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DNA damage-induced cell cycle checkpoints involve
both p53-dependent and -independent pathways:
role of telomere repeat binding factor 2 
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Summary Treatment of colon cancer cells with MNNG causes DNA damage with reduced telomeric signals in a p53-dependent manner, but
increased cell cycle arrest in S-G2/M by both p53-dependent and independent mechanisms. Results also indicate that cellular levels of TRF2
may play a critical role in MNNG-induced cell cycle arrest and apoptosis of colon cancer cells. © 2001 Cancer Research Campaign
http://www.bjcancer.com
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The tumour suppressor gene p53 is frequently mutated in human
colon cancer (for review see Kinzler and Vogelstein, 1996).
Treatment of cells with DNA-damaging agents induces nuclear
accumulation of p53, which then trans-activates the cell cycle-
and/or apoptosis-related genes. A recently described mechanism
that may trigger cell cycle arrest and apoptosis after DNA damage-
response is telomere shortening of chromosomes (Ishibashi and
Lippard, 1998; Multani et al, 1999, 2000; Pathak et al, 2000).
Telomeres are specialized double-stranded 5´-TTAGGG-3´ DNA
repeats of 2 to 30 kb that are present at the ends of chromosomes.
The 3´ end of the telomere extends further for about 150 nt as a
single-stranded repeat of 5´-TTAGGG-3´ that serves as a primer
for telomerase in replication of the lagging-strand, which requires
a short RNA template. In recent studies, it has been suggested that
oxidative stress-mediated telomere shortening may induce p53-
dependent cell cycle arrest (Saretzki et al, 1999). Furthermore,
overexpression of wild-type p53 in human lung cancer cell lines is
found to reduce telomeric signals and increase end-to-end telo-
meric association to trigger apoptosis (Mukhopadhyay et al, 1998). 

MATERIALS AND METHODS 

Maintenance and treatment of cells 

Human colon cancer cell line HCT-116 with wild-type p53 gene
(p53+/+) or with the p53 gene-knocked out (p53–/–), and SW480 cell
line with a mutant p53 gene (p53mut) were grown in McCoy’s 5a
medium with 10% fetal bovine serum. After cell cultures were
70% confluent, fresh medium without serum was added to each
dish. Cells were further incubated for an additional 18 h and
treated with N-methyl-N´-nitro-N-nitrosoguanidine (MNNG). 
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Fluorescence in situ hybridization (FISH) and FACS
analysis 

The control and the treated colon cancer cell lines were harvested
after indicated periods and processed for cytological preparations
using the standard air-drying technique. A detailed FISH analysis
protocol is described by Multani et al (1996). Propidium iodide
staining of nuclei and their distribution into different phases of the
cell cycle was determined by the use of a Becton–Dickinson
FACScan flow cytometer (Bresnahan et al, 1996). The ranges for
G0/G1, S, G2/M and sub-G0/G1 phase cells were established on the
basis of the corresponding DNA content of histograms. 

Telomerase activity and Western blot analysis 

A polymerase chain reaction (PCR)-based telomerase activity
detection kit TRAPEZE® (Intergen Company, Purchase, NY) was
used in this study. The whole cell lysates were used for telomerase
activity determined by TRAP (Telomeric Repeat Amplification
Protocol) as described by the manufacturer. The procedure for
Western blot analysis was the same as described previously by
Narayan and Jaiswal (1997). The antibodies used in these studies
were p53(DO-1), p21(F-5), TRF1(C-19) and TRF2(N-20). 

RESULTS AND DISCUSSION 

The relationship between p53-dependent shortening of
telomere length and apoptosis of colon cancer cells
after treatment with MNNG 

The isogenic HCT-116 human colon cancer cell lines with or without
p53 gene and SW480 cell line, with a missense mutations at amino
acid residues 273 (arg to his) and 309 (pro to ser), were treated with
MNNG for 50 h. Cells were processed for telomere signals by FISH
analysis. Compared to the untreated cells, the telomere signals of
MNNG-treated HCT-116(p53+/+) cells were significantly reduced (by
4-fold), while those of HCT-116(p53–/–) and SW480(p53mut) cells
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Figure 1 MNNG-induced telomere signals in HCT-116(p53–/–), HCT-116(p53+/+), and SW480(p53mut) cell lines. (A) FISH analysis for telomere signals after
treatment with MNNG for 50 h. (B) Western blot analysis of p53 and p21 protein levels after treatment with different concentrations of MNNG for 50 h. The
yellow dots represent the signals for telomeric DNA. The photographs of the autoradiograms are representative of 3 independent experiments 
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remained unchanged (Figure 1). This suggests that wild-type p53
is involved in MNNG-induced shortening of telomere length. 

To test whether the telomere shortening and/or the wild-type
p53 level is an important signal for cell cycle arrest and apoptosis,
these cell lines were treated with different concentrations of
MNNG for 50 h, and their cell cycle profile was measured by
FACS analysis. The sub-G0/G1 peak of the FACSscan contained
majority of the apoptotic cells (Hotz et al, 1994). We found
MNNG-induced increase in the number of cells arrested in S-G2/M
phase with concomitant increase of the cells in sub-G0/G1 peak,
© 2001 Cancer Research Campaign
which was irrespective to their p53 levels and telomere signals
(Table 1). 

Telomerase activity of colon cancer cells is unchanged
after treatment with MNNG 

To examine whether telomerase activity of these cell lines changed
after treatment with MNNG, a TRAP assay was performed.
Results showed that the telomerase activity in HCT-116(p53+/+),
HCT-116(p53–/–), and SW480(p53mut) cells remained unchanged
British Journal of Cancer (2001) 85(6), 898–901
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Figure 2 (A) Telomerase activity. Cells were treated with 50 µM MNNG for 50 h. To determine the linear range of telomerase activity, the TRAP assay was
performed with 2 protein concentrations. Bracketed area depicts the TRAP products and the arrow indicates the 36 bp internal control DNA. ∆H indicates the
use of heat inactivated whole cell extract for the TRAP assay. TSR8 is an internal control oligonucleotide template with 8 telomeric repeats AG(GGTTAG)7. 
(B) Western blot analysis for determining the levels of TRF1 and TRF2 after treatment of cells with different concentrations of MNNG for 50 h. Photographs 
of the autoradiograms are representative of 4 independent experiments 

Table 1 FACS analysis of cell cycle profile of colon cancer cell lines. Cells were treated with different
concentrations of MNNG for 50 h and then analysed for cell cycle profile by flow cytometry. The distribution of
cells in G0/G1, S, G2/M, and sub-G1 is shown 

G0/G1 S G2/M sub-G0/G1

MNNG (µM) HCT-116(p53–/–) cellsa

0 80 ± 1.9 7 ± 0.1 7 ± 1.4 5 ± 1.3 
5 75 ± 2.3 9 ± 1.5 12 ± 1.5* 3 ± 1.0 

10 64 ± 1.8* 9 ± 1.2 18 ± 2.5* 5 ± 1.0 
25 16 ± 1.0* 29 ± 4.1* 41 ± 4.7* 11 ± 1.8* 
50 38 ± 6.3* 28 ± 4.0* 16 ± 4.0 14 ± 2.7* 

MNNG (µM) HCT-116(p53+/+) cellsa

0 77 ± 1.8 7 ± 0.6 7 ± 1.2 8 ± 1.5 
5 72 ± 3.8 8 ± 0.7 8 ± 2.0 10 ± 2.8 

10 67 ± 3.0* 10 ± 0.9* 10 ± 1.3 11 ± 2.7* 
25 39 ± 3.5* 12 ± 0.4* 25 ± 2.4* 22 ± 4.3* 
50 52 ± 2.9* 10 ± 1.2* 7 ± 1.0 29 ± 3.3* 

MNNG (µM) SW480(p53mut) cellsb

0 67 12 7 11 
5 34 20 (1.7) 25 (3.4) 17 (1.5) 

10 30 25 (2.1) 27 (3.7) 15 (1.3) 
25 27 28 (2.4) 21 (2.9) 20 (1.7) 
50 47 17 (1.5) 9 (1.2) 25 (2.2) 

* = Significantly different than control (unpaired t-test).  a = Results are mean ± SE of 5–6 independent
experiments. b = Results are mean of 2 independent experiments. Data shown in parenthesis are the fold
increase as compared to control. 

Internal
control (36 bp)

TRAP
product

A Telomerase activity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
S

R
8

∆ 
H

 p
os

iti
ve

 c
on

tr
ol

po
si

tiv
e 

co
nt

ro
l

   
 ∆

 H
C

T
-1

16
(p

53
−/

− )

C
on

tr
ol

M
N

N
G

C
on

tr
ol

M
N

N
G

C
on

tr
ol

M
N

N
G

C
on

tr
ol

M
N

N
G

C
on

tr
ol

M
N

N
G

C
on

tr
ol

M
N

N
G

H
C

T
-1

16
(p

53
−/

− )

H
C

T
-1

16
(p

53
+

/+
)

S
W

48
0(

p5
3m

ut
)

H
C

T
-1

16
(p

53
−/

− )

H
C

T
-1

16
(p

53
+

/+
)

S
W

48
0(

p5
3m

ut
)

1 µg protein 0.5  µg protein

 B  TRF1 and TRF2 levels 

HCT-116(p53−/−) HCT-116(p53+/+) SW480(p53mut)

TRF1

TRF2

0 10 25 500 10 25 50 0 10 25 50

MNNG (µM)

BJOC 01-2002 898-901  10/9/01  1:59 pm  Page 900



Decreased expression of TRF2 in cell cycle arrest and apoptosis 901

BJOC 01-2002 898-901  10/9/01  1:59 pm  Page 901
after treatment with MNNG (Figure 2A). From these results, it
appears that the level of p53, telomere shortening, and telomerase
activity may not be determining factors for MNNG-induced cell
cycle arrest and apoptosis. 

MNNG-induced expression of TRF2 level is critical for
controlling cell cycle arrest in S-G2/M 

Chromosomal telomere length is controlled by specific 5´-
TTAGGG-3´ repeat binding factors (TRFs) (Smogorzewska et al,
2000). In some cell types, TRF1 is identified as a suppressor of
telomere elongation by a negative feedback mechanism that stabi-
lizes telomere length. The increased level of TRF2 may protect
telomere ends from degradation and ligation with an unknown
mechanism yet to be discovered. However, it has been suggested
that the loss of TRF2 causes a loss of 3´ G-rich overhangs at the
telomere ends; resulting in DNA damage signals that may stimu-
late cell cycle arrest or apoptosis (for review see, Greider, 1999).
In present studies, the level of TRF2 in HCT-116(p53+/+), HCT-
116(p53–/–), and SW480(p53mut) cells significantly reduced and
the level of TRF1 was unchanged after MNNG treatment (Figure
2B). This suggests that the reduced TRF2 levels may be critical for
MNNG-induced cell cycle arrest and apoptosis. 

TRF2 protein binds to the telomere end and facilitates formation
of a t-loop. Once there is a loss of TRF2 protein, the t-loop struc-
ture is distorted and the telomere ends are free and easily acces-
sible to endonuclease(s) that are involved in telomere shortening.
Alternatively, without TRF2, the unprotected telomere ends may
produce DNA damage responsive signals for cell cycle arrest and
apoptosis without the shortening of the telomeres. Perhaps, a
similar mechanism is operating in our experimental system. The
HCT-116(p53+/+) cells with wild-type p53 may respond to MNNG-
induced S-G2/M arrest by reducing the level of TRF2 protein,
hence, distorting the t-loop structure and shortening the telomere
ends later by unknown mechanisms. On the other hand, the
MNNG-induced cell cycle arrest and apoptosis in HCT-116(p53–/–)
or SW480(p53mut) cells may arise due to loss of TRF2 levels
resulting in the distortion of the t-loop structure. These results
suggest that the maintenance of t-loop structure of the telomere is
essential for cell survival. 
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