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Abstract: Low-dimensional structures, such as nanotubes, have been the focus of research interest for
approximately three decades due to their potential for use in numerous applications in engineering
and technology. In addition to extensive investigation of carbon nanotubes, those composed of
elements other than carbon, the so-called non-carbon nanotubes, have also begun to be studied, since
they can be more suitable for electronic and optical nano-devices than their carbon counterparts.
As in the case of carbon nanotubes, theoretical (numerical and analytical) approaches have been
established predominantly to study non-carbon nanotubes. So far, most of work has dealt with the
investigation of the structural and electrical properties of non-carbon nanotubes, paying less attention
to the evaluation of their mechanical properties. As the understanding of the mechanical behaviour
of the constituents is fundamental to ensure the effective performance of nanotube-based devices, this
overview aims to analyse and systematize the literature results on the elastic properties of inorganic
non-carbon nanotubes.

Keywords: non-carbon nanotubes; graphene-like hexagonal lattice; elastic properties; modelling;
numerical simulation

1. Introduction

The discovery of carbon nanotubes (CNTs) gave rise to studies of the prediction and
synthesis of new graphene-like structures based on other elements and chemical com-
pounds, such as nitrides, phosphides and carbides, among others. Compounds of elements
of the 12th–15th groups of the periodic table are able to establish a honeycomb diatomic
arrangement, forming nanotubes (NTs) with a graphene-like hexagonal lattice. Boron
nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), boron
phosphide (BP), aluminum phosphide (AlP), gallium phosphide (GaP), indium phosphide
(InP) and silicon carbide (SiC) nanotubes are examples of nano-tubular structures beyond
the CNTs. These non-carbon nanotubes (N-CNTs), being wide band gap semiconductors or
dielectrics, have promising applications in nano-devices for optoelectronics and electronics,
such as light emitting diodes (LEDs) [1–3], field effect transistors [4,5], sensors and bio-
detectors [6–8], high-frequency transistors [9] and tips in scanning probe microscopy [10,11].
A number of these non-carbon NTs have already been successfully synthesized, as in the
cases of BNNTs [12], AlNNTs [13–15], GaNNTs [16,17], GaPNTs [18], InPNTs [19] and
SiCNTs [20]; others were predicted theoretically, such as InNNTs [1,21], BPNTs [22,23],
and AlPNTs [24].

Until now, work on N-CNTs has been mainly devoted to the study of their stability,
structural and electronic properties (see, for example [1,22–30]). Regarding the investigation
of their mechanical behaviour, studies are at a relatively early stage, due to the complexity
of accurately measuring the mechanical properties, whose study needs to be in-depth
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and diversified. With the exception of certain works dealing with the evaluation of the
mechanical properties of boron nitride NTs (see, for example [31–36]), the other inorganic
NTs have received noticeably less research attention [29,37–43]. This lack of knowledge
about the mechanical behaviour of N-CNTs is associated with difficulties in building robust
and effective nanotube-based devices.

Since the experimental procedures for materials characterization at the nanoscale are
costly and resource-intensive, the investigation of the mechanical behaviour of non-carbon
nanotubes is carried out in a more theoretical way, with recourse to analytical and numeri-
cal techniques, as in the case of carbon nanotubes. Similar to studies on CNTs, there are
three classes of theoretical methodologies that are used for the mechanical characterization
of N-CNTs, namely: the atomistic approach, comprising, ab initio, molecular dynamics
(MD) and tight-binding molecular dynamics (TBMD); the continuum mechanics (CM) ap-
proach; and the nanoscale continuum modelling (NCM) or molecular structural mechanics
(MSM) approach. A comprehensive review of theoretical approaches for modelling and
characterizing the mechanical behaviour of CNTs can be found in the literature [44,45].

With regard to atomistic approaches, ab initio simulation was used by Kochaev [37]
to assess the surface Young’s modulus (product of Young’s modulus by the nanotube
wall thickness) and Poisson’s ratio of BNNTs, AlNNTs, GaNNTs, AlPNTs and GaPNTs.
Baumeier et al. [46] applied ab initio density functional theory (DFT) within self-interaction-
corrected (SIC) pseudopotentials to calculate the surface Young’s modulus of BNNTs and
SiCNTs. Hao et al. [47] employed ab initio DFT calculations coupled with linear combi-
nation of atomic orbitals (LCAO) to study size-dependent mechanical behaviour of the
AlNNTs and to calculate their Young’s modulus. The existing MD simulations, performed
to evaluate the mechanical properties of N-CNTs, used analytical or empirical potential
functions to describe the interactions between atoms, which form a diatomic graphene-like
hexagonal lattice. The Tersoff–type potential was used by Kang and Hwang [40] in their
MD simulation study to describe the mechanical behaviour of BNNTs, AlNNTs and GaN-
NTs under compressive loading and to assess their Young’s modulus. Chandra et al. [48],
using the Tersoff–type potential, also analysed the thermal vibrational characteristics of
BNNTs. In two of their works Jeng et al. [38,49] adopted MD simulation with Tersoff many-
body potential to evaluate the mechanical properties of GaNNTs under tension [38,49] and
fatigue [38] loadings. Xiong and Tian [50] carried out a comprehensive study on the tor-
sional properties of BNNTs, using MD simulation with Tersoff potential and, compared the
force approach and the energy approach for calculation of BNNTs’ shear modulus. Moon
et al. [51], Setoodeh et al. [52], Pan and Si [53] and Zhou et al. [54], using MD simulations
based on Tersoff potentials, studied mechanical properties, mechanical behaviour under
axial compression, tensile behaviour, and elastic and melting properties of the SiCNTs,
respectively. Choyal et al. [31], Verma et al. [55], Tao et al. [56] and Ansary and Ajori [57]
used MD with Tersoff–Brenner (TB) potential to describe the interactions between boron
(B) and nitride (N) atoms, to clarify the effect of the aspect ratio on the Young’s modulus, to
evaluate the Young’s and shear moduli and the Poisson’s ratio, to calculate the Young’s
modulus, and to study vibrational behaviour of BNNTs, respectively. Wang et al. [58]
employed a MD approach, describing the interactions between gallium (Ga) and nitride (N)
atoms by Stilliger-Weber potential, to model the mechanical behaviour of GaNNTs under
combined tension and torsion and study their failure. Vijayaraghavan and Zhang [35] used
an empirical reactive bond order (REBO) to describe the atomic interactions in the BNNTs
and studied their mechanical behaviour under tensile loading. Santosh et al. [59] adopted a
force—constant approach for describing the B—N interactions under axial compression
in the MD simulation study to calculate the Young’s and shear moduli of the BNNTs.
Le [43], in MD simulation with harmonic force fields, obtained explicit expressions for
the Young’s modulus of the BNNTs and SiCNTs. Regarding other atomistic approaches,
Hernandez et al. [60] calculated the Young’s modulus and Poisson’s ratio of BNNTs us-
ing TBMD, while Pinhal et al. [29] coupled periodic DFT calculations with the functional
B3LYP (Becke, 3-parameter, Lee–Yang–Parr) to assess the elastic constants of AlNNTs and
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GaNNTs. Zhang et al. [61] used the density-functional-based tight-binding (DFTB) model
in combination with MD to evaluate the Young’s and shear moduli of BNNTs.

Works employing the CM approach, which consider the nanotube as a continuum
structure, are relatively scarce in the literature to our knowledge. Oh [62] calculated the
Young’s modulus and Poisson’s ratio of BNNTs, using a continuum lattice (CL) analytical
thermodynamic approach, together with the TB potential. Panchal et al. [63] modelled the
single-walled BNNT as a thin walled tube with thickness and investigated the vibrational
response of the BNNTs with attached mass at the free nanotube end. Song et al. [64]
developed a finite-deformation shell model to study the mechanical behaviour of BNNTs
under tension, compression and torsional loads.

The NCM/MSM approach explores the link between molecular arrangement in nan-
otubes and solid mechanics and considers the bonds between two atoms in the diatomic
structure as elements (for example, beams or springs) well described by elasticity theory.
With regard to boron nitride NTs, which have received the most research attention up to
now, Li and Chou [34], Salavati et al. [65], Ansari et al. [66], Sakharova et al. [36] and Pan-
chal et al. [67] used the beam element to replace the B-N bond within the framework of the
NCM/MSM approach, to study the elastic and dynamic properties, elastic moduli and Pois-
son’s ratio, electromechanical properties, size-dependent elastic properties and vibrational
properties of BNNTs, respectively. In a recent study, Zakaria [68] modelled bonds between
B and N atoms by two-sectioned beam elements to evaluate the elastic and vibrational
properties of the BNNTs. Giannopoulos et al. [69], instead of the beam elements, used
spring-like elements in the modelling of the B-N bond to investigate vibrational behaviour
of BNNTs. Yan and Liew [70] considered a representative cell assembled by a boron atom
connected to three neighbouring nitride atoms by B-N covalent bonds, to model the BNNTs
under NCM/MSM approach. Yan et al. [71] assessed fundamental frequencies and elastic
moduli by modelling longitudinal and torsional free vibrations of BNNTs, based on the
NCM/MSM approach combined with an Euler beam model. Moreover, there are studies
using the NCM/MSM approach, which deal not only with BNNTs, but also with other
N-CNTs. Genoese et al. [41] combined the NCM/MSM and CM approaches to perform
a numerical simulation study of the mechanical behaviour of BNNTs and SiCNTs under
tensile, bending and torsional tests, using a “stick-and-spring” model involving Morse
and cosine potential functions. In their work Genoese et al. [41] evaluate the Young’s and
shear moduli, and Poisson’s ratio of BN and SiC nanotubes adopting a linkage between the
“stick-and-spring” and continuum thin shell Donnell models. Jiang and Guo [39] proposed
closed-formed analytical solutions based on the “stick-and-spring” model, to study the
buckling and assess the surface Young’s modulus and Poisson’s ratio of BN, AlN, GaN, BP,
GaP, InP and SiC nanotubes.

The important issue in modelling the N-CNTs’ mechanical behaviour under the
NCM/MSM approach is to properly select the force field constants, regarding bond stretch-
ing, kr, bond bending, kθ, and torsional resistance, kτ, which are necessary for calculating
the elastic properties of elements representing bonds between two atoms in the hexagonal
diatomic structure. In the case of the N-CNTs, the computation of the kr, kθ and kτ force
constants, used as input for theoretical (numerical or analytical) models, is questionable
and not as explicit as for CNTs. In the work by Sakharova et al. [36], the influence of
input parameters, obtained based on force field constants assessed by different calculation
methods, on the results of finite element (FE) modelling of the mechanical behaviour of
BNNTs was studied. A significant scattering of elastic properties was reported. Among
the most well-established and commonly used methods for calculation of the force field
constants of N-CNTs are those based on UFF (Universal Force Fields) [72], DREIDING
force field [73] and ab initio DFT computations, combined with the analytical expressions
resulting from molecular mechanics (MM) models [32,33,41]. Jiang and Guo [39] used this
methodology, based on the combination of ab initio DFT computations and MM models,
to calculate the out-of-plane torsion force constant, which is a component of the torsional
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resistance force constant, for a wide class of N-CNTs, including BN, AlN, GaN, BP, GaP,
InP and SiCNTs.

Although almost all the developments in the mechanical characterization of N-CNTs
have been achieved with the help of theoretical approaches, there are still some studies
involving experimental evaluation of the elastic properties of N-CNTs. Arenal et al. [74]
calculated the Young’s modulus of single-walled boron nitride nanotubes (SWBNNTs) from
results of in situ uniaxial compression tests carried out by high-resolution transmission-
electron microscopy (HRTEM) and atomic force microscopy (AFM). Chopra and Zettl [75]
and Suryavanshi et al. [76] used a transmission electron microscope (TEM) to measure
the Young’s modulus of multi-walled boron nitride nanotubes (MWBNNTs) from the
thermal vibrational amplitude of a cantilevered nanotube and by the electric-field-induced
resonance method, respectively. Golberg et al. [77] and Ghassemi et al. [78], with the help
of AFM set up within TEM, performed in situ bending and cycling bending experiments,
respectively, to evaluate the Young’s modulus of the MWBNNTs. Tanur et al. [79] studied
the mechanical properties of MWBNNTs using a three-point bending technique in AFM and
calculated their Young’s and shear moduli. Zhou et al. [80] measured the Young’s modulus
of MWBNNTs using a high-order resonance technique within HRTEM. Chen et al. [81]
studied the in situ mechanical behaviour of MWBNNTs under axial compression, using
a TEM set up with a force transducer holder, and calculated the Young’s modulus of the
MWBNNT, based on the directly measured critical compressive force. Hung et al. [16,82]
studied the mechanical behaviour of single-walled gallium nitride nanotubes (SWGaNNTs)
in compression using the nano-indentation technique and assessed their Young’s modulus
and Poisson’s ratio. Stan et al. [15] performed experimental measurements of the Young’s
modulus of faceted AlNNTs with triangular cross-section by contact resonance atomic force
microscopy (CR-AFM).

The present review is focused on collecting and systematizing recent accomplishments
in the mechanical characterization of inorganic non-carbon NTs, by numerical and analytical
approaches. The outcomes achieved in the evaluation of the elastic constants (Young’s and
shear moduli and Poisson’s ratio) and vibrational properties of the N-CNTs are examined.

2. Atomic Structure of N-CNTs

Figure 1 shows how the parameters characterizing the atomic structure of non-carbon
nanotubes are defined, namely the chiral indices, (n, m), the chiral vector, Ch, and the chiral
angle, θ, taking as an example a gallium phosphide (GaP) honeycomb lattice. Rolling up a
hexagonal diatomic sheet into a cylinder results in the formation of non-carbon NT.
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The chiral vector, Ch, and the chiral angle, θ, are expressed in terms of the chiral
indices, n and m as follows:

Ch = na1 + ma2, (1)

θ = sin−1
√

3
2

m√
n2+nm + m2

, (2)

where a1 and a2 are the unit vectors of the hexagonal diatomic lattice, constituting atoms
A1. and A2 and the chiral indices n and m are integers. The length of the unit vector a is
defined as a =

√
3aA1–A2, where aA1–A2 is the equilibrium bond length. The bond length

values for several diatomic nanostructures, which have been reported in the literature, are
shown in Table 1. As can be seen, there is no agreement among the research community
with regard to the bond length values for N-CNTs.

Table 1. Values of the bond length of hexagonal diatomic nanostructures available in the literature.

Compound BN AlN GaN InN BP AlP GaP InP SiC

aA1–A2, nm

0.1447 [83]
0.145 [84]
0.147 [37]
0.151 [85]
0.153 [33]

0.177 [37]
0.179 [84]
0.185 [40]
0.193 [86]
0.195 [87]

0.175 [88]
0.184 [37]
0.185 [84]
0.186 [40]
0.194 [86]

0.203 [1]
0.206 [84]

0.183 [84]
0.193 [86]

0.234 [89]
0.240 [37]

0.220 [37]
0.225 [84]
0.229 [90]
0.236 [86]

0.246 [84]
0.256 [86]

0.177 [84]
0.179 [51]
0.185 [86]

Considering the bond length, aA1–A2, the N-CNT diameter, Dn is defined as follows:

Dn =
aA1–A2

√
3
(
n2+nm + m2

)
π

. (3)

Three main symmetry groups of N-CNTs are defined through the chiral angles, whose
magnitudes are within the range of 0◦ to 30◦, as follows:

• zigzag NTs (n, 0) when θ = 0◦ and m = 0;
• armchair NTs (n, n) when θ = 30◦ and n = m;
• chiral NTs (n, m) when 0◦ < θ < 30◦ and n 6= m.

The two limiting configurations in terms of the chiral angle, zigzag (θ = 0◦) and
armchair (θ = 30◦), are designated as non-chiral nanotubes. Segments of selected N-CNTs,
representing three fundamental groups of symmetry, armchair, zigzag and chiral, are
shown in Figure 2.
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3. Analysis of the Literature Results
3.1. Elastic Constants of N-CNTs
3.1.1. Young’s and Shear Moduli

Table 2 summarises theoretical results from the literature on the Young’s, E, and shear,
G, moduli of different non-carbon NTs. Experimental results on the Young’s modulus
evaluation of BNNTs and GaNNTs are also shown. Arenal et al. [74] calculated the Young’s
modulus of SWBNNTs from the force—displacement curve obtained in the in situ uniaxial
compression test of an individual SWBNNT, carried out in HRTEM and AFM set-ups.
Hung et al. [16,82] also computed the Young’s modulus of SWGaNNTs with two differ-
ent nanotube lengths, Ln, from the force—displacement curve obtained in the uniaxial
compression test performed using the Nano-indentation System (NS) with Berkovich in-
denter. Chopra and Zettl [75] examined a cantilevered MWBNNT by TEM and measured
its Young’s modulus from the thermal vibrational amplitude, while Suryavanshi et al. [76]
used, for the same propose, the electric-field-induced resonance method inside TEM. Zhou
at al. [80] measured the Young’s modulus of the MWBNNTs using high-order resonance
modes induced by electric fields, within HRTEM. Chen et al. [81], Golberg et al. [77] and
Ghassemi et al. [78] calculated the MWBNNTs Young’s modulus in bending from experi-
mentally obtained critical buckling force [81] and the force—displacement curves [77,78].
Tanur et al. [79] calculated the MWBNNTs Young’s and shear moduli from the results of the
in situ three-point bending test, by AFM. The methodology of Stan et al. [15] to evaluate
the Young’s modulus of the AlNNTs consisted of determining the contact stiffness between
the AFM tip and the nanotube, combined with finite element analysis (FEA) calculations
to take into account realistic contact area and, finally, to assess the modulus value from
contact stiffness.

The elastic properties of the multi-walled (MW) nanotubes, i.e., the structures consti-
tuted by several single-walled NTs (layers) with the diameter of the outer layer, Dout, were
investigated in a few experimental works [75–81] in the case of MWBNNTs. It can be seen
from this table that studies dealing with the Young’s modulus of N-CNTs are considerably
more frequent than those on the evaluation of their shear modulus. The elastic moduli
reported by analytical and numerical studies from the literature are obtained for the case of
non-chiral (zigzag and armchair) N-CNTs. In the case of SWBNNTs, only Yan et al. [71] re-
ported shear modulus values and Sakharova et al. [36] reported Young’s and shear moduli
values. Pinhal et al. [29] calculated Young’s modulus for chiral SWAlNNTs and SWGaNNTs
(see Table 2).

Since the calculation of the N-CNTs’ elastic moduli, E and G, almost always requires
reliable knowledge of the value of the nanotube wall thickness, tn, several authors have
provided the results concerning the surface Young’s (Es= Etn) and shear (Gs= Gtn) mod-
uli [33], this is taken into account in Table 2.

Although the InNNTs have been predicted theoretically [1,21], to our knowledge
results regarding their mechanical properties are not available in the literature.
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Table 2. Young’s and shear moduli results for non-carbon nanotubes reported in the literature.

Approach Year Reference Method Type of NTs 1 E, TPa 2 Es, TPa·nm G, TPa 2 Gs, TPa·nm Comment

A
to

m
is

ti
c

1998 Hernandez et al. [60] TBMD BN
(n, n) 0.894 – – – average value
(n, 0) 0.896

2003 Moon et al. [51]
MD: Tersoff empirical
potential SiC

(n, n) 0.621 – – – average value
(n, 0) 0.558

2004 Jeng et al. [38] MD: TB many body
potential GaN

(5, 5) 0.793 – – – –
(9, 0) 0.721

2004 Kang and Hwang [40] MD: Tersoff-type
potential

BN
(5, 5)

0.870
– – – –AlN 0.453

GaN 0.796

2007 Baumeier et al. [46] ab initio:
DFT-SIC

BN
(n, n)

–

0.278

– – converged average value(n, 0) 0.272

SiC
(n, n) 0.167
(n, 0) 0.162

2007 Verma et al. [55] MD: TB potential BN
(n, n) 1.107 – 0.965 – average

value(n, 0) 1.044 1.555

2009 Santosh et al. [59] MD: force—constant
approach BN (n, n); (n, 0) 1.017 – 0.326 – converged average value

2009 Setoodeh et al. [52]
MD: Tersoff
potential SiC

(n, n) – 0.182 – average
value(n, 0) 0.180

2009 Pan and Si [53]
MD: Tersoff bond order
potential

SiC

single crystalline

0.465 – – – tn = 0.30 nm
0.540 tn = 0.90 nm

2010 Zhou et al. [54] SiC
0.641

– – –
tn = 0.89 nm

0.595 tn = 1.69 nm
0.582 tn = 2.49 nm

2011 Zhang et al. [61] MD: DFTB BN
(n, n) 0.840 – 0.366 – converged average

value(n, 0) 0.844 0.368

2014 Le [43] MD: harmonic force fields
BN

(n, n)

–

0.282

– – converged average value(n, 0) 0.281

SiC
(n, n) 0.148
(n, 0) 0.145

2015 Hao et al. [47] ab initio:
LCAO AlN

(n, n) 0.360 – – – converged average value
(n, 0) 0.340

2015 Xiong and Tian [50]

MD, Tersoff potential:
force approach

BN

(n, n)

– –
– 0.315

average value(n, 0) 0.329

energy approach (n, n) 0.281
(n, 0) 0.292

2015 Tao et al. [56] MD: TB potential + FE
model

BN
(n, n) 0.911 – – – converged average value
(n, 0) 0.930

2017 Kochaev [37] ab initio

BN
(n, n)

–

0.347

– – average value

(n, 0) 0.340

AlN
(n, n) 0.253
(n, 0) 0.247

GaN
(n, n) 0.207
(n, 0) 0.193

AlP
(n, n) 0.172
(n, 0) 0.159

GaP
(n, n) 0.131
(n, 0) 0.106

2019 Pinhal et al. [29] DFT + B3LYP

AlN
(20, 20) 0.393

– – – –

(20, 0) 0.387
(20, 10) 0.392

GaN
(20, 20) 0.383
(20, 0) 0.367
(20, 10) 0.370
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Table 2. Cont.

Approach Year Reference Method Type of NTs 1 E, TPa 2 Es, TPa·nm G, TPa 2 Gs, TPa·nm Comment

2020 Choyal et al. [31] MD: TB potential BN
(10, 10) 1.053 – – – Ln ≈ 21 nm(17, 0) 1.066

2020 Vijayaraghavan and
Zhang [35] MD: REBO BN (10, 10) 2.8 – – – tn = 0.105 nm

C
M 2010 Oh [62]

CL thermodynamic
approach + TB potential BN

(n, n) 0.960 – – – converged
average value(n, 0) 0.975

N
C

M
/M

SM

2006 Li and Chou [34] beams +
FE model

BN
(n, n) 0.916 – 0.465 – converged

average value(n, 0) 0.913 0.475

2011 Jiang and Guo [33] “stick-and-spring” model
+ closed-form solution

BN
(n, n) 0.270 0.095 converged

average value(n, 0) 0.262 0.088

2015 Ansari et al. [66] analytical solution BN
(n, n) 0.825 – – – average value
(n, 0) 0.823

2015 Yan and Liew [70] representative cell BN
(n, n) 0.970 – 0.416 – converged

average value(n, 0) 0.967 0.418

2016 Giannopoulos et al. [69] springs + FE model: free
vibrations

BN
(12, 12) 0.592 – – – Ln ≈ 11 nm(21, 0) 0.523

2016 Jiang and Guo [39] “stick-and-spring” model
+ analytical

BN
(n, n)

–

0.278

– – converged
average value

(n, 0) 0.276

AlN
(n, n) 0.121
(n, 0) 0.120

GaN
(n, n) 0.120
(n, 0) 0.119

BP
(n, n) 0.118
(n, 0) 0.117

GaP
(n, n) 0.060
(n, 0) 0.059

InP
(n, n) 0.051
(n, 0) 0.051

SiC
(n, n) 0.169
(n, 0) 0.168

2018 Salavati et al. [65] beams +
FE model BN (n, n); (n, 0) 0.928 – – – converged

average value

2019 Yan et al. [71] longitudinal and torsional
vibrations BN (n, n); (n, 0); (n, m) 0.972 0.418 – converged

average value

2019 Genoese et al. [41] “stick-and-spring” model
+ Donnell thin shell model

BN
(n, n)

–

0.255

–

0.092
converged
average value

(n, 0) 0.250 0.104

SiC
(n, n) 0.152 0.053
(n, 0) 0.149 0.061

2021 Sakharova et al. [36] beams +
FE model BN (n, n); (n, 0); (n, m) 0.984 – 0.486 – converged

average value

2022 Zakaria [68] two-section beams + FE
model

BN
(12, 12) 0.538 0.108

Ln ≈ 11 nm(21, 0) 0.489 0.117
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Table 2. Cont.

Approach Year Reference Method Type of NTs 1 E, TPa 2 Es, TPa·nm G, TPa 2 Gs, TPa·nm Comment

Ex
pe

ri
m

en
ta

l

1998 Chopra and Zettl [75] TEM: thermal vibrational
amplitude MWBNNTs 1.220

± 0.240 – – – –

2004 Suryavanshi et al. [76]
TEM:
electric-field-induced
resonance

MWBNNTs with Dout = 34–94 nm 0.722
± 0.140 – – – average value for 18

MWBNNTs

2005 Hung et al. [16] NS +
analytical SWGaNNTs

0.484 – – – Ln = 500 nm
0.223 Ln = 300 nm

2007 Goldberg et al. [77] AFM-TEM: bending +
analytical MWBNNTs with Dout = 40–100 nm 0.5–0.6 – – – average value

2009 Stan et al. [15] CR-AFM +
FEA

faceted AlNNTs with triangular cross-section
0.3252
± 0.015 – – – inner facet

0.3050
± 0.013 outer facet

2010 Ghassemi et al. [78] AFM-TEM: bending +
analytical MWBNNTs with Dout = 38–51 nm 0.5 ± 0.1 – – – average value for 5 NTs

2011 Arenal et al. [74]
HRTEM-AFM
+ analytical SWBNNTs

1.11±0.17
– – –

tn = 0.07 nm
0.87±0.13 tn = 0.09 nm
0.25±0.04 tn = 0.34 nm

2013 Tanur et al. [79] AFM: a three-point
bending + analytical

MWBNNTs with
Dout = 18–55 nm 0.760 ± 0.03 – 0.07

± 0.01 –
E in bending, average
value (0.1 ± 0.02 to 1.8 ±
0.3 TPa) for 20 NTs

2019 Zhou et al. [80] HRTEM: high-order
resonance MWBNNTs with Dout = 28–57 nm 0.906 – – – average value

2019 Chen et al. [81] TEM: force transducer
holder + analytical MWBNNT with Dout = 37.34 nm and 40 layers 1.050–1.370 – – – E calculated from tree

compression cycles

1 All theoretical results presented were obtained for single-walled NTs. 2 The Young’s, E, and shear, G, moduli values for the BNNTs were evaluated, considering the nanotube wall
thickness, tn ≈ 0.34 nm; otherwise, the tn value is indicated in the column “Comments”.
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Table 2 shows that the Young’s modulus values obtained by theoretical methods for
the BNNTs are in the range E ≈ 0.72–1.1 TPa, which is in reasonable agreement with the
experimental results. Such resemblance of the elastic properties of the BNNTs to those
of the CNTs (E ≈ 1.0 TPa) makes BNNTs suitable candidates either to replace CNTs in
different technological applications [91,92], or to generate novel hybrid structures, based
on carbon and boron-nitride NTs.

Moreover, it is evident from Table 2 that the studies to determine the shear modulus,
G, of BNNTs are less common than those dealing with the evaluation of their Young’s
modulus. The value of G is reported as half of that calculated for E in the respective
studies [34,36,61,70,71]. Tanur et al. [79] in the only experimental study on this topic, as far
we know, evaluated the shear modulus of MWBNNTs to be about 250 times smaller than
their Young’s modulus. This low value was explained by the occurrence of shear between
adjacent layers in the structure of the nanotube, due to the geometry and dimensions of the
MWBNNTs under study.

With respect to the Young’s modulus, E, of other non-carbon NTs, only a few results
were reported for AlNNTs and GaNNTs. The Young’s modulus of the AlNNTs, whose value
is about half of that calculated for the BNNTs, was evaluated in the works of Hao et al. [47]
(E≈ 0.350 TPa), Pinhal et al. [29] (E≈ 0.390 TPa), and Kang and Hwang [40] (E = 0.453 TPa).
The results of Hao et al. [47] and Pinhal et al. [29] are in satisfactory agreement with those
experimentally obtained for AlNNTs in the work of Stan et al. [15] (E = 0.325 TPa). A more
considerable scatter of the Young’s modulus results can be observed for the GaNNTs. While
Kang and Hwang [40] and Jeng et al. [38] obtained identical E values in their MD studies,
equal to 0.796 TPa and 0.793 TPa, respectively, for (5, 5) GaNNT, Pinhal et al. [29] estimated
by DFT calculations the Young’s modulus of (20, 20) GaNNT, equal to 0.383 GPa, and
Hung et al. [16,82] in their experimental study using a nano-indentation test obtained the E
values of 0.484 TPa and 0.223 TPa for the Young’s modulus of the SWGaNNTs with two
different lengths.

In several works, only the surface Young’s modulus, Es, of the non-carbon nanotubes
was evaluated. Based on the results of Baumeier et al. [46], Le [43], Genoese et al. [41]
and Jiang and Guo [39], it can be concluded that the Es value for the SiCNTs is about 40%
lower than that calculated in the respective works for BNNTs. Kochaev [37] found that the
surface Young’s moduli of AlNNTs, GaNNTs, AlPNTs and GaPNTs are approximately 30%,
40%, 50% and 70%, respectively, lower than the Es value of BNNTs. Jiang and Guo [39]
evaluated the surface Young’s moduli of AlNNTs, GaNNTs and BPNTs to be about 60%
lower than that of BNNTs, and those of GaPNTs and InPNTs to be nearly 80% smaller
than that of BNNTs. Although the studies concerning the evaluation of the mechanical
properties of the N-CNTs other than BNNTs are rare, the preliminary results mentioned
above point out that SiC, AlN, GaN, BP and, especially, AlP, GaP and InP nanotubes have
low mechanical strength when compared with boron-nitride and carbon NTs. This should
be taken into account when designing NT-based devices and hybrid nanostructures, where
weaker N-CNTs are combined with other N-CNTs with high mechanical strength or CNTs.

In order to better analyse the evolutions of the Young’s modulus of the N-CNTs, the
values of E in Table 2 were plotted, whenever it was possible, as a function of the nanotube
diameter, Dn, in Figure 3a,b for the case of BNNTs (Figure 3a) and for the case of AlNNTs
and SiCNTs (Figure 3b).
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Discrepancies in the Young’s modulus values of BNNTs and in their evolutions can be
observed in Figure 3. The Young’s modulus results for the BNNTs from Figure 3a, show
three trends in the evolution of the value of E with the nanotube diameter, Dn:

• at first, the Young’s modulus decreases and then becomes almost stable for Dn > 1.5 nm [36];
• the E value is nearly constant over the range of nanotube diameters [34,60,62,66,71];
• at first, the Young’s modulus increases and then becomes almost stable for 0.8 < Dn < 1.5 nm [56,59,61].

It is worth noting that the Young’s modulus results obtained by Oh [62] for zigzag (n, 0)
BNNTs, are in remarkable consonance with those evaluated by Yan et al. [71] for armchair
(n, n), zigzag (n, 0) and chiral (n, m) BNNTs, over a wide range of Dn, despite different
modelling approaches: CM by Oh [62] and longitudinal vibrations within NCM/MSM by
Yan et al. [71]. Both Young’s modulus evolutions reported in the works of Oh and Yan et al.
reasonably coincide with the E evolution obtained by Sakharova et al. [36] for armchair
(n, n), zigzag (n, 0) and chiral (n, m) BNNTs with Dn ≥ 1.715 nm. Satisfactory agreement is
observed when comparing the Young’s modulus evolutions assessed by Zhang et al. [61] in
their MD study and Ansari et al. [66], who used NCM/MSM approach, for (n, n) and (n, 0)
BNNTs with Dn ≥ 0.702 nm. A reasonable correspondence is observed between the Young’s
modulus values evaluated by Tao et al. [56], who used the MD simulation, and Li and
Chou [34], who employed the FE beam model under the NCM/MSM approach, for zigzag
(n, 0) BNNTs. In most studies, the Young’s modulus evolution with nanotube diameter for
(n, n) armchair BNNTs is separated from that for (n, 0) zigzag BNNTs [34,54,56,59,62,66],
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with the E values for armchair NTs being higher than those for zigzag NTs. Santos et al. [59]
reported the same Young’s modulus evolution for both (n, n) and (n, 0) BNNTs. Yan
et al. [71] and Sakharova et al. [36] found that the evolutions of E with Dn are described by
a unique trend for armchair, zigzag and chiral nanotubes.

As can be seen from Figure 3b, the evolutions of the Young’s modulus as a function of
the nanotube diameter, Dn, reported by Moon et al. [51] for the SiCNTs, shows a unique
trend for (n, n) and (n, 0) zigzag nanotubes, where E increases for small Dn and then tends
to a nearly constant value. On the contrary, the E value of the monocrystalline SiCNTs
slightly decreases at the beginning and then becomes stable with increasing Dn [54]. In the
case of AlNNTs, the Young’s modulus evolutions in nanotube diameter can be separated
for (n, n) armchair and (n, 0) zigzag NTs, as reported by Hao at al. [47] (see Figure 3b). The
E value of (n, n) AlNNTs is almost constant for all range of Dn, while E of (n, 0) AlNNTs
substantially increases for Dn . 1.554 nm and after that it stabilizes. The E values obtained
by Hao at al. [47] for (n, n) AlNNTs are about 9% lower than those calculated by Pinhal
et al. [29] for individual (20, 20), (20, 0) and (20, 10) AlNNTs.

To further analyse, the Young’s modulus results of the BNNTs in Table 2, were plot-
ted as a function of the nanotube aspect ratio, Ln/Dn, and the nanotube diameter, Dn
(see Figure 4).
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Figure 4. Young’s modulus, E, of BNNTs as a function of the nanotube aspect ratio, Ln/Dn [31,36,65,68,69].

The E evolutions as a function of Ln/Dn reported by Sakharova et al. [36] for (10, 10)
and (18, 0) BNNTs are in satisfactory agreement with those obtained by Choyal et al. [31]
for (10, 10) and (17, 0) BNNTs and by Salvati et al. [65] for (20, 0) BNNT, in case of nanotube
aspect ratios Ln/Dn > 8. Zakaria [68] and Giannopoulos et al. [69], in their numerical
simulation studies within NCM/MSM approach, obtained for (8, 8) and (21, 0) BNNTs
Young’s modulus values similar in all range of the nanotube aspect ratio (see, Figure 4),
with differences of less than about 8% in the E values. Note that, despite using dissimilar
methods to model the B–N covalent bond, Giannopoulos et al. [69] used spring elements
and Zakaria [68] represented the interatomic bond as two-section beam, in both works the
elastic properties of the elements to be used as input for the numerical simulation were
computed based on the same values of the constants kr, kθ and kτ.

Figure 5 shows the evolution of the surface Young’s modulus, Es, with the nanotube
diameter, Dn, for BNNTs (Figure 5a), SiCNTs (Figure 5b), AlN, GaNNTs (Figure 5c), and BP,
AlP, GaP, InPNTs (Figure 5d). Regarding Figure 5a,c,d, it can be noted that there are two
characteristic trends of the evolution of the surface Young’s modulus, Es, with the nanotube
diameter, Dn, one for the nitrides (BN, AlN, GaN) and another for phosphides (BP, AlP,
GaP, InP). In the first case, the Es value slightly increases with increasing of Dn, and then
becomes nearly constant for nanotube diameters Dn & 0.7 nm [39,41,43,46]. The second
trend is reported by Kochaev [37] for BN, AlN, GaN, AlP, GaPNTs, consists of a significant
increase of the surface Young’s modulus for Dn . 1.2 nm (armchair NTs) and Dn . 0.9 nm
(zigzag NTs), and then a strong decrease of Es after reaching the maximum.
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In the case of SiC, the only representative of carbide NTs in the present analysis, the Es
evolution follows a trend in which its value increases for small nanotube diameters, Dn, of
less than 0.7 nm, and remains approximately constant for large diameters (Figure 5b).

Concerning the BNNTs, Le [43], Baumeier et al. [46] and Jiang and Guo [39] provided
obtained comparable Es results (see, Figure 5a), Genoese et al. [41], employing “stick-and-
spring” model similar to that used by Jiang and Guo [39], evaluated the values of Es at
about 6% lower than those reported by the latter. Such difference is probably related to
the approaches used for computation of the force-field constants. The maximum value
of the surface Young’s modulus obtained by Kochaev [37] for BNNTs is notably higher
than the values calculated by other authors [39,41,43,46]. The same is true for the surface
Young’s modulus results of AlN, GaN and GaP nanotubes, when compared with the values
reported by Kochaev [37] and Jiang and Guo [39] (see, Figure 5c,d). Jiang and Guo [39]
found that the Es values of armchair and zigzag structures are approximately identical for
AlN, GaN, BP, GaP, and InPNTs. Regarding the surface Young’s modulus of SiCNTs, there
is a good agreement between the results reported by Baumeier et al. [46] and Jiang and
Guo [39]. The values of Es calculated by Genoese et al. [41] and Le [43] are, respectively,
about 7% and 11% lower than those of Baumeier et al. [46] and Jiang and Guo [39], while
the Es value assessed by Setoodeh et al. [52] is about 8% higher (see, Figure 5b).

The results of Table 2 concerning the evolutions of the shear, G, and surface shear, Gs,
moduli with the nanotube diameter, Dn, are shown in Figure 6a,b, respectively. With an
exception of the Gs values for SiCNTs reported by Genoese et al. [41], all other shear and
surface shear moduli results plotted in Figure 6 are related to BNNTs. As in the case of
the Young’s modulus, three trends of the evolution of G and Gs with Dn can be found in
the literature:

• at the beginning, the shear modulus decreases along with increase in the diameter of
the BNNTs and then tends to stabilize at high values of Dn [36,55];

• the shear modulus almost does not vary within the entire range of BNNT diameters [61,70,71];
• at the beginning, the shear modulus slightly increases and then becomes nearly con-

stant for high values of Dn [33,34,41,50,59].

Most authors, such as Li and Chou [34], Sakharova et al. [36], Zhang et al. [61], Yan and
Liew [70] and Yan et al. [71] pointed to the value of 0.426 ± 0.06 TPa as the shear modulus
of BNNTs (see, Figure 6a). In these works [34,36,61,70,71], the G values for (n, n) armchair,
(n, 0) zigzag and (n, m) chiral structures (when those are reported, as for example [36,71])
are also practically identical for nanotube diameters Dn > 0.8 nm.

Santos et al. [59] and Xiong and Tian [50] reported similar G values for BNNTs,
especially for nanotube diameters Dn > 2 nm (see, Figure 6a). The shear modulus values
obtained by Santos et al. [59] and Xiong and Tian [50] are about 25% lower than those
presented [34,36,61,70,71] (see, Figure 6b).

With regard to surface shear modulus, Genoese et al. [41] reported the value of Gs
of SiCNTs at about 40% lower than that of BNNTs. In the work of Jiang and Guo [39],
the surface shear modulus of the zigzag structure of SiCNTs and BNNTs are higher when
compared to those of the armchair structure for Dn . 1.95 nm. The Gs values evaluated
by Jiang and Guo [39] are lower than those obtained by Genoese et al. [41]. These studies
share the modelling approach, but the methods for calculating the force-field constants and
the surface shear modulus are different, which could explain the discrepancy of the results.
Jiang and Guo [39] introduced the out-of-plane inversion force constant to describe the
bond torsion, which is essential to calculate the shear modulus, while Genoese et al. [41]
assumed a continuum thin shell model to assess Gs.
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It is worth noting that the scattering observed in the values of the elastic modulus of
the N-CNTs can be attributed to the different modelling and calculation methods used. The
main limitation of the NCM/MSM approach is related to accurate determination of the
force field constants. Although knowledge of these constants is not necessary to employ the
atomistic approach, the latter is generally time consuming and computationally expensive.
Another restriction to the calculation of the elastic moduli is associated with the value of
the nanotube wall thickness, tn. Except for the case of BNNTs, there is an apparent lack
of information in the literature about the value of tn for other N-CNTs. For this reason,
the surface elastic moduli of N-CNTs, different from BNNTs, were mainly assessed, which
makes it difficult to compare the available results.

3.1.2. Poisson’s Ratio

The results of the Poisson’s ratio of N-CNTs available in the literature are summarized
in Table 3. The only experimental value in the table was obtained by Hung et al. [16,82] in
the uniaxial compression test performed with the help of the nano-indentation system (NS)
for SWGaNNTs.
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Table 3. Poisson’s ratio results for non-carbon nanotubes reported in the literature.

Approach Year Reference Method Type of NTs 1 ν Comment

A
to

m
is

ti
c

1998 Hernandez et al. [60] TBMD BN
(n, n) 0.260 average value
(n, 0) 0.240

2004 Jeng et al. [38] MD: TB many body
potential GaN

(5, 5) 0.263 –
(9, 0) 0.221

2007 Verma et al. [55] MD: TB potential BN (n, n), (n, 0) 0.140 average value

2017 Kochaev [37] ab initio

BN
(10, 10) 0.560

–

(10, 0) 0.570

AlN
(10, 10) 0.520
(10, 0) 0.550

GaN
(10, 10) 0.530
(10, 0) 0.550

AlP
(10, 10) 0.510
(10, 0) 0.510

GaP
(10, 10) 0.510
(10, 0) 0.520

C
M 2010 Oh [62]

CL thermodynamic
approach + TB potential BN

(n, n) 0.150 converged average
value(n, 0) 0.170

N
C

M
/M

SM

2015 Ansari et al. [66] analytical solution BN (n, n), (n, 0) 0.217 average value

2016 Jiang and Guo [39] “stick-and-spring”
model + analytical

BN
(n, n) 0.216

converged average
value

(n, 0) 0.219

AlN
(n, n) 0.281
(n, 0) 0.287

GaN
(n, n) 0.285
(n, 0) 0.290

BP
(n, n) 0.360
(n, 0) 0.365

GaP
(n, n) 0.428
(n, 0) 0.435

InP
(n, n) 0.455
(n, 0) 0.460

SiC
(n, n) 0.095
(n, 0) 0.100

2019 Genoese et al. [41]
“stick-and-spring”
model + Donnell thin
shell model

BN
(n, n) 0.239

converged average
value

(n, 0) 0.226

SiC
(n, n) 0.330
(n, 0) 0.331

2021 Sakharova et al. [36] beams +
FE model BN (n, n); (n, 0);

(n, m) 0.150 converged average
value

Ex
pe

ri
m

en
ta

l

2005 Hung et al. [16] NS +
analytical SWGaNNTs 0.242 –

1 All theoretical results presented were obtained for single-walled NTs.

As can be seen in Table 3, the Poisson’s ratio values for GaNNTs evaluated by
Jeng et al. [38], in their MD study, and by Jiang and Guo [39], using the analytical model
under NCM/MSM approach, are in acceptable agreement with the ν value calculated by
Hung et al. [16] from the experimental results of the nano-indentation test. The difference
between the values of ν reported by Jeng et al. [39] and Jiang and Guo [39] and those
experimentally obtained [16] is around 8% and 15%, respectively.

To facilitate the analysis of the literature results from Table 3, the Poisson’s ratio of
N-CNTs was plotted as a function on the nanotube diameter, Dn, as shown in Figure 7.
The stabilized values of Poisson’s ratio found in the literature for BNNTs can be separated
into two groups (Figure 7a). Jiang and Guo [39], Genoese et al. [41] and Ansari et al. [66]
obtained the values of ν in the range of 0.217 to 0.239, for the nanotube diameter Dn & 1.2
nm. The correspondent evolutions of the ν value with Dn show that the Poisson’s ratio
decreases for small BNNT diameters and tends to stabilize with the increase of Dn, the
evolutions of ν reported by Jiang and Guo [39] for (n, n) armchair, and Ansari et al. [66] for
(n, n) armchair and (n, 0) zigzag BNNTs, being in especially good agreement (see, Figure 7a).
For all the above mentioned results, the ν value for (n, 0) nanotubes is higher than that
obtained for (n, n) nanotubes.
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Sakharova et al. [36], Oh [62] and Verma et al. [55] evaluated the BNNT Poisson’s ratio in
the range of 0.14–0.17 for nanotubes with diameter Dn & 1.2 nm (see, Figure 7a). Regarding
trends in the evolution of ν with Dn, Sakharova et al. [36] reported that for Dn < 1.5 nm the
Poisson’s ratio value decreases for the cases of (n, n) armchair and (n, m) chiral BNNTs, but
increases in the case of (n, 0) zigzag BNNTs. When the nanotube diameter becomes higher
than 1.5 nm, ν tends to a nearly constant value for (n, n), (n, 0) and (n, m) BNNTs.
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Thus, according to Sakharova et al. [36], for BNNT diameters Dn < 1.5 nm, the value
of ν is clearly influenced by the chiral angle of the nanotube and increases from zigzag
structure (θ = 0◦) to armchair (θ = 30◦). Nevertheless, Oh [62] found that the Poisson’s ratio
of both BNNTs, (n, n) armchair and (n, 0) zigzag, decreases for Dn < 1.5 nm and afterwards
becomes constant, the value of ν being greater for the (n, 0) structures.

Concerning N-CNTs different from BNNTs, it can be concluded from Figure 7b,c
that the evolutions of the Poisson’s ratio, ν, with nanotube diameter, Dn, follow a similar
trend, for which the ν value decreases for small nanotube diameters and then tends to
stabilize with increasing Dn (cases of SiC, AlN, GaN, BP, GaP and InPNTs). For all the
above mentioned evolutions of the ν value with Dn, ν is higher for (n, 0) zigzag NTs. Jiang
and Guo [39] established, in their study for AlN, GaN, BP, GaP and InPNTs, that the greater
the value of the bond length, aA1–A2, of the diatomic hexagonal nanostructure (see, Table 1),
the greater the value of the nanotube diameter, Dn, for which the Poisson’s ratio becomes
stable (see, Figure 7b,c).

Genoese et al. [41] reported the value of ν for SiCNTs to be about 3.5 times higher than
that calculated by Jiang and Guo [39] (see, Figure 7b). Such a large scatter in the ν values cannot
be attributed solely to the different methods for computation of the force field constants, under
a similar modelling approach in both studies, because the results of the Poisson’s ratio for
BNNTs, which were also obtained in these studies, do not show such considerable dissimilarity
(see, Figure 7a). In fact, Jiang and Guo [39] calculated the force field constants for BN and
SiC nanotubes with the same calculation method. Genoese et al. [41] took into account the
assumption of the so-called buckled surface of SiC nanotube, which occurs due to the fact that
Si and C atoms form two coaxial cylinders [46,93,94]. This hypothesis modified the way of
calculating the force field constants for SiCNTs compared to BNNTs.

The results of Jiang and Guo [39] obtained for other N-CNTs can be compared only for
the cases of GaNNTs and GaPNTs, reported by Jeng et al. [38] and Kochaev [37], respectively.
Jeng et al. [38] obtained the Poisson’s ratio values for (5, 5) and (9, 0) GaNNTs 12% and
29% lower, respectively, than those evaluated by Jiang and Guo [39] for GaNNTs with
comparable diameters. In the work by Kochaev [37], the Poisson’s ratio of (10, 10) and (10,
0) GaPNTs is 19% and 17% higher, respectively, than the value of ν estimated by Jiang and
Guo [39], for GaP nanotubes with comparable diameters.

It can be noted that there is large scattering of the ν values reported in the literature
for N-CNTs, regardless of the modelling and calculation approaches used for this purpose.

3.2. Vibtational Properties of N-CNTs

The developing of innovative nanoelectromechanical devices, such as oscillators,
amplifiers, mass/charge detectors ultra-high frequency resonators and resonant-based
nano-mechanical sensors [95–97], as well their top-notch performance, requires constituents
with appropriate vibrational characteristics. The N-CNTs, in particular the BNNTs, offer
the necessary properties for nanoscale electromechanical applications, specifically sensing
ones. In this context, understanding the dynamical properties of the N-CNTs is crucial for
creating novel nano-devices with desirable functioning.

The studies reported so far on the dynamic properties of N-CNTs mainly addressed
the theoretical analysis of the vibrational behaviour of BNNTs [34,48,57,63,67–71,98,99] and
SiCNTs [100,101].

Table 4 summarizes the available theoretical results on the vibrational properties of N-
CNTs. Since in general the works deal with the calculation of the fundamental frequencies
of nanotubes, the first fundamental frequency, f n1, is herein chosen for the comparison
purpose. The vibration analysis of NTs is typically performed assuming different support
constraints, depending on their potential applications, i.e., simply supported (SS), clamped-
free (CF) and clamped-clamped (CC) boundary conditions, which are indicated in Table 4.
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Table 4. Vibrational properties of N-CNTs available in the literature.

Approach Year Reference Method Type of NTs Support Case Ln, nm fn1, THz Comments

A
to

m
is

ti
c

2015 Ansari and Ajori [57] MD: TB potential BN (10, 10)

CF

6 0.145

The BNNTs with clamped-clamped support have higher values of
fn1 than those with cantilevered support. The first fundamental
frequency decreases for small nanotube length and then tends to
stabilize for NT length Ln > 4 nm.

8 0.081
10 0.048
12 0.016

CC

6 0.855
8 0.532
10 0.274
12 0.210

2015 Chandra et al. [48] MD: Tersoff-type potential BN (10, 10) CC
7 0.52 The values of f n1 were determined at T = 400K. The bigger the

BNNT length, the higher the first fundamental frequency.21 0.06

C
M 2013 Panchal et al. [63]

thin wall tube (outer diameter of
0.8 nm, thickness of 0.065 nm) +
analytical

BN – CF
6 0.744 The values of f n1 were obtained for the case of attached mass at free

NT end of 10−8 fg (from the range of 10−8 to 10−2 fg). The f n1
value increases with decreasing of the attached mass and NT length.

8 0.419
10 0.268

N
C

M
/M

SM

2006 Li and Chou [34] beams +
FE model

BN

(4, 4)

CF

7 0.044

The first fundamental frequency values decrease with increased in
the nanotube length and diameter. The decrease rate is higher in the
case of clamped-clamped support.

9 0.030
11 0.019
13 0.015

CC

7 0.289
9 0.178
11 0.122
13 0.089

(7, 0)

CF

7 0.044
9 0.030
11 0.019
13 0.015

CC

7 0.281
9 0.174
11 0.119
13 0.085

2010 Chowdhury et al. [98] unspecified elastic elements BN

(4, 4)

CC

6 1.647

The f n1 frequency decreases with increasing NT length, Ln, and
diameter, Dn.

8 1.253
9 1.118
10 0.941

(8, 0)

6 1.794
8 1.382
10 1.029
12 0.824

2013 Panchal et al. [67] beams +
FE model

BN (5, 5)

CF

6 0.077

The values of f n1 de-crease with increasing Ln and Dn
The fundamental frequencies for high-er-order vibrational modes
were also cal-culated.

9 0.037
12 0.021
13 0.016

CC

6 0.426
9 0.227
12 0.135
13 0.107

2014 Khani et al. [100] beams +
FE model

SiC

(15, 15)

CF

4 0.025

The f n1 frequency decreases with increasing SiCNT length.First five
vibrational modes shapes were analysed and respective values of the
fundamental frequencies were calculated. The fundamental
frequencies are higher for the case of clamped-clamped support.

6 0.021
8 0.011
10 0.008

CC

4 0.062
6 0.044
8 0.029
10 0.025

(13, 0)

CF

4 0.024
6 0.013
8 0.006
10 0.004

CC

4 0.060
6 0.039
8 0.023
10 0.015
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Table 4. Cont.

Approach Year Reference Method Type of NTs Support Case Ln, nm fn1, THz Comments

2016 Giannopoulos et al. [69] springs + FE model BN

(12, 12)

CF

8 0.210

The values of f n1 decrease with increasing NT length, Ln, and
diameter, Dn. The fundamental frequencies for first three modes
were calculated. The f n values decrease with increasing of the
vibrational mode order. The fundamental frequencies are higher for
the case of clamped-clamped support.

16 0.124
25 0.073
35 0.061

CC

8 0.408
16 0.256
25 0.171
35 0.123

(20, 0)

CF

8 0.207
16 0.125
24 0.081
32 0.064

CC

8 0.467
16 0.256
24 0.174
32 0.127

2017 Ansari and Rouhi [101] beams +
FE model

SiC

(5, 5)

CF

4 0.359

The first fundamental frequency, f n1 decreases for small values of
the NT lengths and then tends to stabilize for Ln > 3 nm. The values
of f n1 obtained for clamped-clamped support are about two times
higher than those obtained for clamped-free support.

6 0.236
8 0.154
9 0.103

CC

4 0.780
6 0.565
8 0.458
9 0.390

(9, 0)

CF

4 0.462
6 0.205
8 0.134
9 0.103

CC

4 0.878
6 0.565
8 0.390
9 0.390

2019 Yan et al. [71]
analytical solution + Euler beam
theory BN (5, 5)

CF
5 1.052

The values of f n1 decrease with increasing Ln. f n1 slightly increases
for small NT diameters and then tends to nearly constant value for
Dn > 1.0 nm.

6 0.918
7 0.731

CC
5 2.127
6 1.860
7 1.487

2022 Zakaria [68] two-section beams + FE model BN

(12, 12)

SS

8 0.189

The values of f n1 decrease with increasing NT length, Dn, and
diameter, Dn.

16 0.054
25 0.022
35 0.012

(20, 0)

8 0.179
16 0.048
24 0.023
32 0.012
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In order to simplify the understanding of the results from Table 4, the first fundamental
frequency, f n1, was plotted as a function of the NT aspect ratio, Ln/Dn, and NT diameter,
Dn, in Figures 8 and 9, respectively. It can be concluded from Figure 8a,b and Table 4 that
the values of f n1 are higher for the case of clamped-clamped (CC) boundary conditions
than for the case of clamped-free (CF) boundary conditions [34,57,67,69,71,100]. The first
fundamental frequency decreases with the nanotube aspect ratio and the decreasing rate is
higher when the clamped-clamped boundary conditions is applied. Regarding the f n1 value
of BNNTs, the results reported by Li and Chou [34] and Panchal et al. [67] for clamped-free
support, and by Zakaria [68] for simply supported NTs are in a particularly good agreement
for all range of the aspect ratio, Ln/Dn, considered (see Figure 8a).
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The values of f n1 obtained by Giannopoulos et al. [69] under clamped-free boundary
conditions are about 30% higher when compared with f n1 calculated in the abovementioned
studies [34,67,68] for Ln/Dn ≥ 10. The f n1 values reported by Li and Chou [34], Panchal
et al. [67] and Giannopoulos et al. [69], considering clamped-clamped boundary conditions,
are in satisfactory agreement with each other for Ln/Dn ≥ 15. For the rest of the results
from Table 4 and Figure 8, there is a considerable scattering of the f n1 values for both
BNNTs and SiCNTs. Although the representation of f n1 as a function of the nanotube
diameter, Dn, is less frequent, some results for the BNNTs can be found in the literature,
which are shown in Figure 9.

The main trend of the evolution of the first fundamental frequency with the nanotube
diameter is the decrease of f n1 when Dn increases, whatever the boundary conditions [34,68,69].
According to another trend, reported by Yan et al. [71], the f n1 value slightly increases for
nanotube diameters Dn < 0.7 nm and then is almost constant with increasing Dn.

It is worth mentioning that most of the reported results on dynamic properties of
the N-CNTs are limited to the vibrational analysis of some BNNTs and the determination
of their first fundamental frequency. That is, the vibrational properties of N-CNTs are
less commonly investigated than their elastic moduli and Poisson ratio. In this context,
considering forthcoming applications, systematic studies are needed on the vibrational
behaviour of a wider set of N-CNTs with a wide range of chiral indices and diameters.

4. Conclusions

The present review collects accomplishments in the development of the modelling of
elastic properties of N-CNTs. Works in the literature, where the static (Young’s and shear
moduli, and Poisson’s ratio) and dynamic (first fundamental frequency) elastic properties
were evaluated, are comprehensively analysed. Despite considerable achievements in pre-
dicting the elastic properties of BNNTs by numerical simulation and analytical approaches,
the other N-CNTs have received much less research attention. Theoretical studies show
scattering in the values of elastic constants and the first fundamental frequency due to
different modelling and calculation approaches. Most of the results on the elastic properties
of N-CNTs were obtained using the atomistic and NCM/MSM approaches. Although the
NCM/MSM approach proves to be cost-effective for modelling the mechanical behaviour
of N-CNTs, the main challenge in its application remains the suitable choice of the force
field constants to simulate a bond between two atoms in the diatomic nanotube structure.
If for the BNNTs this choice is ambiguous, the methods for computing the force field
constants for other N-CNTs are scarce and not well explored.

In this context, future lines of research on the evaluation of the elastic properties of N-
CNTs should include the development of the NCM/MSM approach, focusing on the correct
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computation of the force field constants. It is expected that the upcoming investigation will
provide a benchmark regarding the determination of the mechanical properties of a wide
group of N-CNTs by theoretical (numerical and analytical) methods.
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