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Cell Transplantation to Restore Lost
Auditory Nerve Function is a Realistic
Clinical Opportunity

Tetsuji Sekiya1,2 and Matthew C. Holley3

Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet
problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally,
major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it
transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as
well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising
therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell
transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the
clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to
preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit
the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively
easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless,
there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
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Introduction

Over 450 million people suffer disabling hearing loss

(DHL), equivalent to 6.1% of the world’s population

(https://www.who.int/deafness/estimates/en/). Hearing loss

affects our most important means of communication, and it

may lead to social isolation, depression, and even dementia

in the elderly1.

Traditionally, significant efforts to cure DHL have focused

on hair cells (HCs). No less important, however, is the audi-

tory nerve, which contains the sensory neurons that transmit

electrical signals generated by HCs to the brainstem2,3.

Auditory nerve damage may occur as a result of various

types of insult. These include internal causes, such as neu-

ropathies and intracranial mass lesion, and head trauma,

which is a representative external cause3. Over several

decades, cell transplantation has emerged as a promising

therapeutic option to rebuild lost auditory nerve function.

Numerous studies in vitro and in vivo have explored differ-

ent combinations of cells and delivery methods, and two

successful studies have provided proof of principle that cell

transplantation can lead to functional recovery. The

challenge now is to focus on how the human auditory system

can be approached in the clinic, including the selection of

donor cells and how auditory nerve function can be restored

with surgically acceptable techniques involving minimal

intervention.

Degeneration Pattern of Auditory Neurons Following Insult

Insight into why cell transplantation works comes from the

nature of tissue degeneration (Fig. 1). When auditory nerve
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axons are compromised, for example, in neuropathies,

closed head injury, microsurgery (MiS), or radiation expo-

sure in radiotherapy (RT) (see the following section), degen-

eration proceeds centripetally away from the soma, as in

Wallerian or anterograde degeneration (Fig. 1B, j).

Cochlear nucleus cells and upper neurons up to the cerebrum

subsequently degenerate transneuronally4 (Fig. 1B, k). At

the same time, retrograde axon degeneration proceeds

toward the soma of spiral ganglion cells (SGCs) within the

cochlea, leading eventually to the death of the neurons and

loss of the peripheral processes (Fig. 1B, l). If auditory

neurons degenerate, the HCs that they innervate can still

survive. Auditory neurons express the tyrosine receptor

kinase B (TrkB) and tyrosine kinase receptor C (TrkC) (Fig.

1A) for brain-derived neurotrophic factor (BDNF) and neu-

rotrophin 3 (NT-3), which are produced mainly by HCs3,5.

Thus, damage to HCs can lead to degeneration of auditory

neurons and transneuronal degeneration of the cochlear

nucleus cells and upper relay neurons (Fig. 1, m, k)3. It is

well known clinically that degeneration of the HCs is trig-

gered by systemic use of pharmacological agents such as

aminoglycoside antibiotics and platinum-based drugs6 and

also exposure to intense noise7.

Hearing levels can deteriorate progressively in closed

head injury patients8. Similarly, in MiS and RT for vestibular

schwannoma (VS), the hearing preservation rates measured

within a few years of treatment can be misleading because

hearing loss that is unrelated to tumor recurrence continues

to progress even after 7 to 8 years9–14. Various mechanisms

are responsible for such delayed hearing loss, but one con-

tributing factor is likely to be the unusually slow speed of

auditory nerve degeneration, which can be protracted for

years15. There are several reasons for the slow degeneration

of the auditory nerve. First, the soma of human SGCs contact

each other and can provide mutual trophic support16. Sec-

ond, non-myelinated Schwann cells (SCs) and satellite glial

cells surrounding the soma prevent the SGCs from dying

even after HCs are damaged17. Third, SGCs depend on neu-

rotrophins provided mainly by HCs but supporting cells are

also a source of neurotrophins18 even after the HCs degen-

erate. Cochlear implants (CIs) stimulate auditory neurons

directly and they exploit the protracted course of auditory

nerve degeneration15. Cell transplantation is more likely to

succeed for the same reason because degenerated auditory

neurons can be replenished progressively by donor cell-

derived neurites that seem to regenerate over several

months2.

Causes of Auditory Nerve Degeneration and Related
Clinical Issues

Neuropathies. The classical description of auditory neuropa-

thy (AN) is that auditory nerve function is impaired but outer

HCs in the cochlea are functional19. In AN, speech compre-

hension is compromised although pure tone audiograms are

disproportionately well maintained so patients can hear but

cannot understand19. This type of hearing loss is observed in

various diseases including a subset of neuropathic and pres-

bycusis patients20,21. Nowadays, the causative sites for AN

include not only the auditory nerve and outer HCs but also

the inner HCs and inner HCs ribbon synapses (auditory

synaptopathy)19. Nevertheless, AN due to auditory nerve

dysfunction and auditory neuropathic hearing loss is a poten-

tial candidate for cell transplantation2,3,22. Some patients

with genetic disorders have polyneuropathic disorders, such

as auditory neuropathic hearing loss and optic neuropathy

with bilateral blindness20, and their anguish would be alle-

viated remarkably even if only their hearing was restored.

For patients with pathologies in both the auditory nerve and

Figure 1. Auditory neurons and their degeneration patterns. (A)
The auditory nerve is a bundle of bipolar auditory neurons. The
peripheral processes of auditory neurons form synapses with HCs
and the central processes with CNs in the brainstem. HCs provide
much of the trophic support required for the maintenance and
survival of auditory neurons, including BDNF and NT-3. Auditory
neurons synthesize the high-affinity tyrosine receptor kinases, TrkB
and TrkC. The interface between the PNS and CNS is called the
TZ, which is distal to the IAM. Myelin sheaths are formed by
oligodendrocytes centrally from the TZ, and the surrounding
milieu is astrocytic. Peripheral to the TZ, the myelin sheaths are
formed by Schwann cells that are enveloped in endoneurium. The
interface is penetrated only by axons. (B) The onset of anterograde
(Wallerian) (j), trans-neuronal (k), and retrograde degeneration
(l) of the auditory nerve depends on the initial site of injury (x). In
HC damage, neurodegeneration involves the auditory neuron
entirely (m) and neurodegeneration proceeds to higher-level
neurons including the CNs (k). Shaded arrows indicate the
progression of degeneration, and dotted arrows indicate
transneuronal degeneration. BDNF, brain-derived neurotrophic
factor; CNS, central nervous system; CNs, cochlear nucleus cells;
HC, hair cells; IAM, internal auditory meatus; NT-3, neurotrophin
3; PNS, peripheral nervous system; TZ, transitional zone.
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HCs, auditory nerve regeneration would most effectively be

coupled with HC regeneration, should that eventually prove

to be successful in mammals.

Tumors. VS develops from the vestibular nerve, but the sur-

gical removal of VS inevitably imposes direct mechanical

stress to the auditory nerve, potentially leading to the sever-

ance of continuity of auditory neurons or to the initiation of

auditory nerve degeneration. VS surgery can also have far-

reaching effects on the cochlea through the vasculature (the

internal auditory artery or labyrinthine artery), leading to

cochlear ischemia and reflow phenomena that are inevitably

repeated during surgery, eventually leading to HC death. The

latter presumption is supported by recordings of distortion

product otoacoustic emissions (DPOAEs), which are sounds

generated within the cochlea recorded by a microphone

fitted into the ear canal23. The amplitude of DPOAEs reflects

the blood flow to the cochlea24, and an intraoperative

decrease in DPOAEs indicates cochlear ischemia due to

mechanical pressure upon the vasculature25,26. Several min-

utes of cochlear ischemia are sufficient to cause morpholo-

gical changes of the distal ends of the auditory neurons, and

longer periods can cause cessation of internal auditory artery

blood flow leading to HC death27,28. Postmortem histologi-

cal examinations of VS patients without surgery reveal struc-

tural changes within the cochlea, including degeneration of

HCs and the stria vascularis in the outer wall of the scala

media29.

Radiation. Radiotherapy (RT) for the central nervous system

(CNS) and peripheral nervous system (PNS) lesions incur

multiple pathological processes, including vascular endothe-

lial damage, neuroinflammation, genetic/epigenetic altera-

tions, apoptosis/necrosis of neurons and glial cells, reactive

gliosis, and demyelination and deterioration of stem cell and

progenitor cell proliferation30. It is extremely difficult to

avoid radiation injury to the auditory nerve in RT for

VS31. To make matters worse, not only the cochleovestibular

nerve but also the facial nerve and other vital structures, such

as HCs and the stria vascularis32, are packed in a confined

space of the cochlea (Fig. 2). The horizontal diameter of the

internal auditory canal is only about 4.5 mm33. Within this

narrow canal, the cochleovestibular and facial nerves are

compressed by the tumor and take a tortuous course. Reports

revealed that radiation doses in the cochlea and cochlear

nucleus during RT are correlated with patients’ hearing out-

come31,34, implying radiation injury to auditory neurons is

responsible for hearing deterioration after RT in addition to

that to HCs and the stria vascularis, both vital to hearing32.

Patients with small VS in which auditory neurons degenerate

but HCs are still functional35 are an ideal candidate for audi-

tory nerve replacement3, and this is the case in a subset of

presbycusis or auditory neuropathic patients as mentioned

above20,21.

Head Injury. In patients with a closed head injury even with-

out temporal bone fractures, damage to auditory neurons is

observed primarily and/or secondarily following HC

Figure 2. Reported cell delivery methods to restore AuN func-
tion. (A) Reported cell delivery methods in Table 1 are shown with
arrows in the upper panel. Dark shaded parts of each arrow indi-
cate intracochlear or intraneural portions of each route. Arrows
show each route conceptually and do not trace each anatomical
route precisely. The dotted rectangle is enlarged to illustrate intra-
cochlear structures in detail. (B) Surface transplantation of DCs on
degenerated AuN. DCs transplanted onto the surface of degener-
ated AuN autonomously enter the nerve, differentiate (*) and form
functional synapses with HCs and CNs (#). In degenerated AuN,
the AO and SC columns form a continuous, “naturally occurring
autologous cell bridge”, the AO–SC complex (a part is shown
here), which acts as an anatomical scaffold for DC migration to
connect between the PNS and the CNS (see the text). Note regen-
erating axons run parallel with the AO–SC complex. Studies using
systemic delivery of donor cells are not shown here. AO, astrocyte
outgrowth; AuN, auditory nerve; CNS, central nervous system;
CN, cochlear nucleus cell; CPA, cerebellopontine angle; DC, donor
cells; HC, hair cell; IAC, internal auditory canal; IAM, internal audi-
tory meatus; IHC, inner hair cell; OHC, outer hair cell; MLI, mem-
branous labyrinth injured; MLP, membranous labyrinth preserved;
PNS, peripheral nervous system; RC, Rosenthal’s canal; ScM, the
scala media; SC, Schwann cell; ScT, the scala tympani; ScV, the scala
vestibuli; SuC, supporting cell; TZ, the transitional zone.
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damage36–42. Clinically, cases in which the auditory nerve is

damaged without damage to HCs are most suitable for cell

transplantation because the HCs can provide trophic support,

as mentioned above (Fig. 1). The auditory nerve is particularly

vulnerable to external force in the regions of the fundus of the

internal auditory canal and the transitional zone (TZ)36–41.

When the medial displacement of the brainstem is greater than

that of the cochlea in the temporal bone, the resultant force on

the auditory nerve may avulse the auditory neurons from the

fundus of the internal auditory canal36–41. The TZ is the inter-

face between the CNS and PNS43, and it can be highlighted by

immunostaining for glial fibrillary acidic protein (GFAP),

which is expressed by astrocytes only in the CNS2 and it lies

within the internal auditory canal44 (Fig. 3). The TZ is vul-

nerable to external stretch and shear forces probably because

there is an abrupt anatomical change at this point; central to

the TZ, myelin sheaths are formed by oligodendrocytes, and

the supporting tissue is astrocytic, whilst peripheral to the TZ,

the sheaths are SCs enveloped in endoneurium, although the

axons are continuous3,39. HC damage in closed head injury

may occur due to a breach of the sealing of the membranous

labyrinth and/or impairment of blood supply to the cochlea42.

Cochlear Implants (CIs)

Cell transplantation could potentially enhance the perfor-

mance and candidature for CI in patients, who generally

have too few remaining functional auditory neurons45,46.

In fact, the minimum number of functional auditory neurons

needed for the successful performance of a CI is astonish-

ingly few and estimated to be 5% to 10% of the normal

number15. CIs are beneficial to neurofibromatosis type 2

(NF2) patients with bilateral VS47, but a significant number

of patients experience a decline in performance as the VS

grows48. Hence, replenishing auditory neurons would poten-

tially benefit NF2 patients.

Surgical Options for Cell Delivery

There is extensive literature on cell transplantation to the

auditory system, but in this context, the relevant studies are

those done in vivo on deafened animals and on deaf humans

(Table 1). To establish proof of principle, two main conditions

must be met in the analysis of cell integration and functional

recovery49. First, there must be an electrophysiological anal-

ysis of the restoration of nerve function with an objective

method such as the auditory brainstem response (ABR). Sec-

ond, to link recovery to the transplanted cells, it is important to

provide morphological evidence for synaptic connections, not

only with HCs in the cochlea but also with neurons of the

cochlear nuclei within the brainstem. In other parts of the

nervous system, functional improvements have been recorded

without morphological integration of the donor cells50–52 by

indirect mechanisms, including trophic effects, immunomo-

dulation, and other bystander effects53–55.

Equally important from the experimental aspect are clin-

ical relevance, which is reflected in the animal model used to

replicate human clinical pathology, and clinical feasibility,

which relates to whether or not the surgical techniques can

be used in the clinic. In the following sections, we consider a

number of in vivo studies in these terms. We focus on local

delivery of cells to parts of the inner ear because trials with

systemic cell delivery have not led to successful migration of

donor cells to the auditory system56–64 (Table 1).

Cell Delivery into the Cochlea with Injury to the Membranous
Labyrinth. The soma of spiral ganglion neurons (SGNs) are

located within the cochlea, and it is worth knowing whether

or not cells delivered into the cochlear fluid spaces or

cochlear wall are able to find their way into Rosenthal’s

canal in which the SGN soma are housed (Fig. 2A). This

does not seem to be the case, and none of the relevant studies

have led to functional recovery (Table 1). With the exception

of two studies65,66, the membrane that seals intracochlear

fluid-containing spaces (the membranous labyrinth ¼ the

scala tympani, scala vestibuli, the scala media, and posterior

semicircular canal) was breached and/or trespassed (mem-

branous labyrinth injured [MLI])67–92 (Table 1). Impor-

tantly, invasion into the membranous labyrinth is clinically

unacceptable because it leads to hearing loss3. Furthermore,

the cochlea in small experimental animals is easily accessi-

ble as it is conspicuous within the hollow dome-like bulla,

but it is not as accessible in humans as it is deeply buried in

Figure 3. Transitional zone and the astrocyte outgrowth following
auditory nerve mechanical compression. (A) Normal TZ. The CNS
portion of the AuN extends peripherally, with a dome-like shape
(arrowheads with dotted line). Rosenthal’s canals are densely
packed with auditory SGC (arrows). Rat, Hematoxylin and Eosin
stain, Scale bar, 200 mm. Cited from Sekiya et al. (2007) with pub-
lisher’s permission. (B) Gliotic AuN after compression. A glial scar
is induced following mechanical compression applied to the CNS
portion of the auditory nerve in the cerebellopontine angle (arrow-
heads). Marked AO is indicated by double arrows. Most auditory
SGCs degenerate following sustained compression (single arrows
in dotted circle, Rosenthal’s canal). With GFAP antibody, an astro-
cyte marker, the glial scar is also stained because it contains many
reactive astrocytes. An antibody Tuj1 against beta-tubulin stains
neurons and neurites, including SGCs. The curved dotted line indi-
cates the default position of the TZ. (Inset) Normal rat AuN. The
TZ (arrows) is clearly observed as a peripherally convex, dome-like
shape. The PNS portion of the nerve (outlined by dotted line) is
GFAP-negative because astrocytes exist only in the CNS. Scale
bars, 200 mm. AO, astrocyte outgrowth; AuN, auditory nerve;
CNS, central nervous system; GFAP, glial fibrillary acidic protein;
IAM, internal auditory meatus; PNS, peripheral nervous system;
SGCs, spiral ganglion cells; TZ, transitional zone.
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Table 1. In vivo studies to restore auditory nerve function.

Study
Site of donor cell
delivery

Host animal
Deafening procedure

Verification of
functional

restoration and
synaptogenesis Donor cell*

Cell delivery into the cochlea

Hu et al. (2004)79 ScT (MLI) Rat
Pharmacol, local#

No Mouse
DRGC

Hu et al. (2005)78 ditto Guinea pig
Pharmacol, local

No Mouse ESC and DRGC

Hu et al. (2005)80 ditto Guinea pig
Pharmacol, local

No Mouse NSC

Coleman et al. (2006)71 ditto Guinea pig
Pharmacol, systemic**

No Mouse ESC

Matsuoka et al. (2007)86 ditto Gerbil
Pharmacol, local

No Mouse MSC

Parker et al. (2007)87 ditto Mouse/guinea pig
Sound exposure

No Mouse NSC

Altschuler et al. (2008)68 ditto Guinea pig
Pharmacol, systemic

No Mouse ESC

Lang et al. (2008)85 ditto Gerbil
Pharmacol, local

No Mouse ESC

Hu et al. (2009)81 ditto Guinea pig
Pharmacol, systemic

No Mouse DRGC

Cho et al. (2011)70 ditto Guinea pig
Pharmacol, local

No Human MSC

Pettingill et al. (2011)88 ditto Guinea pig
Pharmacol, systemic

No Schwann cells

Warnecke et al. (2012)90 ditto Guinea pig
Pharmacol, systemic

No BDNF-secreting cells

He et al. (2014)76 ditto Guinea pig
Pharmacol, local

No Mouse NSC

Jang et al. (2015)84 ditto Guinea pig
Pharmacol, local

No Human MSC

Fetoni et al. (2014)73 ditto Guinea pig
Noise exposure

No Guinea pig ADSC

Gillespie et al. (2015)74 ditto Guinea pig
Pharmacol, systemic

No BDNF-expressing fibroblast

Jang et al. (2016)83 ditto Guinea pig
Pharmacol, local

No Human ADSC

Xu et al. (2016)92 ditto Rat
Noise exposure

No olfactory epithelium NSC

Dai et al. (2016)72 ditto Rat
Pharmacol, systemic

No Rat OEC

Wise et al. (2016)91 ditto Guinea pig
Pharmacol, systemic

No Human ESC

Chen et al. (2017)69 ditto Mouse
Pharmacol, systemic

No Mouse iPSC

Schendzielorz et al.
(2017)89

ditto Guinea pig
Pharmacol, local

No Guinea pig ADSC

Huang et al. (2019)82 ditto Gerbil
Pharmacol, local

No Mouse NSC

Hildebrand et al. (2005)77 ScM (MLI) Guinea pig
Pharmacol, systemic

No Mouse ESC

Hu et al. (2005)80 ditto Guinea pig
Pharmacol, local

No Mouse ESC mouse DRGC

Lang et al. (2008)85 ScM, RC (MLI) Gerbil
Pharmacol, local

No Mouse ESC

Ahn et al. (2008)67 PSCC (MLI) Mouse
Pharmacol, systemic

No Mouse ESC

(continued)
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Table 1. (continued)

Study
Site of donor cell
delivery

Host animal
Deafening procedure

Verification of
functional

restoration and
synaptogenesis Donor cell*

Zhang et al. (2013)65,66 Cochlea wall (MLP) Rat
Pharmacol, local

No Mouse NSC

Hackelberg et al. (2017)75 Scaffold in IAC
(MLI)

Guinea pit
Pharmacol, local

No Human ESC

Direct cell injection into auditory nerve (MLI)

Tamura et al. (2004)101 AuN Mouse
Pharmacol, local

No Mouse NSC

Naito et al. (2004)95 ditto Chinchilla
Pharmacol, systemic

No Bone marrow cell

Hu et al. (2004)94 ditto Rat
Transected AuN

No Mouse DRGC, ESC

Okano et al. (2005)97 ditto Guinea pig
Pharmacol, systemic

No Mouse ESC

Regala et al. (2005)98 ditto Guinea pig, rat
Pharmacol, systemic

No Mouse DRGC

Corrales et al. (2006)93 ditto Gerbil
Pharmacol, local

No Mouse ESC

Matsuoka et al. (2007)86 ditto Gerbil
Pharmacol, local

No Mouse MSC

Shi et al. (2007)100 ditto Gerbil
Pharmacol, local

No Human ESC

Altschuler et al. (2008)68 ditto Guinea pig
Pharmacol, systemic

No Mouse ESC

Reyes et al. (2008)99 ditto Guinea pig
Pharmacol, systemic

No Mouse ESC

Ogita et al. (2010)96 ditto Guinea pig
Pharmacol, local

No Guinea pig MSC-derived spheres

Chen et al. (2012)22 ditto Gerbil
Pharmacol, local

Yes Human ESC

Direct cell injection into the auditory nerve (MLP)

Sekiya et al. (2006)107 AuN Rat Compression of AuN No Mouse ESC
Sekiya et al. (2007)106 ditto ditto No Mouse auditory neuroblast
Palmgren et al. (2012)105 ditto Rat

Pharmacol, local
No Mouse ESC

Jiao et al. (2014)104 ditto Rat
Pharmacol, local

No Human neural precursors

Chen et al. (2019)103 ditto Mouse
Pharmacol, local

No Human limbus-derived MSC

Cell transplantation onto the auditory nerve (MLP)

Sekiya et al. (2015)2 AuN Rat
Compression of AuN

Yes Mouse auditory neuroblast

Systemic delivery (MLP)

Revoltella et al. (2008)63 i.v. Mouse
Pharmacol, systemic
Noise

No Human cord blood stem cells

Choi et al. (2012)58 i.v. Rat
Noise
Pharmacol, local

No Human MSC

(continued)
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the temporal bone. Thus, this method is not suitable for

human patients.

Direct Cell Injection Into Auditory Nerve With Injury to the
Membranous Labyrinth. For targeting donor cells to the audi-

tory nerve, this method seems to be more depend-

able22,68,86,93–101. Unlike injection into the cochlear

fluids, the cells are located into the appropriate neural tract

with morphological continuity with the relevant target

cells. Nevertheless, the membranous labyrinth is injured

as with direct injection into the cochlea. Moreover, intra-

neural injection with a syringe needle can damage the mor-

bid, fragile auditory nerve and trigger an inflammatory

reaction along with reactive gliosis around the needle and

transplant102 (see the following sections for further discus-

sions). This method has proved successful in one study22

and offers important proof of principle for clinical transla-

tion, especially from the viewpoint of donor cell selection

(Table 1; Fig. 2A). However, it remains possible that leak-

age of the donor cells outside the cochlea might have

played a predominant role (see below for the details) in

addition to indirect bystander effects that could account for

the observed improvement of the ABRs.

Direct Cell Injection Into or Onto Auditory Nerve With
Preservation of the Membranous Labyrinth. Even without

damaging cochlear structures, cell injection into the

cerebellopontine angle portion of the auditory nerve trunk

through a hole posterior to the mastoid process (the retro-

mastoid region) has not restored auditory nerve func-

tion103–107.

Surprisingly, functional restoration was observed if

donor cells were simply placed onto the surface of the

auditory nerve via the retromastoid route, thus preserving

the integrity of both the nerve and the membranous labyr-

inth (membranous labyrinth preserved [MLP])2 (Fig. 2A,

B) (Table 1). This “surface transplantation” method can be

regarded as a more promising option for cell transplanta-

tion, and it is, thus, considered in more detail in the follow-

ing sections.

What is the Nature of Nerve injury and Degeneration
and How Could Cell Transplantation Work for Specific
Clinical Conditions?

The success of in vivo experiments with animal models is

encouraging, but it is important to understand the biology

that underlies the pathology of nerve degeneration and the

subsequent structural and biochemical environment that

underlies the successful integration of transplanted cells.

This not only informs the optimal technique for cell delivery

but also the selection and possibly the conditioning of donor

cells.

Table 1. (continued)

Study
Site of donor cell
delivery

Host animal
Deafening procedure

Verification of
functional

restoration and
synaptogenesis Donor cell*

Choi et al. (2012)57 i.v. Guinea pig
Pharmacol, local

No Human blood MSC

Yoo et al. (2015)64 i.v. Autoimmune hearing loss
mouse

No Human ADSC

Lang et al. (2016)60 i.v. Mouse
Pharmacol, local

No Mouse and human blood cell

Kil et al. (2016)59 i.v. Guinea pig
Pharmacol, local

No MSC from human placenta

Ma et al. (2016)62 i.t. Congenital deaf albino pig No Human umbilical cord MSC
Lee et al. (2018)61 i.v. Human cases No MSC
Abd El Raouf et al. (2019)56 i.v. Guinea pig

Pharmacol, systemic
No Guinea pig Harderian gland stem

cells

ABR, auditory brainstem responses; ADSC, adipose tissue-derived stem cell; AuN, auditory nerve; BDNF, brain-derived neurotrophic factor; CPA, cere-
bellopontine angle; DPOAE, distortion product otoacoustic emissions; DRGC, dorsal root ganglion cell; ESC, embryonic stem cell; IAM, internal auditory
meatus; iPSC, induced pluripotent stem cell; i.t., intrathecal injection; i.v., intravenous injection; MLI, membranous labyrinth injured; MLP, membranous
labyrinth preserved; MSC, mesenchymal stem cell; NSC, neural stem cell; OEC, olfactory ensheathing cell; RC, Rosenthal’s canal; Ref, reference number; ScM,
the scala media; ScT, the scala tympani; ScV, the scala vestibuli.

* “Donor cell” indicates the provenance of donor cell. Donor cells may have been preconditioned in vitro before transplantation. For example, application of
neural induction for ESC.
# “Pharmacol, local” indicates that pharmacological agents were applied locally to the auditory system. For example, ouabain applied to the round window of
the cochlea.

** “Pharmacol, systemic” indicates application intravenously. For example, ototoxic antibiotics such as kanamycin injected in the tail vein of the host.

Note: Studies using more than one cell delivery routes are repeatedly listed in Table 1. The references in the text and table are listed basically in chronological
order.
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Structural and Biochemical Cues for Cell
Transplantation

Protective Addition. In principle, regenerative medicine should

add new functional elements without causing further dam-

age, following the principle of “protective addition”. This

principle is most effectively met for the auditory nerve by

placing donor cells on the tissue surface2. As discussed

above, all other delivery techniques involve significant tis-

sue damage.

The Scaffold. The scaffold is an indispensable element for the

formation of the nervous system. For example, radial glia

plays a crucial role as the scaffold for cell migration from the

ventricular zone toward the brain surface108,109. Hence, var-

ious artificial scaffolds such as collagen-rich acellular

matrices and matrices such as hydrogel with in vitro

expanded donor cells attached have been intensively inves-

tigated in many neurodegenerative disorders, including

spinal cord injury (SCI) with efforts to overcome various

obstacles including provocation of host immune

responses110–114. Currently, another practical issue to be

solved aiming at clinical translation is the surgical maneu-

verability of artificial materials in the delicate and confined

space of the CNS.

The Scaffold Within: A Natural Autologous cell Scaffold. One of

two successful studies was serendipitous but demonstrated

that an autologous cell scaffold had been spontaneously

formed in collaboration with SCs during the progression of

auditory nerve degeneration. This naturally occurring auto-

logous cell scaffold plays key roles in cell integration as

described below. A number of donor cells incidentally

spilled onto the nerve surface from a hole through which a

syringe needle had been inserted for traditional intra-neural

injection of donor cells. These “leaked” donor cells autono-

mously entered the nerve, gradually transformed into the

bipolar shape characteristic of auditory SGCs in the nerve,

and finally formed synapses with target HCs and cochlear

nucleus cells2 (Fig. 2B and 4). Intriguingly, donor cell

migration and axon elongation apparently recapitulated pro-

cesses observed during development. These processes

include glia-guided migration115 and migration within

GFAP-positive astrocytic, tube-like structures in the rostral

migratory stream116,117. Even residual neurons appeared to

be used as a migration guide118 (Fig. 4D).

Natural Autologous Cell Scaffold—the Astrocyte Outgrowth and
SCs Form a Bridge Between the CNS and PNS. When neurons in

the CNS die, astrocytes react to form the glial scar (the

astrocyte scar), irrespective of the cause, which may be

ischemia, mechanical trauma, irradiation, or genetic disor-

der119–122. In mouse SCI, reactive astrocytes of the glial scar

form characteristic elongated and overlapping processes at

the periphery of the lesion core about a week after the

insult123. In a rat stroke model, reactive astrocyte processes

were apparently longer than in sham rats in the penumbra

even 30 days after ischemic and hemorrhagic stroke124.

After a stab lesion in the cerebral cortex of mice, one subset

of astrocytes directed their processes toward the lesion125.

After injection of iron into mice, reactive astrocytes around

the lesion core extended long and overlapped processes126.

Figure 4. Comparison between intraneural and surface transplan-
tation of cells. (A) Intraneural transplantation of DCs. ABRs before
compression (1), 5 weeks after compression before cell transplan-
tation (2), and 3 months after (3). Arrowhead in panel 3, mono-
phasic positive potential indicating electrical failure of nerve impulse
transmission. I–V, ABR wave I–V. (B) Surface transplantation of
donor cells. ABRs before compression (1), 5 weeks after compres-
sion (2), and 3 months after surface transplantation (3). Note a
significant improvement of ABRs 3 months after surface transplan-
tation (see Sekiya et al., 2015 for more details). (C) Schematic
drawing of fate of intraneurally injected cells. (1) Cell debris mainly
in the site of cell transplantation (large arrow), and a few cells are
seemingly stuck in the gliotic auditory nerve tissue (small arrows).
(2) Large arrow indicates cavity formation (asterisk) in the nerve
due to infusion pressure during injection and the infused cell mass.
Small arrow indicates cell debris around the cavity. (see Sekiya
et al., 2015 for original images). Scale bars: (1), 200 mm; (2) 50
mm. (D) Schematic drawing of various modes of cell migration of
donor cells transplanted on the surface of the auditory nerve (see
Sekiya et al., 2015 for original images). (1) The DCs autonomously
enter the AuN in a chain formation (hollow arrows). CSF, cere-
brospinal fluid in the cerebellopontine angle subarachnoid space. (2)
Within a gliotic auditory nerve, a transplanted cell is intimately
associated with a GFAPþ process (black arrow) derived from the
glial scar and migrated (hollow arrow). (3) three migrating donor
cells (hollow arrows) form chains within GFAPþ sheaths (2 pairs of
black arrows). (4) Migrating transplanted cells (hollow arrows)
associated with neurons (black arrow), possibly for guidance. Scale
bars: (1, 2, 4), 20 mm; (3) 10 mm. Cited from Sekiya et al. (2015) with
publisher’s permission. ABR, auditory evoked brainstem responses;
AuN, auditory nerve; BS, brainstem; CSF, cerebrospinal fluid; DCs,
donor cells; GFAP, glial fibrillary acidic protein.
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Similarly, at the cranial and peripheral nerve roots, such

elongated processes of reactive astrocytes are observed as a

conspicuous tongue-like protrusion toward the periphery, the

astrocyte outgrowth (the AO) (Fig. 3). One clinical study

demonstrated that auditory nerve specimens taken during

VS surgery were gliotic, indicating that reactive astrocytes

had invaded the auditory nerve127. Other than damaged audi-

tory nerve, the AO has been reported in a plethora of diseases

in which motor and sensory neurons die, including amyo-

trophic lateral sclerosis128–133. Electron microscopy shows

that the AO comprises processes of reactive astrocytes of the

glial scar, which have been known as “glial bundles”,

extending from the spinal cord/brainstem128,130,133. It should

be noted that the polarity of the AO plays pivotal roles in cell

migration and axon elongation134.

Normally, astrocytes in the CNS and SCs in the PNS are

apart and mutually exclusive but their mutual repulsion

decreases following motor and sensory neuron death in the

brainstem/spinal cord135. As a result, the distal tip of the AO

extensively apposes with SCs or is directly wrapped by SC

cytoplasm within a common basal lamina133,135. Distally,

SCs form structures called SC columns or bands of Bungner

that can guide regenerating axons back to their targets136.

Thus, a continuous structure, the AO–SC complex, forms

autonomously and can act as an anatomical bridging scaffold

connecting the CNS and the PNS137 (Fig. 2B). In fact, in one

study on the auditory nerve, the AO–SC complex appeared

to be the only continuous scaffold between the PNS and

CNS2.

Furthermore, upon injury, both astrocytes and SCs

become rich sources of pro-regenerative molecules, includ-

ing laminin, N-cadherin neural cell adhesion molecule,

nerve growth factor, BDNF, NT-3, and fibroblast growth

factor, glial cell line-derived neurotrophic factor, artemin,

and vascular endothelial growth factor136,138,139.

Intraneural Injection and Surface Transplantation

It is difficult to compare the different cell transplantation

experiments in the auditory system because the donor cells,

surgical techniques, and animal models are so varied. How-

ever, when intraneural injection and surface transplantation

were compared under the same parameters2, surface trans-

plantation was clearly more successful. There was no ABR

improvement with intraneural transplantation, and the trans-

mission of electrical activity failed to pass the transplanta-

tion site140 (Fig. 4A). Morphological examination revealed a

failure of cell migration with cell debris mainly at the site of

cell transplantation with a few cells stuck in the midst of the

gliotic auditory nerve (Fig. 4C,1). Another finding was cav-

ity formation in the nerve, apparently due to infusion pres-

sure during injection and the large volume of the infused cell

mass that might also have damaged residual host neurons

and vascular networks (Fig. 4C, 2). In contrast, the animals

in which cells were delivered by surface transplantation

demonstrated statistically significant improvement of the

ABRs measured 3 months after cell transplantation (Fig.

4B). Morphologically, various modes of cell migration were

observed as mentioned above (Fig. 4D, 1–4), and synaptic

connections with HCs and the cochlear nucleus cells were

morphologically confirmed (refer to ref. 2 for the original

images).

The Glial Scar, is it Friend or foe?

Emerging evidence challenges the traditional belief that the

glial scar is a physical and molecular barrier to neural regen-

eration141–143. An in vivo experimental study on SCI showed

that regenerating axons skirted around the surface of the glial

scar144, indicating that they can negotiate its surface and

benefit from the structural and chemical cues that it contains.

In unilateral cerebral stroke of the motor cortex in mouse,

axons of the contralesional corticospinal tract normally

sprout into the denervated spinal cord and contribute to

motor functional recovery. In a double knockout of GFAP

and vimentin (the principal genes responsible for glial scar

formation), corticospinal axons only rarely crossed the mid-

line and the reduced astrocytic reactivity led to impaired

neurological recovery142. Another study showed that scar-

forming reactive astrocytes do not only have a protective

function but also promote axonal regrowth after SCI. In two

different transgenic mouse models to either prevent or inhi-

bit glial scar formation, the study showed that there is a

failure in axonal regrowth following removal of reactive

astrocytes in both acute and chronic glial scars141. Reactive

astrocytes in cerebral infarct play a crucial source of a pro-

regenerative molecule, the stromal cell-derived factor 1

(SDF-1)145. Blocking SDF-1 action with a neutralizing anti-

body against a receptor for SDF-1, CXC chemokine receptor

4 (CXCR4), strongly attenuated progenitor migration146,

indicating that SDF-1/CXCR4 promotes migration of stem/

progenitor cells toward the lesion147.

Pro- and Anti-Regenerative Astrocytes

Astrocytes are not homogenous and are composed of at

least five distinct subpopulations, although it is not clear

how each subpopulation responds to different insults in

different locations148–150. Astrocytes not only conform to

different environmental niches but also show different tran-

scriptional changes induced by different types of inju-

ries149,151. In a non-penetrating lateral fluid percussion

brain injury model in adult rats, the morphology of reactive

astrocytes is regionally distinct; those in the injured cortex,

subcortical white matter tracts, and CA3 region of the hip-

pocampus show a distinct morphology with an enlarged cell

body and long intertwined processes, but those in the tha-

lamic nuclei have thicker shorter processes152. Following

experimental occlusion of the middle cerebral artery, reactive

“A2” astrocytes are likely to be protective as they lead to

increased expression of neurotrophic factors and cytokines,

transferring mitochondria to injured neurons143,148,153. In

Sekiya and Holley 9



contrast, neuroinflammation with systemic endotoxin

lipopolysaccharide injection induces neurotoxic “A1”

astrocytes143,148,153. A recent study reported that such

molecular and functional diversity of astrocytes in the

healthy adult brain depends on cues from neurons through

neuron-derived sonic hedgehog (Shh)154. This is also

another example of glia–neuron interaction (see above).

Thus, it is more likely that there are pro- and anti-

regenerative reactive astrocytes, and further research is

required to identify those subsets of reactive astrocytes that

can aid and contribute to axon elongation efficiently for

auditory nerve regeneration.

What is the Ideal Animal Experimental Model?

Studies of the auditory nerve require animal models in which

the auditory nerve is selectively, quantifiably, and reprodu-

cibly damaged without confounding factors such as conco-

mitant HC damage.

In pharmacological models, to induce auditory

nerve degeneration, ouabain is most commonly

used22,57,59,60,65,66,70,75,76,82,85,86,93,96,100,103. However,

with this approach, SGNs are hard to damage reproducibly

to avoiding “sudden and all-or-none type cell death”. It

is technically difficult to titrate the dose, so ouabain

treatments destroy nearly all SGNs in most of the

studies60,85,86,93,96,155–158. This makes it hard to assess any

further damage that may occur through surgical intervention.

Instead, clinically relevant animal experimental models

of neurodegenerative disorders, including hearing loss,

should ideally involve a reproducible, “intermediate

degree” of stable injury to reflect the gradual progression

of tissue degeneration and a suitable opportunity to sys-

tematically test potential therapies. In fact, this critical

issue has long been discussed when creating animal mod-

els of SCI159.

Ouabain is usually applied to the round window in the

middle ear. It enters the cochlea across the round window

membrane and is diluted in the perilymph of the scala tym-

pani before reaching the SGN through Schuknecht’s canali-

culae perforantes3,160. Pharmacological agents, including

ouabain, that are applied even locally to the cochlea gener-

ally diffuse throughout the cochlear fluid space in an uncon-

trolled manner and tend to affect not only auditory neurons

but also HCs158,161. Moreover, the effect of ouabain is dif-

ferent between species; ouabain selectively destroys SGNs

in gerbils and mice, whereas in guinea pigs, it preferentially

damages HCs158. In rats, if high doses applied to the round

window are not sufficiently diluted, then both HCs and SGN

can be damaged158.

Ouabain is a potent inhibitor of the ubiquitous Naþ-Kþ

pump162, which maintains a low Naþ and high Kþ concen-

tration within most cells to ensure their excitability and to

provide the driving force for the transport of glucose, amino

acids, and other nutrients into the cell162,163. Thus, a caveat

with ouabain is that it may affect not only neurons but also

cells in the surrounding epithelial, connective, and muscle

tissues. This also applies in systemic administration of phar-

macological agents164. Thus, the majority of animal models

are not ideal for clinical translation.

In contrast, if mechanical compression is applied to the

CNS portion of the auditory nerve, it can produce selective,

“intermediate” degree of degeneration of auditory neurons

with HCs preserved2,165,166 (Fig. 1B, l, 4A, B). This leads

to transneuronal death of CNS cells (cochlear nucleus cells)

and formation of a protruded bundle of reactive astrocytes of

the glial scar (the AO), which plays a crucial role with distal

Schwann cell columns for auditory nerve regeneration as

elucidated above (Figs. 2B, 3B, 4). Unique to this model,

the transneuronal degeneration of cochlear nucleus cells

(Fig. 1B, k) can be quantitatively analyzed165,167,168.

Mechanical compression is thus likely to be the most realis-

tic model for the clinical conditions that lead to auditory

nerve degeneration.

Donor Cells for Auditory Nerve Regeneration

Cell Source. Selection and preparation of donor cells are not

the focus of this review, but they are critical issues because

the cells must be competent to respond to regenerative cues

within the damaged tissue.

As depicted in Table 1, embryonic stem cells (ESC) and

neural stem cells (NSC) were most frequently used as xeno-

grafts or allografts after preconditioning in vitro with diverse

factors such as bFGF, BMP4, and the bHLH transcription

factor neurogenin 268,80,93,100,169. These approaches carry a

greater risk of immune rejection compared with autologous

transplantation170. Even using autologous-induced pluripo-

tent stem cells (iPSCs) as donor cells, immune rejection can

be an issue170–172, despite major histocompatibility complex

matching173. Furthermore, the phenotypes of individual

iPSCs are not entirely predictable, and preconditioning can

be complex, time-consuming, and expensive174–177.

Human cells, particularly autologous human cells, are the

most likely candidates for clinical translation and those

derived from mesenchymal stem cells and adipose tissue-

derived stem cells are being studied intensively as donor

cells in human disease178–184. Tissue-specific autologous

stem cells are naturally strong candidates because they are

more closely adapted to the host environment185,186. The

human inner ear contains endogenous adult stem cells, as

has been shown in other organs187,188,189, although their

potential at the clinical level is not yet clear.

Bipolarity, a Key Requisite as Donor Cells for Auditory Nerve
Regeneration. Auditory neurons are bipolar, and donor cells

must connect both peripherally with HCs and centrally with

cochlear nucleus cells. Table 1 shows that functional recov-

ery of the auditory nerve has been achieved only in two

studies, one with human ESCs22 and the other with a mouse

cell line2. In both cases, the donor cells adopted a bipolar

phenotype2,22. The ESCs were conditioned as otic
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progenitors by simulating the initial, developmental specifi-

cation of the otic placode with sequential application of

selected factors, including NT-3, BDNF, bFGF, and Shh22.

The mouse cells were from a conditionally immortal mouse

otic neuroblast cell line, US/VOT-N33, derived from a

mouse otocyst (inner ear anlage)190. They show that ontoge-

netic-stage/region-restricted precursors can be successfully

integrated into the host tissue, which has also been shown in

a study of retinal regeneration191.

Ultimately, the selection of appropriate donor cells must

be made in the context of the animal model most closely

allied to the clinical application. It cannot be assumed that a

given cell type would be equally effective with both intra-

neural injection and cell surface delivery because the bio-

chemical cues encountered from the damaged tissue may be

different. Thus, there is a need for more systematic research

with a number of potential donor cell types in carefully

controlled animal models. This is recognized more generally

in cell transplantation to address a number of technical hur-

dles, not least those of phenotype instability, cost versus

benefit, and ethical issues170,183.

A Minimally Invasive Technique for Cell
Transplantation

Endoscopic surface transplantation. Minimal invasiveness of cell

delivery is an indispensable requisite for clinical translation192.

Endoscopy may fulfill this requirement most efficiently (Fig. 5).

It has long been used in clinical otorhinolaryngology, has been

reported in neurosurgical procedures since the 1970s193,194, and

its safe maneuverability in the CPA has been established195,196.

Surface transplantation of donor cells to the auditory

nerve can be done with an endoscope introduced intracra-

nially through a single keyhole in the retromastoid area. It

could be applied to diseases such as auditory neuropathic

hearing loss in neuropathies and head trauma (Fig. 5A),

VS immediately after tumor removal (Fig. 5B), and VS fol-

lowing RT (Fig. 5C). This simple procedure requires only

local anesthesia under sedation, and it is, thus, applicable to

physically more sensitive patients, including the elderly.

Surface transplantation has several other advantages.

Excessive numbers of cells are not required to compensate

for the very high rates of donor cell death as observed in

Figure 5. Endoscopic surface transplantation of donor cells. (A) In patients with non-tumorous auditory neuropathic hearing loss, an
endoscope can be introduced in the cerebellopontine angle cistern and DCs placed onto the AuN. Normal facial nerve (VII) and vestibu-
locochlear nerve (VIII) are shown in the left upper corner of the panel. (B) In open surgery for larger VS, following tumor removal (left),
donor cells can be placed on the surface of the AuN. The posterior wall of the internal auditory meatus is drilled to expose the tumor
entirely. (C) In radiotherapy for small to medium-sized VS (arrows), a similar approach shown in A can be undertaken immediately after
treatment. DCs are placed both on the distal side of the tumor through the internal auditory meatus (shown in this figure) and on its medial
side if possible (not shown here). The dotted line indicates tumor shrinkage after radiotherapy. Regenerated bipolar neurons (dotted line)
are shown in the nerve in each panel. AuN, auditory nerve; CN, cochlear nucleus cells; Cr, cerebellum; DC, donor cell; En, endoscope; HC,
hair cell; IAM, internal auditory meatus; kh, keyhole; Rt, retractor; VS, vestibular schwannoma.
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intraparenchymal injection197 because donor cells appar-

ently autonomously enter the host tissue in proportion to the

demand and capacity of the host environment2. Moreover, in

contrast to intraneural injection, donor cells transplanted

onto the nerve are immediately nourished by cerebrospinal

fluid, which is a very rich source of nutrients including pro-

teins, ions, lipids, hormones, cholesterol, glucose and meta-

bolites, and pro-regenerative molecules such as BDNF and

IGF-2198,199, before they establish a link to the blood supply.

In transplantation experiments of Parkinson’s disease, most

dopamine neurons injected into the brain died due to apop-

tosis within the first 24 h of transplantation200, and subse-

quently, more than 90% of transplanted neurons died by the

end of a typical several week transplantation study201,202. In

rats, more than 1 week is required after transplantation

before sufficient neovascularization is established between

the host and transplants203,204. Until then, the intraparenchy-

mally transplanted cells suffer insufficient nutrients diffus-

ing from host vessels located outside the graft perimeter,

resulting in apoptotic cell death (see the sections above).

It is worth noting that “surface transplantation” of donor

cells is distinct from “stem cell sheet technology” such as

that explored in heart, kidney, and liver disorders205,206. In

surface transplantation for auditory nerve regeneration, a

uniformly molded cell sheet manufactured before cell trans-

plantation cannot be applied to the target area. On the con-

trary, to facilitate the integration of donor cells into the host,

it is important to drop them freely into the narrow spaces

within the irregular and complex contours of the tissue

surface.

Conclusion

We conclude that there is great potential for clinical trans-

lation of cell transplantation in the auditory nerve. Proof of

principle has been established; appropriate clinical tech-

niques are available, and there is considerable theoretical

support from wide-ranging studies on neurodegeneration and

tissue repair. Auditory nerve damage may occur as a result of

neuropathies, intracranial mass lesions, head trauma, and

even therapeutic intervention. The finding that donor cells

placed on the surface of the gliotic auditory nerve autono-

mously entered the nerve tissue, migrated, and functionally

integrated into the host neural circuit makes clinical surgery

much more realistic2. For clinical translation, endoscopy

provides the best way to deliver viable cells to the tissue

surface with minimal damage to residual functional elements

in the nerve.

Whilst proof of principle is an important step, there is

clearly a need for focused animal experiments that recreate

the combination of approaches necessary for clinical appli-

cation. “From the bench to the clinic” is a slogan that has

been repeated also in regenerative medicine. Now it can be

accomplished if an appropriate cell transplantation method is

applied to humans, choosing potent human stem cells or

human cochlear precursors207,208 that may or may not be

conditioned to achieve integration.

Notably, the auditory nerve holds an advantageous and

suitable position for cell transplantation therapy because

HCs, auditory neurons, and cochlear nucleus cells are

aligned over a relatively short distance209,210. This contrasts

with the recovery of the injured pyramidal tract in SCI,

which involves not only axon sprouting but also recruiting

endogenous relay neurons211,212.

Finally, transdisciplinary combinations with regenerative

studies for both auditory nerve and HCs would pave a new

path for more widespread treatment of DHL and even for a

number of other neurodegenerative conditions.
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