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Abstract: The outbreak of the COVID-19 has become a worldwide public health challenge for
contemporary cities during the background of globalization and planetary urbanization. However,
spatial factors affecting the transmission of the disease in urban spaces remain unclear. Based on
geotagged COVID-19 cases from social media data in the early stage of the pandemic, this study
explored the correlation between different infectious outcomes of COVID-19 transmission and various
factors of the urban environment in the main urban area of Wuhan, utilizing the multiple regression
model. The result shows that most spatial factors were strongly correlated to case aggregation areas
of COVID-19 in terms of population density, human mobility and environmental quality, which
provides urban planners and administrators valuable insights for building healthy and safe cities in
an uncertain future.
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1. Introduction

The 2019 novel coronavirus [1,2], which was first reported in Wuhan, the capital
of Hubei province, China, evolved into a worldwide public health event. As the main
daily living space for residents, the city had a close internal relationship with people’s
health [3–5] and there was a close correlation between personal activity related to the city’s
attributes and the risk of infection [6]. Although pathogens were transmitted through
mobile carriers, the urban environment shaped their flow [3]. The mechanism of the urban
environment affected the spatial distribution of COVID-19, and characteristics of the area
where cases gathered within the city remained unclear, which required detailed intra-urban
analysis to reveal the spatial disparities and determinants of the COVID-19 pandemic.

Personal space and activities related to urban attributes were closely related to infec-
tion risk [6] at the city level, and existing research on COVID-19 and its impact factors
in urban areas can be classified into three major themes, namely, population density, hu-
man mobility and environmental quality. First, studies have demonstrated the effect of
spatial aggregation of the population on the susceptibility of people to COVID-19 [7,8].
Second, from the perspective of human mobility, since the distribution of public service
facilities affected the urban residents’ mobility, the association of public facilities with
the spatial variation of COVID-19 distribution should be further observed [9]. Lai et al.
mentioned the impact of human mobility caused by urban traffic [7]. You et al. found
that the distribution of commercial facilities and medical service facilities was related
to the incidence of COVID-19 [6]. ImKampe et al. proved that COVID-19 outbreaks in
schools did occur [10]. Patel et al. referred to the specific performance of food supply
facilities during the pandemic [11]. Besides, administrative agencies, as a public service
facility for people’s daily affairs, were usually ignored in the existing research [12]. Third,
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despite the different social, cultural, economic, political and environmental backgrounds
around the world, residential environmental quality played an important role in curbing
the pandemic and fighting diseases [13]. The relevance of poor communities in COVID-19
infection was also emphasized in existing research [14,15]. You et al. suggested that older
communities in Wuhan should be renovated and the corridors of public space should be
expanded to alleviate overcrowding [6]. In addition, air quality had also been proved to
have a significant correlation with the COVID-19 pandemic [16–18] and open spaces such
as green spaces and waters played a significant role in people maintaining distance and
good health [19,20]. Furthermore, in addition to the elements mentioned in the above study,
with the comprehensive consideration of the unique attributes of Wuhan (such as having a
population with more than a million college students, etc.), seventeen explanatory variables
possibly related to the distribution of the COVID-19 in the main urban area were selected.

Our intellectual contributions were threefold. Firstly, most existing studies had ex-
plored the impact of risk factors of COVID-19 at the country level [21], but lacked investiga-
tions of the spatial variations of the COVID-19 pandemic at the intra-urban scale, especially
for Wuhan, the city where the first outbreak of the pandemic was reported. Our empirical
explorations of Wuhan’s experiences of COVID-19 sought to inform detailed urban policy
and governance for better preparedness and responses to public health crises.

Secondly, the main challenge hampering the research into spatial correlation between
pandemics and urban spatial factors was the lack of the pandemic information on a fine
spatial scale, such as on the community or kilometer grid scale. Since the pandemic
information released by the Wuhan government was only at the administrative region
level [6,22,23], there was no access to more detailed geospatial case data. Social media
data were widely used in a myriad of studies related to COVID-19 for geotagging possible
patients, analyzing the spatiotemporal dynamics of pandemics [8], studying psychological
consequences of the disease [24], investigating the public’s response [25], characterizing the
propagation of situational information [26], predicting re-outbreaks of the COVID-19 [27],
and examining information flow during the pandemic [28]. Compared with the traditional
case data, such social media data had the unique benefits of better accessibility and rich
and accurate geographic information, and we innovatively used Weibo data to revisit the
COVID-19 pandemic during the early stage in detail, which were found to have good
sample coverage and were able to represent the spatial results of the natural transmission
of COVID-19 in the main urban area of Wuhan to a certain extent [8].

Thirdly, we draw from the literature to develop a framework of urban elements for
better detecting the mechanism of spatial factors affecting the spatial transmission of
the disease in urban spaces. A myriad of studies focused on the influence of social and
economic factors on COVID-19 [6,29], with no focus on the characteristics of the city itself.
Most studies focused on the association of the built environment’s attributes with the
spread of COVID-19 [30,31] while minimizing the impact of the natural environment in the
urban space. Since the urban form generally encompasses a number of physical features
and nonphysical characteristics [32], we hence conducted a novel framework including
seventeen urban factors in terms of population density, human mobility and environmental
quality to investigate the correlation between infectious outcomes and related urban factors.

Given all the above, the reason why we selected Wuhan as the study region can be
attributed to the following three points. First, Wuhan was the first seriously impacted city
by COVID-19 [8]. Second, the Weibo cases only occurred in Hubei province, and most
of them were concentrated in Wuhan. Third, it was confirmed that the Weibo help data
could well demonstrate the three phases of COVID-19’s early spread in Wuhan—scattered
infection, community spread, and full-scale outbreak [8]—as well as reflecting the results
of natural transmission with less intervention during the early stage of the pandemic.

In this study, we collected about 1200 Weibo messages, which included 729 valid
records located in the main urban area of Wuhan, so as to represent the spatial variations of
the COVID-19 pandemic in the city. Seventeen explanatory variables, from perspectives
of population density, human mobility and environmental quality, namely, population,
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the elderly population, the third ring road, rivers (the Han river and the Yangtze river),
markets, third-class hospitals, middle schools, universities, business points of interest
(POIs), administration points of interest (POIs), bus stops, metro stations, house prices, age
of buildings, air quality index, green spaces, and waters (rivers and lakes) were chosen to
identify their influences on the spatial variation of COVID-19 in the main area of Wuhan.
Considering the spatial correlation within Weibo COVID-19 cases and influencing factors,
respectively, we applied the Euclidean Distance (ED), Kernel Density Estimation (KDE)
and Inverse Distance Weighted (IDW) methods to process these elements, and adopted the
multiple linear regression model to test the extent to which the severity of infection was
impacted by urban spatial indicators. The possible impacts were further discussed so as to
provide urban planners and administrators with valuable insights for building healthy and
safe cities in a future of uncertainty.

2. Study Area and Data
2.1. Study Area

Wuhan is a city in Central China with a total area of 8569.15 square kilometers, a perma-
nent resident population of 12.3265 million, and a total economic output of 1561.61 billion
yuan, which was ranked among the top ten cities in China by the end of 2020. Wuhan
is an important water, land and air transportation hub in China since it is located at the
intersection of the golden waterway of the Yangtze River and the artery of the Jingguang
railway and hence it has always been known as the “thoroughfare of nine provinces”.

Wuhan’s main urban area (MUA) is located in the center of the city, and it is the main
gathering area for urban activities (Figure 1). According to the confirmed data released
by the Wuhan Municipal Health Commission, as of 16 March 2022, Wuhan had reported
a total of 50,537 confirmed cases, 76.034% of which were located in the main urban area
of Wuhan (Table 1). Therefore, MUA was the region where cases were concentrated in
Wuhan and the main administrative areas covered by MUA include Jiang’an, Jianghan,
Qiaokou, Hanyang, Qingshan, Wuchang, Hongshan and Wuhan Economic Technological
Development districts.
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Figure 1. Map of the study area in Wuhan, China: (a) the geographic location of the Wuhan, China; 
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Table 1. Case statistics of Wuhan.

Districts Cumulative Confirmed Case Proportion

Jiang’an (MUA) 6563 12.987%
Jianghan (MUA) 5242 10.373%
Qiaokou (MUA) 6854 13.562%
Hanyang (MUA) 4691 9.282%
Wuchang (MUA) 7551 14.942%
Qingshan (MUA) 2804 5.548%
Hongshan (MUA) 4720 9.340%

Dongxihu 2637 5.218%
Caidian 1424 2.818%
Jiangxia 875 1.731%
Huangpi 2117 4.189%
Xinzhou 1071 2.119%

East Lake Ecotourism Scenic District 483 0.956%
East Lake High-Tech Development District 2174 4.302%

Wuhan Economic Technological Development District 1108 2.192%
Other places 223 0.441%

Total 50,537 100.00%

As of 16 March 2022 source: Wuhan Municipal Commission of Health.

The traffic analysis zone (TAZ) based on the street network was the spatial statistical
unit for this study. The average size of TAZ was 0.204 km2, with the smallest block being
0.007 km2 and the largest block being 5.851 km2. There were 1681 blocks in total.

2.2. Weibo COVID-19 Cases

In the early stage of the COVD-19 pandemic, due to its rapid outbreak, Wuhan issued
a message on the closure of the city on 23 January 2020, which further aggravated the
public’s panicked sentiment. A large number of people flocked to the hospital, leading
to a patient overflow. Sina Weibo, one of the most influential social media platforms in
China, opened a help-seeking channel for patients infected with COVID-19 suffering from
pneumonia. Patients who could not receive timely treatment could be treated by publishing
relevant basic information on the topic.

The Weibo help information was mainly distributed from 3 February to 12 February,
and most of the information was posted from February 4th to 8th and stopped updating
until the local government took a series of effective measures to supplement medical
resources. The research collected about 1200 Weibo messages over this period of time,
for which 729 valid records were located in the main urban area of Wuhan and basic
information such as the patient’s age, gender, address, date of illness, and the number of
family infections were obtained by eliminating invalid and duplicate information. The
onset time of patients included in the effective records ranged from 20 December 2019 to
10 February 2020, and most of them were concentrated from 1 January 2020 to 6 February
2020 (Table 2).

Table 2. Statistics of onset period.

Date of Illness Number of Weibo Help Information

20–30 Novenmber 2019 3
1–31 Januaru 2020 558
1–6 February 2020 154

7–10 February 2020 14

The participation rates in the social media helpline among the COVID-infected at
the administrative unit level (Table 3) were further obtained by calculating the ratio of
infections in the Weibo information to the cumulative confirmed cases. Due to the sudden
outbreak of the disease in the early stage, the officially confirmed data at the administrative
region level could only be traced back to 5 March 2020, which may cause deviation to a
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certain extent. The result showed that the participation rates ranged from 1.46% to 2.49%,
which could supplement the reliability of data to some extent.

Table 3. The participation rates in the helpline among the COVID infected.

Districts Infections in Weibo
Information

Cumulative
Confirmed Case

the Participation
Rate

Jianghan (MUA) 75 5137 1.46%
Qiaokou (MUA) 128 6789 1.89%
Wuchang (MUA) 135 7431 1.82%
Jiang’an (MUA) 145 6521 2.22%
Hanyang (MUA) 116 4661 2.49%
Hongshan (MUA) 87 4652 1.87%
Qingshan (MUA) 64 2773 2.31%

2.3. Explanatory Variables

We selected seventeen explanatory variables from the perspectives of population
density, human mobility and environmental quality (Table 4) to test the extent to which the
severity of infection was influenced by urban spatial indicators.

Table 4. Variable selection.

Dimension Variables Definitions

Dependent variable Weibo help case density (Weibo) The average KDE 1 value of COVID-19 infectors in each unit

Population density

Population density (Population) The average KDE 1 value of the population in each unit
The elderly population density (Elderly) The average KDE 1 value of the elderly population in each unit
Distance to the third ring road (Ring3) The average ED 2 value from units to the third ring road

Distance to rivers (River) The average ED 2 value from units to rivers

Human mobility

Distance to markets (Market) The average ED 2 value from units to markets
Distance to third-class hospitals (Hospital) The average ED 2 value from units to hospitals

Middle school density (M_school) The average KDE 1 value of middle schools in each unit
University density (University) The average KDE 1 value of universities in each unit

Business density (Business) The average KDE 1 value of business facilities in each unit
Administration density (Administration) The average KDE 1 value of administration facilities in each unit

Bus stop density (Bus) The average KDE 1 value of bus stop in each unit
Metro station density (Metro) The average KDE 1 value of metro station in each unit

Environmental quality

Housing price (Price) The average house price in each unit
Age of buildings (Year) The average age of buildings in each unit
Air quality index (AQI) The average IDW 3 value of air quality index in each unit

Distance to green spaces (Green) The average ED 2 value from units to green spaces
water density (water) The average KDE 1 value values of waters in each unit

1 KDE: The Kernel Density Estimation (see Methods for detailed information); 2 ED: Euclidean Distance; 3 IDW:
The Inverse Distance Weighted (see Methods for detailed information).

In Wuhan, the third ring road and the rivers played a crucial role in separating
the population distribution in the urban region [33], and hence the third ring road, rivers,
population, and the susceptible population together were used as the measure of population
density status. The information on the third ring road and rivers (the Han river and the
Yangtze river) was provided by the local planning institute of Wuhan. Mobile phone data
with age tags were used in this study to obtain the spatial distribution mapping of the
population and the elderly population by the number of users that the base station served,
which was summarized by matching base stations with the highest call frequency of users
to the user ID.

Since the distribution of public service facilities affected the urban residents’ mobility [9],
third-class hospitals, middle schools, universities, business facilities, administration facili-
ties, bus stops, and metro stations were included to measure human mobility. In China,
the market was the main place where people frequently entered and exited in their daily
lives, and the Huanan Market especially was the first place in Wuhan where the pan-
demic outbreak was identified; hence, it was included as an element that affected human
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mobility [34–36]. Furthermore, the university was also included in the mobility theme
since there were 84 universities located in Wuhan by the end of 2019. The POI data of
facilities in 2019 were extracted from the Gaode Map API, which contained public service
facilities (middle schools, universities, hospitals, administrations, markets, restaurants) and
the transportation facilities (street network, bus stations and subway stations) in the main
urban area of Wuhan.

In terms of the environmental quality, five variables were identified: house prices, age
of buildings, air quality index, green spaces and waters (rivers and lakes). The sales prices
and chronological information of residential properties were taken from the Anjuke website,
which may partly reflect the quality of the residential environment. The Air Quality Index
(AQI) data of 15 stations in 2019 in the main area of Wuhan were obtained from the local
government and were used as the regional air quality indicator. Basic land use information
such as green spaces and waters were provided by the local planning institute of Wuhan.

The average of the kernel density analysis of Weibo help cases in each TAZ unit was the
dependent variable and seventeen processed variables (Table 4) in terms of the population
density, human mobility and environmental quality were the explanatory variables, so as
to explore the possible correlation between urban variables and COVID-19 transmission.

3. Methods
3.1. Kernel Density Analysis

The kernel density method was used to calculate the unit density of the measured
values of points and line elements within a specified neighborhood, and could intuitively
reflect the distribution of discrete measured values in the continuous area [37,38]. It
considered the interaction between spatial elements as well as weight values for specific
parameters. Kernel density analysis could be used for facility accessibility [39], the incidence
of disease [40], regional analysis [41], traffic analysis [42], etc., and hence kernel density
interpolation was used to characterize the distribution of COVID-19 cases from Weibo,
the population and the elderly population, the accessibility of transportation facilities,
educational facilities, commercial facilities and administrative facilities, and water delivery
in the main area of Wuhan, since it was considered that these variables served the local
urban area. The equation was as follows:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(1)

where K was the kernel (a non-negative function), h > 0 was a smoothing parameter called
the bandwidth, and xi was the sample point.

Due to the different nature of the facilities, the accessibility measurement should be
adopted according to the daily use mode. The commonly used spatial Euclidean Distance
(ED) was applied in the study to capture the closest distance from residents to the third
ring road, rivers (the Han river and the Yangtze river), third-class hospitals [43], markets,
and the surrounding green space [44], since it was considered that hospitals, green spaces,
and markets served the entire urban area, and the distance from rivers and the third ring
road was used to represent the location characteristics of residents.

3.2. Inverse Distance Weighted (IDW)

The Inverse Distance Weighted (IDW) method was used for interpolation to estimate
unmeasured cell values. It assumed that things that were closer to each other were more
similar than those which were farther apart. Greater weights were assigned to the elements
which were closest to the measured cells; consequently, the allocated weights changed as an
inverse function of the pth power of distance, where power function (p) was a positive real
number [45], and the value of p was 2. The Inverse Distance Weighted method was usually
used to predict air quality parameters [46,47], spatial rainfall distribution [48], surface
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water quality [49], etc., and hence it was applied to describe the air quality indicator (AQI)
in the main urban area in Wuhan.

3.3. Multiple Linear Regression

Multiple Linear Regression was used to determine the relationship between a depen-
dent variable (y) and more than one independent variable (x1, x2, . . . , xk) in the scientific
research [50–52]. The general form of the multiple linear regression model was given by

y = β0+β1x1 +βx2+ . . . + βkxk+ε(k ≤ 17) (2)

where y was the density value of the Weibo population, x1, x2, . . . , xk were values of
selected explanatory variables, β0 was the intercept, β1, β2, . . . , βk were regression coeffi-
cients of factors, and εwas the random error.

4. Results
4.1. Spatial Variations of Weibo COVID-19 Cases

According to the number of household infectors reported in each record, the result of
the kernel density estimation of COVID-19 cases of Weibo data is presented in Figure 2. The
spatial distribution of cases showed relatively concentrated regional patterns in riverside
(the Yangtze river and the Han river) areas of the Jiang’an, Jianghan, Qiaokou, Wuchang, and
Hanyang districts, as well as the eastern area of East Lake High-Tech Development district.
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4.2. Correlation Analysis

Weibo help data and seventeen influence factors were coded and the numerical sta-
tistical results are shown in Table 5. The scatter diagram of variables (Figure 3) showed
the correlation between the density of COVID-19 cases from Weibo and the seventeen
independent variables, and strong linear trends were determined between distance to the
third ring road and hospitals, kernel density of the population, the elderly population,
middle schools, bus stops and metro stations, and the age of buildings and the Weibo help
cases with an absolute value of the Pearson’s r greater than 0.5.



Int. J. Environ. Res. Public Health 2022, 19, 5208 8 of 17

Table 5. Variable statistics.

Variable Name Number Minimum Maximum Mean Std. Deviation

Weibo help density (Weibo) 1681 0.0000 73,959.0440 28,405.5334 17,269.6339
Population density (Population) 1681 2.5756 31,293.7673 8199.1254 5694.6717

The elderly population density (Elderly) 1681 1.9645 2052.2024 653.7139 464.9645
Distance to the third ring road (Ring3) 1681 –6662.0000 10,621.0000 4499.3998 3162.0162

Distance to rivers (River) 1681 70.0000 16,329.0000 3259.2570 3170.4919
Distance to markets (Market) 1681 11.2599 4087.3986 410.5552 421.3228

Distance to third-class hospitals (Hospital) 1681 23.0000 9432.0000 1913.4747 1535.0498
Middle school density (M_school) 1681 1.0000 59.1887 15.1634 13.7686

University density (University) 1681 1.0000 58.6333 3.6523 5.2843
Business density (Business) 1681 1.0000 54.7805 3.2398 5.1925

Administration density (Administration) 1681 1.0000 58.9231 4.2478 7.3873
Bus stop density (Bus) 1681 1.4563 59.6098 27.6569 13.4843

Metro station density (Metro) 1681 1.0000 57.6180 17.0827 14.5484
Housing price (Price) 1681 7975.0000 40,989.0000 18,447.5544 3879.5026

Age of buildings (Year) 1681 2.6891 28.0737 15.9859 4.5786
Air quality index (AQI) 1681 80.3393 93.3462 86.6823 2.1607

Distance to green spaces (Green) 1681 0.0000 6727.0000 662.9863 633.4966
water density (water) 1681 1.0000 32.4762 9.8986 7.4350
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4.3. Multiple Regression Model

As there may be collinearities between variables, this study conducted the calculation
of linear regression (Table 6), in which the kernel density of the Weibo help cases was the
dependent variable and the rest of the seventeen factors were used as independent variables,
and the strength of correlation between the dependent variable and each influence elements
changed. Fourteen explanatory variables, the Euclidean Distance (ED) to the third ring
road, markets, hospitals, rivers, and green spaces, the Kernel Density Estimation (KDE)
of the elderly, middle schools, universities, bus stops, metro stations and waters, house



Int. J. Environ. Res. Public Health 2022, 19, 5208 9 of 17

prices, age of buildings, and the Inverse Distance Weighted (IDW) value of air quality
index (AQI) were obtained through the collinearity test and 5% significance level test, and
the factors of the Kernel Density Estimation (KDE) of the population, business facilities
and administrations were excluded from the model due to the existence of collinearity
and failure to pass the significance test, respectively. Consequently, a linear regression
model of fourteen selected factors was further constructed to observe the mechanism of the
spatial distribution of COVID-19 and its determinant urban elements (Table 7). In general,
the adjusted R-square of the model was 0.790, which indicated that the selected fourteen
independent variables’ explanatory abilities for the dependent variable were credible.

Table 6. Model summary of seventeen urban factors.

Model
Unstandardized

Coefficients
Standardized
Coefficients t-Value Significance

Collinearity
Statistics

Beta Std. Error Beta Tolerance VIF

(Constant) −70,623.886 10,753.331 −6.568 0.000
Population −0.475 0.083 −0.157 −5.725 0.000 0.164 6.113

Elderly 16.697 1.28 0.450 13.041 0.000 0.103 9.714
Ring3 1.539 0.115 0.282 13.379 0.000 0.276 3.625
River −0.781 0.088 −0.143 −8.914 0.000 0.473 2.114

Market −2.144 0.607 −0.052 −3.531 0.000 0.558 1.794
Hospital −0.923 0.186 −0.082 −4.978 0.000 0.45 2.223
M_school 151.174 21.843 0.121 6.921 0.000 0.403 2.479
University −156.239 44.016 −0.048 −3.55 0.000 0.674 1.483
Business −18.321 43.511 −0.006 −0.421 0.674 0.715 1.399

Administration 25.647 35.631 0.011 0.72 0.472 0.527 1.899
Bus 417.361 29.146 0.326 14.32 0.000 0.236 4.234

Metro 142.755 21.209 0.120 6.731 0.000 0.383 2.610
Price −0.886 0.079 −0.199 −11.268 0.000 0.392 2.552
Year −426.759 67.602 −0.113 −6.313 0.000 0.381 2.626
AQI 1132.903 119.915 0.142 9.448 0.000 0.543 1.840

Green 1.032 0.369 0.038 2.796 0.005 0.667 1.499
Water −120.487 34.619 −0.052 −3.48 0.001 0.551 1.816

R: 0.893 R Square: 0.797 Adjusted R Square: 0.794
Std. Error of the Estimate: 7831.238353

Table 7. Model summary of fourteen urban factors.

Model
Unstandardized

Coefficients
Standardized
Coefficients t-Value Significance

Collinearity
Statistics

Beta Std. Error Beta Tolerance VIF

(Constant) −80,667.568 10,629.470 −7.589 0.000
Elderly 11.599 0.867 0.312 13.371 0.000 0.229 4.364
Ring3 1.457 0.114 0.267 12.750 0.000 0.286 3.501
River −0.945 0.083 −0.174 −11.403 0.000 0.540 1.853

Market −1.868 0.608 −0.046 −3.070 0.002 0.568 1.762
Hospital −0.870 0.186 −0.077 −4.673 0.000 0.456 2.194
M_school 144.758 22.042 0.115 6.567 0.000 0.405 2.471
University −193.204 43.907 −0.059 −4.400 0.000 0.692 1.444

Bus 411.545 29.433 0.321 13.983 0.000 0.237 4.226
Metro 144.609 21.162 0.122 6.833 0.000 0.393 2.543
Price −0.793 0.069 −0.178 −11.471 0.000 0.519 1.928
Year −378.367 66.530 −0.100 −5.687 0.000 0.402 2.490
AQI 1229.175 117.094 0.154 10.497 0.000 0.582 1.717

Green 0.942 0.373 0.035 2.527 0.012 0.668 1.496
Water −140.884 34.832 −0.061 −4.045 0.000 0.556 1.799

R: 0.890 R Square: 0.792 Adjusted R Square: 0.790
Std. Error of the Estimate: 7915.456643
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The spatial distribution of selected fourteen explanatory variables in TAZ units were
shown in Figure 4. Units with the highest elderly population density were concentrated in
the core area of the Jianghan, Jiang’an, Wuchang, as well as Qingshan districts. Markets,
third-class hospitals, middle schools and transportation (bus stops and metro stations)
facilities presented relatively balanced distribution patterns on the whole. Universities in
Wuhan were concentrated on the right bank of the Yangtze River. In terms of environmental
quality elements, the distribution of green spaces and water spaces (rivers and lakes) were
relatively discrete. High air quality indices were found in the Qingshan and eastern
Hongshan districts, and it was shown that the air quality in the center area was the best.
The core areas of Wuchang and Hongshan had relatively higher house prices. There were
clusters of older buildings in the central areas of Wuchang, Hongshan, Jiang’an as well as
Jianghan districts.
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to Third-class hospitals; (g) Bus stop density; (h) Metro station density; (i) University density; (j) Dis-
tance to green space; (k) Water density; (l) Air quality index; (m) Housing price; (n) The age of buildings.

The visualization of the standardized coefficients of the fourteen factors regression
model was shown in Figure 5 to clearly observe the influence mechanism of factors on the
dependent variable. Influence factors of the Kernel Density Estimation (KDE) of the elderly
population, middle schools, bus stations and metro stations, the Euclidean Distance (ED) to
the third ring road and green spaces, and the Inverse Distance Weighted (IDW) value of air
quality index (AQI) had positive correlations with the aggregation of COVID-19 infections.
Among them, the Kernel Density Estimation (KDE) of bus stops and the elderly population,
as well as the Euclidean Distance (ED) to the third ring road determined particularly
significant positive effects, with coefficients of 0.321, 0.312 and 0.267, respectively. The
Euclidean Distance (ED) to markets, hospitals and rivers, house prices, Kernel Density
Estimation (KDE) of universities and waters, as well as the age of buildings had negative
correlations with the density of cases within the city, among which, house prices and the
Euclidean Distance (ED) to rivers showed stronger negative effects, with coefficients of
−0.178 and −0.174, accordingly.
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5. Discussion

The study aimed to explore the correlation between urban factors and the transmission
of COVID-19 based on Weibo COVID-19 data and seventeen spatial indicators generated
by multi-source data. Generally, the characteristics of case aggregation areas in the main
urban area of Wuhan can be summed up in three features: high population density, high
degree of human mobility and relatively poor environmental quality.

5.1. Impacts of Urban Factors on COVID-19 Transmission

In the early stage of the pandemic, residential areas located in the city center, which
were measured by the distance to the third ring road, and developed regions along the
river tended to be more densely populated, and hence the number of infected people was
high, which was consistent with the findings of the literature [53] that larger metropolitan
areas had a higher infection and mortality rates. The density of the elderly became the
positively relevant factor for the spatial distribution of the patients, indicating that the
elderly population was susceptible and was at great risk of serious disease and death in the



Int. J. Environ. Res. Public Health 2022, 19, 5208 12 of 17

pandemic [54,55]. In Milan, it was proved that elderly populations suffered from very poor
accessibility to primary health services during the pandemic [56].

Second, the kernel density of bus stations, metro stations and middle schools became
positively related factors to the spatial distribution of the patients, while the Euclidean
Distance (ED) to hospitals and markets and Kernel Density Estimation (KDE) of universities
were negatively related factors, which could be attributed to the layout of public facilities
such as busses, metro stations, middle schools, hospitals and markets which increased hu-
man mobility, and the layout of relatively close universities decreased the degree of human
mobility, and hence the probability of people-to-person contact was raised or declined [6].
Areas with better hospital access had higher risks of infection. A possible explanation for
this is that due to the unbalanced spatial distribution of medical facilities, patients tended
to go to large hospitals for treatment, causing a wider range of cross-infections, which made
hospitals become high-risk places for the initial spread of COVID-19 [57].

Third, on the one hand, with the high-density development model of cities in recent
years, high-rise residential buildings have become the normal form of residence. Conse-
quently, public elevators and other infrastructures may be risk factors in some relatively
new communities during the pandemic, while in old communities, the stairs were well
ventilated, and hence led to fewer infections. Simultaneously, house prices were nega-
tively correlated with infection density [15]. Communities with high house prices may
have better management services and hence could be well protected during the pandemic,
which indicated that the social polarization between the rich and the poor was one of the
significant inequality factors during the pandemic. On the other hand, the air quality and
the accessibility of open spaces such as green spaces and waters also had slight impacts
on the variability of the spatial distribution of the disease, and the study considered that
these impacts were formed through the decompositions of the virus and long-term poten-
tial effects on residents’ immunity [58]. Furthermore, poor air quality may increase the
probability of residents suffering from respiratory diseases in winter, thereby raising the
possibility of infection after going to hospitals.

5.2. Policy Recommendations for Urban Development

Cities are the habitats of residents. The COVID-19 pandemic showed that many cities
in the world were insufficiently prepared to deal with the challenge it presented. Weak links
in urban materials and infrastructure were revealed. The urban environment played an
important role in suppressing the spread of the virus before the pandemic, and cities should
further complete emergency planning and response measures to offset future risks after the
pandemic [3], as the weaknesses should be resolved before the next pandemic [59]. The
study proposed the following targeted urban planning and management recommendations
based on the three characteristics of the areas where cases were highest.

First, areas with high-density populations and susceptible populations were more
likely to be infected. For high-density urban areas, especially in Asia, city managers should
give priority to identifying areas where the population and susceptible populations gather
and implement strict controls so as to prevent the further spread of disease during a
pandemic [21]. In Wuhan, the results revealed that areas far from the third ring road (with
a positive coefficient of 0.267) or close to the Yangtze river (with a negative coefficient
of −0.174) had a large number of people; although high-density cities had an efficient
agglomeration effect, the risk of high-density population agglomeration should be reduced
in future urban construction, such as multi-center construction and rational evacuation
planning in urban areas [7]. In addition, the empirical results showed that the elderly have
a high degree of positive relationships with the spatial variation of the disease (with a
positive coefficient of 0.312) since they were more likely to develop severe illnesses due
to their reduced immunity in the pandemic as the susceptible population. Policymakers
could plan to provide specialized services by improving the level of services designed for
the elderly, so as to promote healthy aging in urban areas [56].
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Second, the high accessibility of public service facilities provided convenience for
residents, but it also increased the mobility of the population, leading to a high risk of
infection. The unfairness of the distribution of public service facilities and resources
aggravated the excessive concentration and mobility of local nodes. The empirical results
showed that infections were higher in areas close to hospitals, with a coefficient of −0.870,
indicating that urban planning and management departments need to strengthen the
rational layout of public service facilities and develop a fair allocation of public service
resources, such as promoting the further improvement of the three-level diagnosis and
treatment system and promoting remote diagnosis and treatment [60], so as to reduce
excessive clustering in third-class hospitals. In addition, for high-risk buildings such as
hospitals, defensive space design should be enhanced. On the other hand, the fragility of
the food supply during the pandemic was also a major problem faced by people. Lai et al.
proposed the idea of restoring self-sufficient urban agriculture, which was not applicable to
Chinese cities [7]. Swiggy (similar to Uber Eats in the US), an Indian food delivery platform,
used its advantages to ensure food supply for the vulnerable population in Bangalore [61].
Online group purchases and unified distribution via community management were two of
China’s successful experiences in fighting the pandemic. In long-term planning and urban
management, it is also necessary to consider the virtualized online operation of daily public
service facilities such as markets, redefine the layout of the urban logistics system, and build
a non-contact distribution and supply guarantee system for daily living materials. Public
transportation also increased the risk of infection. In Wuhan, empirical evidence showed
that places where bus and metro stations were densely distributed were accompanied by a
high degree of disease transmission, among which the positive impact of bus stops was
greater, with a coefficient of 0.321. Consequently, measures such as limiting the number of
passengers per vehicle and increasing the number of bus or railway lines could be taken
to reduce excessive crowds. At the same time, sufficient disinfection facilities should be
arranged in public service facilities, as was shown in a nationwide survey in Spain, which
could result in a greater willingness to use public transport in post-COVID-19 times [62].
Regarding modes of travel, residents need to be encouraged more to ride bicycles and walk.
The pedestrian and bicycle lanes in Wuhan were relatively scattered and incomplete and
hence a more connected and safer road network should be planned. For the university
model, such as a city with nearly a hundred universities, the test in Wuhan suggested that
the presence of universities was able to curb the spread of the disease to some extent [63],
with a negative coefficient of −0.059, which demonstrated that it may be better to continue
to maintain the closed management mode in China, since the experimental results proved
that it had a positive impact on the fight against the pandemic.

Finally, high environmental quality can reduce the risk of infectious disease trans-
mission. Studies have shown that newly built high-rise residential buildings in Wuhan
had higher risks of infection than old multi-story residential buildings, with a negative
coefficient of −0.100, and hence the study proposed that the proportion of future high-rise
residential developments in cities should be appropriately reduced. On the other hand, the
experimental results proved that better air quality, water distribution and green space ac-
cessibility had a positive impact on the fight against the pandemic in Wuhan, which shows
that development managers should further focus on improving the quality of human settle-
ments. In Australia, COVID-19 created more opportunities for people to come into contact
with and learn about nature at home [13], while in China, the fact was that there were no
adequate parks and open spaces where people in densely populated urban areas could
walk [64–66], in spite of people’s growing interest in short walks [19,67]. Consequently,
open public spaces, such as waters and green spaces, should be more balanced to guarantee
fair accessibility for residents, since it was beneficial to the residents’ health [68,69], and was
able to play a barrier function in the urban ecological space to enhance the city’s natural
immunity and allow residents to live in a fair and resilient city environment.
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5.3. Future Research and Limitations

This study provides a basic research paradigm for the influence mechanism of urban
elements on COVID-19 at various stages of the pandemic development in urban spaces.
Firstly, in general, in the early stage of the pandemic, as evidenced by this study, different
cities around the world, with the same and different population volumes, could establish
their own factor system that may affect disease transmission according to the common
(density, public service facilities, open space, etc.) and unique attributes (mountain cities,
lake cities, university cities, etc.) of the city, as well as from the three aspects of population
density, human mobility and environmental quality, so as to identify related urban factors
and help urban planners optimize the allocation of public service facilities, as well as
rethinking the reasonable size and structure of the city. Secondly, with the mutation of the
virus, the infectivity continued to increase and people entered the stage of normalization
of social activities and pandemic prevention. The pandemic data became more accurate,
transparent, standardized and refined, which helps researchers achieve refined exploration
of the interaction between the spatial variation of disease and related factors in different
urban regions; this also makes it possible to provide urban planners with more accurate
and effective planning suggestions in the context of pandemic prevention.

Moreover, the research can be expanded on in the following aspects in the future:
(1) Combined with more detailed flow data, a detailed agent model can be built for deep
research of cities’ internal connections during the pandemic. (2) The model can be applied
to the study of explorations of relationships between other chronic and acute diseases
and cities.

The limitations of our data and analysis can be split into three aspects. Firstly, due
to the distinct temporal character of the Weibo data, the effective sample size was only
729, and hence there was still missing disease information that involved privacy issues.
Although the sample size was limited, the spatial coverage of the data was good, and
the study applied Kernel Estimate Density (KDE) to generate surfaces of the pandemic
in the main urban area of Wuhan, which could clearly show the difference in the level
of disease prevalence between regions. However, the use of spatial estimates of Kernel
Density Estimation (KDE) could cause potential bias in the regression analysis, which was
non-evaluative and unavoidable in this study. Secondly, the study attempted to assess the
bias of the Weibo help data by calculating the rate of participation in the helpline among
those infected with COVID-19, while due to the limited availability of the public data, only
the participation rate at the district level was obtained. This meant we were unable to
prove that on a more granular scale, within each TAZ unit, people infected with COVID-19
had the same attitude to posts. Thirdly, the internal built-up environment of residents was
not taken into account in the model. In general, this study can be regarded as proposing
an idea based on limited and innovative data. If detailed data can be obtained, then more
detailed correlations can be drawn in the same way.

6. Conclusions

During the outbreak of the pandemic, there was spatial variability of COVID-19 in
urban spaces, and the identification of the variation, as well as their interaction mechanisms
with urban elements, is of great significance in the fight against viruses and the future
development of cities. The study contributes by proposing the linear regression model with
innovative social media data and seventeen explanatory factors to achieve the quantitative
study of the spread of COVID-19 within Wuhan city. Weibo case data provided urban
scholars a unique opportunity to revisit the result of the natural development of COVID-19
in Wuhan city during the early stage of the pandemic, which was the main advantage
compared to other city-level data. The data had a good sample coverage, which provided
an opportunity to obtain disease information on a fine scale (such as TAZ unit level), since,
even now, there is no way to obtain publicly accurate data in the early stage on a fine scale
or district scale. Fourteen significant urban factors—the Euclidean Distance (ED) to the
third ring road, markets, third-class hospitals, rivers and green space, the Kernel Density
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Estimation (KDE) values of the elderly population, middle schools, universities, bus stops,
metro stations and waters, the Inverse Distance Weighted (IDW) value of air quality index
(AQI), house prices, and the age of buildings—were finally selected to help us understand
the distribution pattern of the COVID-19 in the urban space. Three characteristics of the
areas of case aggregation were identified and the study further discussed the impacts and
proposed detailed and targeted recommendations on the intensive management of high-
density population and susceptible population areas, configuration and transformation
of public facilities, and comprehensive improvement of urban environmental quality, to
contribute to the construction of the healthy city which could well protect people from
disease threats when faced with similar emergencies in the future.
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