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Abstract 

Background: Melatonin is a hormone that is secreted at night by the pineal gland. It exerts its function by binding 
to the  MT1 and  MT2 receptors, which are encoded by the MTNR1A and MTNR1B genes, respectively. Previous stud-
ies reveal that MTNR1B variants are associated with insulin secretion impairments and an increased body mass index 
(BMI) in individuals of European and Asian ancestries. Obesity is highly prevalent in the US and disproportionately 
affects African Americans. Here, we hypothesized that common single nucleotide polymorphisms (SNPs) imputed 
in 1000 Genomes in the MTNR1B gene are associated with adiposity in African American adult men and women and 
that the association is modified by insomnia.

Methods: We used an additive genetic model to describe the association between the adiposity traits (BMI and 
waist circumference) and selected MTNR1B variants in 3,029 Jackson Heart Study participants, with an average age of 
55.13 ± 12.84 years, and 62% were women. We regressed the adiposity measures on the estimated allelic or genotypic 
dosage at every selected SNP and adjusted for age, sex, population stratification, and insomnia. Thirty common SNPs, 
spanning the MTNR1B gene, with a minor allele frequency ≥ 5%, a call rate ≥ 90%, a Hardy–Weinberg equilibrium p 
value >  10–6, were available for the analysis.

Results: The allele T of rs76371840 was associated with adiposity (OR = 1.47 [1.13—1.82];  PFDR-adjusted = 0.0499), 
and the allele A of rs8192552 showed a significant association with waist circumference (β = 0.023 ± 0.007; 
 PFDR-adjusted = 0.0077) after correcting for multiple testing. When insomnia was included in the adiposity analysis 
model, the following four variants became significantly associated with adiposity: rs6483208; rs4388843; rs4601728; 
and rs12804291.

Conclusions: Our data indicate that polymorphisms in the MTNR1B gene are associated with obesity traits in African 
Americans. To the best of our knowledge, this is the first study to explore the effect of insomnia on the association 
between the circadian MTNR1B genetic variants and metabolic traits in an African American sample population. We 
observed that insomnia affected the association between the MTNR1B variants and adiposity.
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Background
Melatonin is a chronobiotic hormone that is synthesized 
by the pineal gland at night [1]. Melatonin is not stored 
within the pineal gland, but due to its lipophilic nature, 
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it diffuses in the bloodstream, where it rapidly reaches 
target tissues. Melatonin’s function is exerted in a tissue-
specific manner by binding to specific G-coupled protein 
receptors known as melatonin receptor type 1  (MT1) 
and melatonin receptor type 2  (MT2). These recep-
tors are present in many tissues and organs [1, 2]. In 
humans,  MT1 and  MT2 are encoded by the MTNR1A and 
MTNR1B genes, respectively.

Multiple studies demonstrate that melatonin is 
involved in regulating sleep, circadian rhythms, repro-
duction, and metabolic processes [3–5]. Polymorphisms 
in the MTNR1B gene have been linked to impairments 
in insulin secretion, fasting blood glucose (FBG) levels, 
and an increased body mass index (BMI) in individuals 
of European and Asian ancestry [6–9]. There are various 
potential mechanisms by which polymorphisms in the 
MTNR1B gene might increase FBG levels. It has been 
reported that the common variant rs10830963, which 
increases  MT2 signaling, might also be associated with an 
increased risk of developing type 2 diabetes (T2D) [9, 10]. 
Other studies in individuals of European ancestry show 
that rare variants in the MTNR1B gene result in reduced 
or absent  MT2 signaling, which is also associated with an 
increased FBG level and an increased risk of developing 
T2D [11–13].

Obesity is defined as a BMI greater than 30, and it is 
a growing pandemic that affects 36.5% of US adults [14]. 
Obesity is prevalent across different ethnic groups, with 
African Americans having the highest age-adjusted rates 
[15]. Although African Americans have a higher preva-
lence of obesity [15] and the highest prevalence of short 
sleep duration and insomnia compared to other eth-
nicities [16–18], there are no documented studies on 
the influence of MTNR1B on adiposity or the effect of 
insomnia on this association. This study aimed to inves-
tigate whether selected common genetic variations in the 
MTNR1B gene reported in previous studies were associ-
ated with adiposity in a sample of African American indi-
viduals and whether those associations were modified by 
insomnia.

Results
Study population characteristics
The study population characteristics are displayed in 
Table  1. Of the available study sample, the average age 
was 55 years old, and 1871 (62%) were women. The par-
ticipants had a mean BMI of 32 kg/m2, a mean waist cir-
cumference of 101 cm, and a total cholesterol of 198 mg/
dL. Also, 679 (29%) participants had diabetes, and the 
study population had a mean fasting glucose of 100 mg/
dL, a mean HbA1c percentage of 6, and a fasting insulin 
of 19 IU/mL. Additionally, 98 (5%) participants reported 
insomnia.

The ASSOCIATION of MTNR1B SNPs with BMI and waist 
circumference
As shown in Table  2, multiple linear regression models 
identified sixteen MTNR1B variants that showed a nomi-
nally significant association (FDR p value ≤ 0.05) with 
continuous obesity traits (BMI and waist circumference). 
Fourteen MTNR1B SNPs were inversely and significantly 
associated with BMI. Ten of these remained significant 
after adjusting for multiple testing. For waist circumfer-
ence, sixteen MTNR1B SNPs showed a significant inverse 
association, while rs8192552 showed a significant direct 
effect.

Association between MTNR1B variants with adiposity 
adjusting for insomnia
A multiple logistic regression model identified sixteen 
MTNR1B variants with a significant association with adi-
posity (Table  3). After adjusting for insomnia, four new 
variants, not identified in our previous models, showed 
a nominally significant association (FDR p value ≤ 0.05) 
with adiposity (Table  3). Based on the functional anno-
tation of the MTNR1B variants, only two of the varia-
tions were missense variants, and we identified variants 
in other regulatory regions. In the regulatory regions of 
the MTNR1B introns, two of the variants were in the 3 
prime-untranslated region (3’-UTR).

Linkage disequilibrium
To understand the linkage disequilibrium (LD) around 
the suggestively or nominally significant MTNR1B 
variants, we generated an LD plot (Fig. 1). Three haplo-
types were identified from the LD plot in the MTNR1B 

Table 1 Clinical characteristics of the study population

Participants (male /female) 3029 (1149/1871)

Age (years) 55.13 ± 12.84

Adiposity (yes/no) 2450/578

BMI (kg/m2) 32.02 ± 7.44

Waist circumference (cm) 101.34 ± 16.31

Total cholesterol (mg/dL) 198.42 ± 40.59

LDL (mg/dL) 126.6 ± 36.6

HDL (mg/dL) 51.25 ± 14.67

Type 2 diabetes (Yes/No) 679/2336

Fasting plasma glucose (mg/dL) 100.54 ± 33.71

Fasting insulin (IU/mL) 18.75 ± 24.25

HOMA IR 3.62 ± 2.32

HbA1c (%) 6.00 ± 1.33

Nighttime sleep (h) 6.43 ± 1.52

Insomnia (yes/no) 98/1976
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genes from the JHS cohort (Fig.  1). In haplotype block 
1, all the variants showed a strong LD (D′ > 1) except for 
rs76371840. For block 2, all the variants were in strong 
LD. In haplotype block 3, most variants were in strong 
LD except rs7130424 & rs37816638 and rs7130424 & 
rs1562444 (D′ < 1).

Discussion
In this study, we examined the associations of poly-
morphisms in MTNR1B with obesity traits in a sam-
ple of African Americans at JHS. Our principal findings 
revealed a significant association of rs8192552 with 
high waist circumference even after adjusting for multi-
ple testing. Furthermore, the T allele of rs76371840 was 
associated with adiposity even after adjusting for insom-
nia in the regression model. We also observed four new 
variants (allele G of rs6483208, allele A of rs4388843, 
allele G of rs4601728, and allele T of rs12804291) that 
showed an effect on adiposity outcome after adjusting for 
insomnia. To the best of our knowledge, we are the first 
to report this association.

Our results indicated a significant association of 
rs8192552 with high waist circumference. The variant 
rs8192552 is a missense variant that has been extensively 

studied in T2D and shows no association to T2D in Euro-
pean populations [19] and African American popula-
tions [20]. However, rs8192552 is significantly associated 
with BMI and waist circumference in French and Danish 
populations [19]. Elsewhere, rs8192552 did not show a 
significant association with BMI, as well as waist circum-
ference [20, 21]. Andersson et  al. [19] reported that the 
missense variant rs61747139 did not display a significant 
association with BMI and waist circumference. Allele G 
of rs61747139 has been reported to cause an amino acid 
change of lysine to arginine. This codon change could 
affect gene expression, leading to a defect in melatonin 
signaling pathways. Karamitri et  al. [12] observed that 
rs61747139 decreased β-arrestin-2 recruitment, while 
rs8192552 did not. The β-arrestins desensitize G-protein-
coupled receptors (e.g., MTNR1B) to prevent further 
stimulation of G proteins and the downstream signaling 
pathways [22]. The overstimulation of melatonin signal-
ing by variant rs61747139 via β-arrestin-2 could lead to a 
downstream effect on markers involved in obesity.

The pairwise variants rs12792653 and rs1562444 
are associated with both BMI and waist circumfer-
ence. These SNPs (rs12792653 and rs1562444) are in 
the 3’-UTR region of the mRNA that follows the stop 

Table 3 The Association between MTNR1B Variants and Adiposity adjusting for Insomnia

Adiposity for adjusted age, sex, and ancestry; Adiposity-Insomnia for Adiposity model with adjustment for Insomnia. The results of the associations are listed as Odds 
Ratio (OR) with the Lower and Upper Confidence Interval (LCI and UCI) and the corresponding adjusted False Discovery Rate (FDR) p value. A1 and A2 are reference 
allele and alternative allele; MAF is Minor Allele Frequency; BP is Base Pair

Adiposity Adiposity-Insomnia

SNPs BP A1 A2 MAF p value FDR
p value

OR LCI UCI p value FDR
p value

OR LCI UCI Type of Mutation

rs12290860 92979012 G A 0.2240 0.0042 0.0250 0.74 0.54 0.95 0.0012 0.0040 0.66 0.40 0.91 Intronic

rs61747139 92981951 A G 0.2270 0.0042 0.0250 0.74 0.54 0.95 0.0013 0.0040 0.66 0.41 0.92 Missense

rs6483210 92981429 C T 0.2270 0.0043 0.0250 0.75 0.54 0.95 0.0013 0.0040 0.66 0.41 0.92 Intronic

rs7127128 92980510 A G 0.2270 0.0044 0.0250 0.75 0.54 0.95 0.0013 0.0040 0.66 0.41 0.92 Intronic

rs12292400 92979446 G C 0.2250 0.0055 0.0250 0.75 0.55 0.95 0.0017 0.0047 0.67 0.41 0.92 Intronic

rs6483209 92976223 C T 0.2120 0.0022 0.0250 0.73 0.52 0.93 0.0003 0.0025 0.62 0.36 0.88 Intronic

rs7130424 92980527 T C 0.2660 0.0117 0.0281 0.79 0.60 0.97 0.0021 0.0053 0.70 0.46 0.93 Intronic

rs12272268 92975633 C G 0.2520 0.0075 0.0250 0.77 0.58 0.96 0.0007 0.0040 0.67 0.43 0.91 Intronic

rs12792653 92982750 A G 0.4460 0.0121 0.0281 0.81 0.64 0.97 0.0872 0.1313 0.83 0.62 1.04 3’-UTR 

rs1562444 92982683 A G 0.4460 0.0122 0.0281 0.81 0.64 0.98 0.0875 0.1313 0.83 0.62 1.04 3’-UTR 

rs11020126 92973751 G A 0.1810 0.0060 0.0250 0.73 0.51 0.96 0.000045 0.0012 0.56 0.27 0.84 Intronic

rs11020125 92973378 T G 0.1710 0.0070 0.0250 0.74 0.51 0.96 0.0001 0.0012 0.57 0.28 0.86 Intronic

rs12277904 92978680 C T 0.1370 0.0105 0.0281 0.73 0.48 0.97 0.0115 0.0203 0.68 0.38 0.98 Intronic

rs116625623 92971729 G T 0.0950 0.0180 0.0385 0.70 0.41 1.00 0.0012 0.0040 0.54 0.17 0.92 Intronic

rs7129768 92980510 G A 0.0880 0.0202 0.0404 0.70 0.40 1.00 0.0033 0.0075 0.56 0.18 0.95 Intronic

rs76371840 92971529 C T 0.0740 0.0266 0.0499 1.48 1.13 1.82 0.0423 0.0705 1.54 1.12 1.96 Intronic

rs6483208 92972678 T G 0.2200 0.0291 0.0514 0.80 0.60 1.00 0.0003 0.0025 0.63 0.38 0.89 Intronic

rs4388843 92971820 G A 0.3110 0.2311 0.3015 0.90 0.72 1.08 0.0058 0.0123 0.73 0.50 0.95 Intronic

rs4601728 92971992 A G 0.3130 0.2432 0.3040 0.90 0.72 1.08 0.0066 0.0132 0.73 0.51 0.96 Intronic

rs12804291 92972141 C T 0.2650 0.2203 0.3005 0.89 0.71 1.08 0.0092 0.0172 0.73 0.50 0.97 Intronic
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codon, which contains regulatory regions essential 
for post-transcription regulation [23]. It also contains 
binding sites for regulatory elements, such as microR-
NAs, repressors proteins, and proteins that bind to AU-
rich elements (ARE-BP), which are involved in either 
translation activation or repression [23, 24]. Thus, 
3’-UTRs act as cis-regulators.

Additionally, insomnia modified the association 
between the MTNR1B variants and adiposity because 
we observed four novel variants (rs6483208, rs4388843, 
rs4601728, and rs12804291) with a significant association 
with adiposity when we adjusted for insomnia. To date, 
few studies have investigated the association between the 
circadian-related gene variants with metabolic parame-
ters [25–28]. Ollila et al. described the effect of insomnia 
on the association of MTNR1B variants on blood glucose 
[25]. Another study discussed the effect of diet and sleep 
on the association between circadian-related gene vari-
ants (MTNR1B, CLOCK, CRY , and NR1D1) and meta-
bolic traits (fasting glucose, BMI, waist circumference, 
and HDL-cholesterol) [28]. Our study demonstrated that 
insomnia affected the association between MTNR1B 

variants and adiposity in an African American sample 
population.

While these findings are insightful to the role of 
MTNR1B variants in African Americans, a few limita-
tions are worth mentioning. Our main limitation is the 
small sample size relative to studies of different ethnic 
backgrounds. Our study needs to be replicated in a larger 
African American cohort. Another limitation is the use 
of BMI to assess adiposity instead of the overall body fat 
mass. Despite these limitations, our data produced asso-
ciations that were similar to other studies.

Conclusions
In summary, we found a novel association between allele 
A of rs8192552 and high waist circumference. Also, 
allele T of rs76371840 showed an association with adi-
posity. Moreover, allele G of rs12792653 and allele G of 
rs1562444 in the 3’-UTR were associated with BMI and 
waist circumference. Additionally, when the data was 
adjusted for insomnia in the adiposity model, allele G of 
rs6483208, allele A of rs4388843, allele G of rs4601728, 
and allele T of rs12804291 showed a significant 

Fig. 1 Linkage Disequilibrium Plot for SNPs in the MTNR1B gene. The value in each diamond is  r2 between pairs of SNPs. The haploview standard 
color scheme, for LD color display with bright red (LOD ≥ 2 and D′ = 1), shades of pink/red (LOD ≥ 2 and D′ < 1), white (LOD < 2 and D′ < 1), and blue 
(LOD < 2 and D′ = 1). Haploview generated haplotypes blocks for SNPs in strong LD
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association with adiposity. In conclusion, our study iden-
tified several MTNR1B variants associated with obesity 
in the Jackson Heart Study Population. These findings 
contribute to understanding the link between circadian 
disruption (insomnia) and metabolic homeostasis.

Methods
Study subject
For this study, we used cross-sectional data from the 
Jackson Heart Study (JHS). The JHS is a single-site com-
munity-based cohort study of risk factors for cardiovas-
cular disease among adult African American men and 
women living in the Jackson, Mississippi, Metropolitan 
area. The study participants consisted of 5,306 individu-
als recruited, interviewed, and examined by certified 
technicians for the first exam (2000–2004) [29, 30] and 
were followed up in 2 subsequent exams from 2005 to 
2008 and 2009 to 2013. The clinic visits encompassed a 
physical examination, blood and urine collection, anthro-
pometry, and data collection regarding family history, 
behavioral risk factors, and sociodemographics. There 
were 3027 participants (Mean age of 55.13 ± 12.84 and 
1871 women) who consented to the genetic analysis, 
and their DNA samples were genotyped in the candi-
date gene association resource (CARe) consortium using 
the Affymetrix 6.0 platform. They were later imputed to 
1000 genomes phase 1 [31–33]. The study was approved 
by the Institutional Review Board (IRB) of the National 
Institutes of Health. The IRB approved the participating 
institutions’ protocol (University of Mississippi Medical 
Center, Jackson State University, and Tougaloo College).

Study variables
Outcome variables
Our primary outcome in this study is adiposity (BMI and 
waist circumference). Adiposity was measured in exam 
visit 1, and we defined it as a BMI greater than 30  kg/
m2 and a waist circumference greater than 102  cm and 
88  cm for men and women, respectively. All the above 
clinical parameters were measured according to standard 
laboratory and clinical techniques [30].

Independent variables: SNP selection genotyping 
and imputation
All 3027 JHS samples were genotyped on the Affymetrix 
6.0 based on manufacturer protocol [33]. The candi-
date gene approach was used to select our genetic vari-
ants from the entire set of common genetic variants in 
the MTNR1B gene located on chromosome 11q14.3 and 
hg19 position base-pair ordinates chr11:92,702,789–
92,718,2 (plus-strand orientation). The JHS coordination 
centers performed the SNPs quality control, and the vari-
ants that passed were imputed with 1000G phase 1 using 

Cosmopolitan reference panel including all races—ver-
sion 2010–11 data freeze, 2012–03-04 haplotypes [32, 
33]. The imputation was completed using Minimac3 on 
the Michigan Imputation Server [34]; details regarding 
the reference panel can be found in the 1000 Genomes 
Project Consortium 2010 [35]. Imputed SNPs were fil-
tered for minor allele frequency ≥ 1%, call rate ≥ 90%, 
HWE p value > 10–6, as well as the exclusion of sites with 
invalid or mismatched alleles for the reference panel [32]. 
For this study, 109 SNPs were genotyped and imputed; 
we focused on common variants with a minor allele fre-
quency (MAF) ≥ 5%, and with imputation quality ≥ 80%, 
30 common variants were selected for downstream 
analyses. Covariates were age, gender, and 10 principal 
components to adjust for population stratification due to 
admixture [17]. In additional analyses, we also adjusted 
for insomnia covariate. The participants were asked if 
they have insomnia with the answer option of “Yes,” “No,” 
and “Don’t Know.” Insomnia is clinically defined as the 
difficulty of falling and staying asleep [36].

Statistical analysis
Descriptive statistics
The study variables were summarized using the mean and 
standard deviation (SD) for the continuous variables and 
proportions for the categorical variables. The continuous 
variables were first assessed for normality, and then were 
log-transformed if they were not normally distributed. 
The analyses for the descriptive statistics were performed 
using the statistical software SAS® 9.4 [37].

Regression analysis
Multivariate logistic regression models were fitted 
to assess the associations between the dosage of the 
MTNR1B genetic variants and adiposity after adjust-
ing for age, gender, and the 10 principal components in 
the adiposity model. Due to the relationship between 
melatonin signaling and sleep, we examined the modi-
fying effect of insomnia (adiposity-insomnia model) 
on our adiposity outcome by stratifying each modifier. 
Multivariate linear regression models (BMI model and 
waist circumference model) were fitted to examine the 
relationships between the MTNR1B genetic variants 
and the continuous obesity outcome traits of BMI and 
waist circumference. The linear and logistic regres-
sion models were fitted using ProbAbel v.0.5.0 genetic 
analysis software [38], assuming a population-based 
design. Although a small subset of the JHS participants 
belonged to a family component, we did not adjust for 
family structure because previous studies have shown a 
minimal impact on power and the inflation of the type 
I error [39–42]. We used a false discovery rate (FDR) 
to correct for multiple testing with an adjusted p value 
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threshold of 0.05. The NIH dbSNP database was used 
to annotate the function of the MTNR1B variants that 
displayed a significant association using the regression 
models [43].

The variants that were statistically significant after the 
FDR adjustment were used to generate a linkage disequi-
librium (LD) plot. Haploview (Broad Institute, MA, USA) 
was used to create the LD plot, and we used the Yoruba, 
Nigeria population as a reference [44]. Haploview gener-
ated the haplotype blocks in the LD plot whenever 95% 
of the informative comparisons were in strong LD while 
ignoring variants with an MAF < 0.05 [45].
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