungs by evaluating GFP and B7-H3 positive cells within the
primary tumor and pulmonary tissue. Fragments of primary
tumor tissue and the right lung of each mouse were made into
single-cell suspension and evaluated by flow cytometry for B7-
H3 and GFP expression (Figure 5E). GFP expression was
detected in all persistent primary tumors and in all pulmonary
specimens from mice that did not achieve long-term survival,
indicating presence of GFP-positive tumor cell spread to the
lungs in these mice even in cases where metastasis was not
demonstrated by H&E. Additionally, all primary and metastatic
tumors exhibited ongoing B7-H3 expression (Figure 5E).
Finally, extrapulmonary metastatic spread was noted in all
mice examined by H&E. The primary extrapulmonary
metastatic sites included liver, adrenal glands, kidney, axial
bony sites, mesenteric and serosal surfaces including presence
of carcinomatosis, and others (Figure 5F).
DISCUSSION

In this study, we describe a novel spontaneously metastasizing
orthotopic model of OS with several advantages over existing
methodologies. These include i) a high rate of spontaneous
pulmonary and extrapulmonary systemic metastases, ii) lack of
A B

C

FIGURE 4 | CAR T cell trafficking to orthotopic tumors. LM7 OS cells were embedded in highly-viscous collagen implanted into the tibia of NSG mice on Day 0. On
day 28, B7-H3-CAR T cells expressing firefly luciferase were injected via tail vein. Mice were then imaged with serial bioluminescence over the following 14 days.
(A) Serial imaging of implanted mice over time. (B) Quantification of tibial implant site bioluminescence (total flux (p/s) per ROI) over time. (C) AUC calculation for B7-
H3-CAR (N = 5) and Ctrl-CAR (N = 4) treated mice. One healthy T cell donor. Statistical analysis performed by student’s t test. **p < 0.01.
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immediate pulmonary seeding via marrow injection, iii) easily
accessible site for implantation and subsequent primary tumor
amputation, and iv) ability to use modified or suspension cellular
material, such as ffluc-modified tumor cells for noninvasive
bioluminescent imaging, without resorting to intramedullary
injection. The model resulted in primary tumor engraftment in
88% of mice in this study, with 58% and 100% of CAR T cell non-
responders developing pulmonary metastasis by H&E and flow
cytometry respectively, and 100% of non-responders developing
extrapulmonary metastatic disease. Considering these advantages
Frontiers in Immunology | www.frontiersin.org 10
and the high rate of systemic metastasis, this model fills a gap in
the currently available methodology for studying OS in
orthotopic and metastatic settings. A comparison of our model
with currently available orthotopic models is summarized in
Table 1 and discussed in further detail below.

Using our model, we demonstrated here that B7-H3-CAR T
cells exhibit antitumor activity against primary and metastatic OS
in a dose-dependent fashion. In mice treated with intermediate-
high and high CAR T cell doses, we have achieved complete
response and long-term survival of > 6 months from treatment.
A

B

D

E

F

C

FIGURE 5 | Characterization of primary and metastatic lesions. Primary tibial osteosarcoma lesions are characterized by (A) H&E and B) B7H3
immunohistochemical staining, demonstrating formation of lesions with the appearance of malignant osteoid and invasion of the cortex and marrow cavity as well as
B7H3 expression. Pulmonary metastases are characterized by (C) H&E and (D) B7-H3 immunohistochemical staining, demonstrating consistency of metastatic
lesions with osteosarcoma lesions and persistent B7-H3 after metastasis. For (A–D), scale indicated is 500 mm for low power images and 50 mm for high power
inserts. (E) Percent of tumor cells (GFP+) and B7-H3 expression on tumor cells (B7-H3+) as assessed by flow cytometry. Primary tumor sites contained high
percentages of human tumor cells as assessed by GFP fluorescence (mean 56.5%, SE 7.3%). Tumor cells were additionally detected in all right lungs of mice not
achieving long-term survival (mean 6.6%, SE 1.9%). B7-H3 expression was additionally demonstrated in all primary lesions (mean 95.8%, SE 2.2%) and pulmonary
metastatic lesions (mean 48.7%, SE 9.4%). (F) Percent of animals with primary site engraftment, pulmonary metastases, and other distant hematogenous
metastases on post-mortem histology and/or post-mortem flow cytometry (as applicable) on recovered tissue.
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We have shown that different CAR T cell doses result in different
patterns of primary tumor response and subsequent metastasis
development in a way that mimics clinical surveillance of human
patients and their outcomes.

Despite considerable preclinical promise for CAR T cell therapies
in sarcomas, including osteosarcoma, rhabdomyosarcoma, synovial
sarcoma, and Ewing sarcoma, clinical efficacy has remained elusive.
A single phase I/II clinical trial for pediatric sarcoma has been
reported (12), although several are now actively recruiting
(NCT00902044, NCT02107963, NCT01953900, NCT03635632,
NCT04483778, NCT03618381), and clinical trials have been
reported for pediatric patients with glioblastoma (29) and
neuroblastoma (30, 31). However, these clinical trials have not
demonstrated robust antitumor activity in humans. The failure
in clinical trials has been due to either lack of response, with
patients exhibiting disease progression after CAR T cell therapy,
or partial responses that progress after treatment. Very few
complete responses have been noted. These failures raise
concerns that preclinical models available for pediatric
sarcomas, specifically OS, are not of sufficiently high-fidelity to
allow adequate preclinical vetting of antitumor efficacy.
Preclinical modeling for CAR T cell therapy in bone tumors,
including OS and Ewing sarcoma, has relied on several strategies
to assess in vivo efficacy. For primary tumor modeling, these have
included periosteal injection (26, 32), intratibial injection (11,
33–35), an intraperitoneal loco-regional model (13, 36), and
subcutaneous injection (34, 37–41). Other investigators have
used an orthotopic OS model to evaluate T cells expressing an
MGA271 scFv-based B7-H3-CAR with a 41BB costimulatory
domain (26). Based on our previous publication, which
demonstrated improved antitumor activity of MGA271 scFv-
based B7-H3-CAR with a CD28 versus a 41BB costimulatory
domain (15), we selected a CAR with a CD28 costimulatory
domain for this study. Clearly, future studies should focus on
directly comparing MGA271 scFv-based B7-H3-CARs with
different costimulatory domains, including CD28, 41BB, and
others, in this model to fully understand the different tumor
control capacities of these CARs.
Frontiers in Immunology | www.frontiersin.org 11
We performed a half-log dose de-escalation study in our
model evaluating a dose range of 1 x 107to 3 x 105 CAR T cells
per mouse. We chose a starting cell dose of 1 x 107CAR T cells
because 1 – 2 x 107 CAR T cells per mouse is a routinely accepted
maximum cell dose in preclinical CAR T cell xenograft models.
For the Ctrl CAR T cell group, we evaluated a cell dose of 3 x 106

CAR T cells per mouse, which approximated our maximum B7-
H3-CAR T cell dose. Based on our results at this cell dose (no
antitumor activity of Ctrl-CAR T cells; excellent antitumor
activity with long-term survival of > 100 days post infusion of
B7-H3-CAR T cells), we felt that it was not justified to perform
additional animal experiments at lower Ctrl-CAR T cell doses.

The most common orthotopic method of OS inoculation
involves intratibial injection of single cell suspensions using a
heavy gauge needle (27). This model system has been extensively
used for chemotherapeutic investigation, metabolic research, and
immunotherapy in osteosarcoma in primary and metastatic
settings (11, 42–52). A similar protocol has been described for
intra-femoral injection (53–55). This injection method results in
robust primary orthotopic tumor engraftment, and indeed, has
been used to demonstrate antitumor activity of CAR T cells against
bone tumors (11, 14, 33, 35, 37). However, direct injection of OS
cells into murine femurs or tibias has been shown to result in direct
pulmonary seeding due to venous outflow from the medullary
cavity, making it suboptimal as a model of osteosarcomametastasis
(56, 57). While this may be avoided by using extremely low cell
inoculums or attempting low-pressure injection (58), such
strategies may not be feasible for all model systems or reliably
reproducible between technicians. Our method avoids this problem
while maintaining robust orthotopic engraftment by confining the
tumor cells within a collagen scaffold, thereby avoiding direct
medullary injection and venous dissemination while providing a
high rate of spontaneous metastasis.

Two groups have reported using a periosteal injection strategy to
establish primary orthotopic OS tumors without intramedullary
injection for assessing CAR T cell therapy. In the first, periosteal
injection of OS cells resulted in successful engraftment of primary
OS tumors with rapid growth (26). The second group utilized the
June 2021 | Volume 12 | Article 691741
TABLE 1 | Comparison of murine orthotopic osteosarcoma models.

Model Characteristics

Modified or
selected cells

Whole tissue
fragments

Inoculum spread
controlled

Direct pulm
seeding

Spont
pulm mets

Ease of access

Implantation &
imaging

Amputation

This study
Tibial osteotomy with collagen implant or
fragment transplantation

Y Y Y N Y Y Y

Previous studies
Periosteal activation with cell injection or
fragment transplantation (26)

Y Y N N Y Y* Y*

Intraosseous cell injection (27) Y N Y Y N Y* Y*
Femoral fragment transplantation (28) N Y Y N Y N N
Spont, spontaneous; pulm, pulmonary; mets, metastasis; *, tibial site only.
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highly aggressive 143B OS cell line in a periosteal injection method
to assess primary tumor growth (32). This method produces cortical
OS and does not result in immediate pulmonary seeding. It can also
be applied to both implantable fragments and single cell
suspensions, provided the injected cells remain in apposition to
the scored periosteum. However, this method can result in soft
tissue or periosteal inoculation as a result of imprecise localization of
the injected cells, thereby not reliably achieving cortical and
intramedullary OS engraftment (59, 60). Finally, the metastatic
rate of models using this method is relatively low, and the
injection of single cell suspensions into the paracortical position
can result in less control over the spread of the suspension into the
soft tissue than placement of a tumor fragment or implant as we
have described here (60–62). Subcutaneous and intraperitoneal
locoregional models of OS, which are the other major
methodologies employed in murine CAR T cell preclinical
models, do not recapitulate the microenvironment of skeletal OS
and are known to have inferior metastasis rates compared to
orthotopic implantation (63).

Metastatic OS models for CAR T cell evaluation have
included IV injection of OS cells (35, 36, 40), resulting in
immediate seeding but allowing for evaluation of stabilization
and growth in the pulmonary niche, and in two cases assessment
of either number of pulmonary metastases at endpoint by
histology or overall survival after hindlimb amputation (14,
26), which is imputed to treatment of metastatic sites. While
IV injection of tumor cells results in reliable pulmonary OS
seeding, it does not allow for high-fidelity recapitulation of the
metastatic process, as it avoids the steps of primary tumor escape,
vascular entry, and metastatic site extravasation.

An additional option for orthotopic investigation of OS, not
yet described in CAR T cell preclinical studies, involves surgical
exposure of the distal femur of the mouse, resection of the lateral
femoral condyle, and implantation of a fragment of fresh tumor
tissue (28). This method has the advantage of providing an
orthotopic implantation site without injection of tumor cells
and allows implantation of fresh fragments of tumor, which is
valuable for applications requiring intact tumor-stroma
connections. It also does not result in direct seeding of the
pulmonary metastatic site. However, it does not provide a
method for orthotopic implantation of single cell suspensions,
and therefore is limited in terms of the ability to use
bioluminescence or fluorescent noninvasive monitoring of
primary tumor growth without first establishing xenograft
donor tumors (i.e., by subcutaneous injection and subsequent
harvest). In addition, the site itself is buried within the lateral
musculature of the animal’s hindlimb, making direct visual
monitoring of the tumor site difficult and hindlimb amputation
for long-term tumor studies technically challenging. The presence
of proximal tumor and/or intramedullary extension throughout
the femoral medullary canal means that amputation must be
performed near or through the acetabular/glenoid junction,
leading to technical difficulty related to adequate dissection of
the joint capsule and avoidance of the femoral artery and vein at
an anatomic site of close apposition to the joint capsule. These
Frontiers in Immunology | www.frontiersin.org 12
technical difficulties may limit the performance of hindlimb
amputation to more highly trained technicians or researchers.

Two groups of investigators have described intratibial
implantation of histologically intact fresh tumor tissue into the
tibia of mice (64, 65). Both models closely resemble that
described in this report, but do not allow the use of modified
cells or single cell suspensions for noninvasive tumor growth and
imaging applications. They also do not allow the use of
specialized cell line variants, such as serially passaged lines
with high metastatic capability (66) or gene-edited cell lines.
Our model addresses this problem by additionally incorporating
embedding of the tumor cells within a collagen scaffold.

This model is technically feasible. The mice used in this
methodology do well after implantation. Mice are recovered
from anesthesia, weight-bearing, and exploring surroundings
within five minutes of awakening from general anesthesia.
There is no evidence that pretreatment with buprenorphine
and meloxicam affects the tumor growth in this model (67).
The method is technically straightforward and easily teachable
for nonsurgical personnel, and the subsequent hindlimb
amputations are rendered significantly easier by use of a tibial
rather than a femoral implantation site. These considerations
increase the feasibility of use of this model.

Limitations of this method may include the need to acquire
specialized surgical tools including the fine Rongeur used for
creating the tibial osteotomy and the need to train technicians in
the surgical technique. In addition, the impact of the collagen
scaffold on tumor cells has not been established. We do not
anticipate the collagen matrix to significantly change tumor
biology and have demonstrated that this technique results in
histology consistent with osteosarcoma. In addition, the use of
scaffolding material such as Matrigel® (Corning, Arizona, USA) is
extremely common in tumor cell injection and implantation
techniques, and therefore this strategy is not overly divergent
from common practice. Finally, while the pulmonary metastatic
potential of this model is a major advantage, the frequency and
burden of the extrapulmonary systemic metastatic sites differs
from the pattern of osteosarcoma metastasis in humans (68, 69).
This may be due to different tumor tropism for osteosarcoma in
murine systems, and indeed, extrapulmonary metastases have
been reported in previous orthotopic models (61). While this
metastatic pattern does differ from the clinical pattern in humans,
it still allows rigorous evaluation of the metastatic process.

In summary, the orthotopic implantation technique detailed
in this study, in which tumor cells are first embedded into a
collagen scaffold implant and then implanted surgically into the
anterior tibia of mice, results in robust primary tumor
engraftment and systemic metastasis as determined by H&E
and flow cytometry. We additionally describe effective antitumor
activity of B7-H3-CAR T cell therapy in a dose dependent
fashion using this model and show its efficacy in distinguishing
primary tumor control from subsequent systematic metastasis.
Thus, our model is a valuable addition to the field and should
enable the realistic modeling not only of cell therapies but other
therapeutics for primary and metastatic OS.
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