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Abstract

Background: Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human
populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the
reproduction number R (average number of persons infected by a human case). However, until now, estimating R required
detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally,
existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple
estimation methods that overcome many of these limitations.

Methods and Findings: Our approach is based on a parsimonious mathematical model of disease transmission and only
requires data collected through routine surveillance and standard case investigations. We apply it to assess the
transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also
present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics,
the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases
in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be
estimated by 12G; otherwise R can be estimated by 12F when the case detection rate is low. In more general cases, bounds
on R can still be derived.

Conclusions: We have developed a simple approach with limited data requirements that enables robust assessment of the
risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an
important step in evaluating the possible pandemic threat posed by this virus.
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Introduction

The 2009 A(H1N1)pdm09 influenza pandemic [1], the SARS

epidemic in 2003 [2], and the recent emergence of a novel

coronavirus [3] are recent reminders of the global health threat

posed by zoonotic viruses. Prior to widespread emergence in human

populations, such pathogens can cause occasional infections in sub-

populations that have been exposed to reservoir species (common

reservoir species include for example bats, birds, swine, non-human

primates). Whilst viruses causing such ‘‘spill-over’’ infections are

usually poorly adapted for sustained human-to-human transmission,

they are under strong selection pressure to increase transmissibility

once in humans [4]. If the reproduction number R (i.e., the average

number of persons infected by a case) evolves to exceed 1, a large

scale epidemic in humans may result. Over the last decade, particular

concerns were raised regarding highly pathogenic H5N1 avian

influenza, due to the high mortality rate seen in humans and the

virus’s rapid spread in avian populations. However, as the

A(H1N1)pdm09 influenza pandemic demonstrated, H5N1 is not

the only influenza virus that may pose a pandemic risk. Recently, a

swine-origin triple reassortant influenza A(H3N2) variant virus has

emerged in the United States, carrying the matrix gene (M) from the

H1N1pdm09 virus (H3N2v-M) [2–4]. Studies in animal models have

suggested that the presence of the H1N1pdm09 M gene may increase

transmissibility of the virus [5,6]. From January 2012 to September

2012, 307 laboratory-confirmed H3N2v-M human infections were

reported to Centers for Disease Control and Prevention (CDC) [5] as

opposed to 12 throughout 2011 [6]. The majority of cases have been

associated with agricultural fairs but there are documented events of

human-to-human transmission [7]. The surge in cases observed in

summer 2012 raised public health concerns [8]. Threats from

zoonoses are not limited to influenza: more than half of all recent

emerging infectious disease events were zoonotic [9].

For efficient prevention and control, quantitative and rigorous

assessment of the risks associated with emerging zoonoses is

desirable—in particular the risk that an emerging pathogen

evolves to cause sustained human-to-human transmission. One

approach to such risk assessment is by monitoring the reproduc-

tion number R of zoonoses in humans, with an alarm being raised

if R increases or approaches 1 [9–11]. However, until now,

estimating R required detailed outbreak investigations of human

clusters [10,11] and suffered from three important limitations: (1)

the resources, access, and expertise needed to conduct investiga-

tions is not always available; (2) the proportion of cases that are

missed during outbreak investigations may vary by setting and be

difficult to assess; (3) even if the study is complete, the data

collection process can be affected by a selection bias whereby

larger outbreaks are more likely to be detected so that estimates of

transmissibility may be biased upward. Consider for example a

scenario where R = 0.7, where each case has the same detection

probability r= 1%, and assume that once a cluster is detected,

detailed outbreak investigation ensures that all cases in the cluster

are detected. With an average size of 18.3 and a 21% probability

of 1-case cluster, clusters that are detected are substantially larger

than normal ones (average size: 3.3; 65% probability of 1-case

cluster) (Figure 1A). As expected, this selection bias leads to R

being overestimated as illustrated for methods that use the

distribution of detected cluster sizes (Figure 1B) [10].

Here, we present a new approach to estimate R during spillover

events, aiming to address many of the limitations of existing

methods. We apply our approach to assess the human-to-human

transmissibility of swine-origin influenza A variant (H1N1v,

H1N2v, and H3N2v) virus, in particular that of the H3N2v-M

virus, from US surveillance data for the period December 2005–

December 2011. We also present applications to another zoonotic

virus (Nipah virus in Malaysia and Bangladesh) as well as to a non-

zoonotic pathogen (Vibrio Cholerae in the Dominican Republic).

Materials and Methods

Ethics Statement
This investigation was determined to be part of public health

response and was not considered to be human research in

accordance with federal human individual protection regulations.

Thus, approval from an institutional review board was not required.

Definitions
We define a ‘‘chain of transmission’’ as a single reservoir-to-

human transmission event followed by subsequent human-to-

human transmission events (if any). A ‘‘cluster’’ of related cases is

defined as an outbreak that takes place in a specific location and at

a specific time (e.g., outbreak in fair X in August 2011), and can be

composed of several chains of transmission (i.e., when a number of

people are exposed to the same zoonotic source of infection).

Our method relies on the observation that the proportion of

detected cases that are infected by the reservoir is largely

determined by the reproduction number for human-to-human

transmission, R. For example, for the H1N1pdm09 virus which

had R.1 and was therefore generating long and expanding chains

of transmission, none of the detected human cases were linked to

the original swine reservoir. In contrast, for H5N1 highly

pathogenic avian influenza, where R in human populations is

considerably below 1, a substantial proportion of cases can be

linked to exposure to the animal reservoir.

Surveillance Scenarios
We consider two surveillance scenarios: (1) ‘‘Routine sentinel

surveillance alone’’ where we assume that each case has a

probability r of being detected by routine sentinel surveillance; (2)

‘‘Routine sentinel surveillance triggering outbreak investigation’’,

where we again assume that each case initially has a probability r
of being detected by routine sentinel surveillance, but that when a

case is detected, this may trigger an outbreak investigation. In the

latter scenario, once a case is detected in a cluster, the detection

probability for other cases in the same cluster may increase.

In both scenarios we assume that there is an investigation of the

case detected through routine sentinel surveillance during which the

probable source of infection (natural reservoir or human-to-human)

is determined. However, only in scenario 2 is there also a full-blown

outbreak investigation where other cases are actively searched for.

We therefore expect that it is possible to group cases into clusters in

scenario 2; but such information is less likely to be available in

scenario 1. The US H3N2v-M situation we examine resembles

scenario 2, but we also present applications for scenario 1.

We propose to estimate R from two simple summary statistics,

the proportion infected by the natural reservoir among detected

cases (G) and among the subset of the first detected cases in each

cluster (F). We now determine the relationship between G, F, and

R and develop a statistical framework to estimate R from G

(scenario 1) and from F (scenario 2).

Modelling the Offspring Distribution
We denote the length of a chain of transmission by L. Following

Lloyd-Smith et al. [12], the offspring distribution (i.e., number of

persons infected by a case) is modelled with a negative binomial

distribution with mean R and overdispersion parameter k

Estimating the Epidemic Potential of Zoonoses
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(parameter k characterizes case-to-case variation in infectiousness).

The probability that a chain is of length L is given by [13]:

g LDR,kð Þ~C kz1ð ÞL{1ð Þ
C kLz1ð ÞC Lð Þ

kkLz1RL{1

Rzkð Þ kz1ð ÞL{1
ð1Þ

Relationship between G and R (Scenario 1)
We first consider scenario 1 where each case has the same

probability of being detected. In a typical chain of transmission of

average length �LL there is, by definition, one reservoir-to-human

transmission event and �LL{1ð Þ human-to-human infections. The

probability G that a case randomly picked up by surveillance was

infected by the reservoir is therefore G~1=�LL. However, for

subcritical outbreaks (0,R,1), branching process theory tells us

that the average length of a chain is �LL~1= 1{Rð Þ [14]. We

therefore obtain G~1{R.

Relationship between F and R (Scenario 2)
We now consider surveillance scenario 2 (i.e., detection of a case

may trigger an outbreak investigation). We only use data from the

first detected case of each cluster to control for the change in

surveillance intensity due to the outbreak investigation. We first

make the stricter assumption that each cluster is made of one chain

of transmission, but this assumption is relaxed in Figure S1 and

Text S1. Conditional on detection of the chain, the probability F

that the first detected case was the first case of the chain is:

F R,k,rð Þ~P first case of chain is detectedDchain is detectedð Þ

F R,k,rð Þ~ P first case of chain is detectedð Þ
P chain is detectedð Þ

F R,k,rð Þ~ r
P
L

1{ 1{rð ÞL
� �

:g LDR,kð Þ
ð2Þ

When the probability of detection is small (r%1), we are left again

with a simple linear relationship F R,k,rð Þ~1{R (see Text S1).

Inference
For scenario 2, we denote the number of clusters that are

investigated by M and the number of first detected cases of each

cluster that were infected by the reservoir by m.

The likelihood is:

Lk,r R; M,mð Þ~CM
m :F R,k,rð Þm: 1{F R,k,rð Þð ÞM{m ð3Þ

Estimation is performed conditional on overdispersion parameter,

k, and the case detection rate, r. We also derive bounds on R when

k and r are unknown (see Text S1).

To account for small sample sizes, we compute the bootstrap

mean estimate and the bootstrap 95% confidence intervals. We

compare these estimates with those obtained under asymptotic

conditions (i.e., maximum likelihood and likelihood-ratio confi-

dence intervals) and find that they are similar (Figures S2, S3, S4;

Tables S1, S2, S3; Text S1).

For scenario 1, 12G is an unbiased point estimate of R. A

simple binomial likelihood function with probability 12R can be

used to derive confidence intervals for R. These intervals capture

uncertainty arising from sampling; but may underestimate other

sources of uncertainty if the total number of chains of transmission

(both detected and undetected) in the study population remains

small (see Text S1).

Data
Novel influenza A virus infections in humans, such as those

caused by the H3N2v-M virus, are nationally notifiable conditions

in the United States. When US laboratories or health care providers

identify a potential infection with a novel influenza A virus they are

asked to notify CDC immediately. CDC then collaborates with

federal, state, and local human and animal public health colleagues

to provide laboratory confirmation of the novel virus and to conduct

a case and/or outbreak investigation. Outbreak investigations

typically involve case investigation, contact investigations, attempts

to determine potential animal or human sources of the infection,

and environmental investigations. For each suspected or confirmed

case detailed epidemiologic and clinical data are gathered.

Notification of these cases is published in the MMWR, and in the

weekly FluView national surveillance report.

From August 2011 to December 2011, CDC confirmed 12

human H3N2v-M infections [6,7,15,16]. Eleven of the 12

Figure 1. Selection bias and the estimation of the reproduction
number R. (A) True distribution of cluster sizes (red) and distribution
for clusters that are detected (blue), for R = 0.7. (B) Asymptotic estimate
of the reproduction number as a function of the true reproduction
number, derived from distribution of cluster sizes of detected clusters.
The detection rate is set to r= 1% and the overdispersion parameter of
the offspring distribution k = 0.5.
doi:10.1371/journal.pmed.1001399.g001
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reported cases occurred in children, most ,10 years old, and three

of the 12 cases were hospitalized for influenza. These 12 cases

were detected in six clusters, with a median number of two cases

detected per cluster (range: 1–3 cases). We assumed swine were the

source of infection if there were 4 or fewer days from swine contact

to onset, and that cases occurring more than 4 days after exposure

to swine were likely to have been caused by human-to-human

transmission. The potential human-to-human transmission events

thus identified were investigated more closely to determine the

likely source of infection.

Results

Reproduction Number R, Probabilities G and F
If the detection of a case does not affect detection of other cases

from the same cluster (surveillance scenario 1), we find that R can

be simply estimated as R = 12G, where G is the proportion of

detected cases that are infected by the reservoir. This is a general

result that is independent of the case detection rate r and the

overdispersion parameter k and that does not require data on

clusters. It is valid as long as outbreaks are subcritical (0,R,1).

For situations where detection of a case may increase the

probability of detecting other cases in the same cluster (surveil-

lance scenario 2), we estimate R from the proportion F of first

detected cases in each cluster that were infected by the reservoir.

Figure 2 shows the relationship between the reproduction number

R and the proportion F for different values of the detection rate r
and the overdispersion parameter k (parameter k characterizes

case-to-case variation in infectiousness; see [12] and Methods).

When the case detection rate r is relatively low, at levels similar to

those seen in sentinel systems like the US influenza virological

surveillance network, the straight line dependence shown in

Figure 2 illustrates that R can be estimated as R = 12F (see

Methods and Text S1). We find that it takes relatively high levels

of case detection (r) or case-to-case variation in infectiousness (k) to

cause substantial deviations from this linear relationship, and even

then, such deviation only occurs for values of R close to 1

(Figure 2). We also find that the relationship is only weakly

sensitive to having multiple chains of transmission per cluster of

human cases (Figure S1; Text S1).

Estimating R for Swine Influenza Variants
We apply our method to assess the human-to-human transmis-

sibility of swine-origin influenza A variant (H1N1v, H1N2v, and

H3N2v) virus, in particular that of the H3N2v-M virus with data

collected up to December 2011. From December 2005 until

December 2011, a total of 27 human clusters of swine-origin

influenza A variant virus infections were investigated by the CDC

in the US. In clusters caused by the H3N2v-M virus, three of six

(50%) of the first detected cases were infected by swine compared

with 17 of 21 (81%) in clusters caused by the other variant viruses

(Table 1). Table 1 gives R estimates for different assumptions

about the case detection rate r and overdispersion parameter k.

Recent efforts at CDC to evaluate the case detection rate

suggest that it is low, of the order of 0.5% of all H3N2v-M-

attributable cases (Biggerstaff et al., personal communication). For

this likely scenario of low detection rates (#1%), we estimate the

reproduction number of variant viruses other than H3N2v-M to

be 0.2 (95% CI 0.1–0.4) (Table 1). For the H3N2v-M virus, the

point estimate and the lower bound of the 95% CI of R are 0.5

and 0.2, respectively. The upper bound of the 95% CI of R lies

between 0.8 and .1, depending on assumptions about the case

detection rate and overdispersion parameter (Table 1). If case-to-

case variation in infectiousness is very large (k = 0.16, comparable

to that seen in the SARS epidemic [12]), we can rule out the

hypothesis R$1 so long as the case detection rate is #0.7%; for a

scenario with medium levels of variation (k = 0.5), the case

detection rate must be #1.7% to rule out R$1 (Figure 3)—a

detection rate of 1.7% is unlikely to be achieved by US sentinel

virologic surveillance system. The point estimate of R for H3N2v-

M virus is more than double that of other variant viruses, but we

cannot reject the hypothesis of equality (p = 0.15), maybe due to a

lack of statistical power.

If the case detection rate is substantially higher than expected

(10%), the point estimate and 95% lower bound for R for variant

viruses other than H3N2v-M remain essentially unchanged

but the upper bound increases from 0.4 to 0.4–0.6 (Table 1).

The point estimate of R for H3N2v-M virus moves from 0.5 to

0.6–0.7.

Is Smaller Better? A Trade-off between Bias and Precision
If the detection rate r is known, it is always possible to invert the

relationship shown in Figure 2 to derive an unbiased estimator of

R. However, assume that r is unknown and that we plan to use

estimator 12F, which is unbiased so long as r is small. As the

detection rate r increases, so does the bias of estimator 12F.

However, for a fixed number of clusters occurring in the study

population, larger detection rates increase precision through larger

sample sizes. There is therefore a trade-off between the bias and

precision of the estimator 12F. This is illustrated in Figure 4A, for

a scenario with reproduction number R = 0.5, overdispersion

parameter k = 0.5 and where a total of 10,000 clusters occur. In

this scenario, the optimum (i.e., minimizing the root mean square

error) trade-off in bias versus precision is obtained for a detection

rate of r= 1.5%. We find that the optimum detection rate for

estimator 12F is a decreasing function of the reproduction

number R and the total number of clusters n, but an increasing

function of overdispersion parameter k (Figure 4B). We also find

that the absolute bias at the optimum detection rate remains

relatively small (,0.06) (Figure 4C). In Figure S5 and Text S1, we

show that thinning the data may eliminate the bias of the 12F

estimator, though combining information from F and G (see

below) is a simpler and more convenient approach to the same

goal.

Uncertainty in the Case Detection Rate and
Overdispersion Parameter

In many situations, both the case detection rate r and

overdispersion parameter k are unknown. Interestingly, 12F

always acts as a lower bound estimate of R. An upper bound for R

can be obtained if it is possible to specify an upper bound rmax for

the case detection rate and a lower bound kmin for the

overdispersion parameter k (see Text S1). We specify kmin~0:16
that corresponds to the SARS scenario with superspreading

events. Figure 5 shows how precision decreases as the upper bound

rmax increases. However, even in the scenario rmax~10%, our

approach can provide useful insights on transmissibility. For

example, R is expected to be in intervals 0.20–0.25, 0.40–0.59,

0.50–0.87 for F = 80%, 60%, and 50%, respectively. For F#46%,

we can only derive a lower bound on R. For example, if F = 20%,

we find that R is $0.8.

Other Applications
Our simple estimators of transmissibility can be applied

generally to study zoonoses. Nipah virus is primarily clinically

characterized by fever and encephalitis and was first discovered in

a large outbreak in Malaysia in 1998–1999 [17,18]. During this

Estimating the Epidemic Potential of Zoonoses
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outbreak (where sick pigs were believed to be the natural

reservoir), Parashar et al. [19] conducted a case-control study of

the risk factors for infection. They recruited patients who were

hospitalized with encephalitis from January through April 1999.

Candidate encephalitis patients whose serum specimen tested

positive for Nipah antibody were included as cases. Other cases

were detected through targeted investigations; but if we restrict

analyses to the subset of patients detected through hospital

surveillance, this situation resembles surveillance scenario 1 above,

where the probability of being detected is independent of cluster

allocation. Here, we can therefore estimate the reproduction

number as R = 12G. Probability G can be approximated using the

data of Parashar et al. [19] by the proportion of cases who (1)

either lived or worked in a farm (G1) or (2) handled a pig, or came

within 1 m of a pig and came into contact with pig urine or faeces

(G2). Parashar et al. [19] only give estimates for the pooled set of

cases (i.e., hospital surveillance+targeted investigations) for which

G1 = 95% and G2 = 92%; however, it should be straightforward to

derive these statistics for the subset of cases detected through

hospital surveillance alone. For G = 0.92–0.95, we estimate

R = 0.05–0.08. This suggests low levels of human-to-human

transmission in this first outbreak.

Subsequently, outbreaks of Nipah virus occurred in Bangladesh

[20,21]. Luby et al. identified 23 introductions of Nipah virus into

human populations in central and northwestern Bangladesh from

2001 to 2007 [21]. They classified 60 of the 122 identified Nipah

virus cases as reservoir-to-human infections (G = 49%). Using the

simple estimator R = 12G, we obtain R = 0.51. This is consistent

with more detailed contact tracing data that estimated R = 0.48

[21]. However, both these estimators may be biased upwards as

the Bengali situation corresponds to surveillance scenario 2 (i.e.,

detection of a case may trigger an outbreak investigation), which

may lead to the selection bias discussed earlier. In such a context,

we recommend running our analysis on the subset of first detected

cases in each of the 23 introductions and estimating proportion F.

Again, it should be possible to derive F from data collected at the

time. Since the case detection rate is unknown, we expect 12F to

act as a lower bound for R (Figure 5). From the estimates of G and

F, we should therefore be able to derive simple bounds on R:

1{FƒRƒ1{G~0:51.

Our approach can also be used to evaluate risks associated with

non-zoonotic disease. As an example, we consider the cholera

outbreak that started in the Dominican Republic in 2010 following

the epidemic of that disease in Haiti. We can assess the level of

Figure 2. Probability F that the first detected case in a cluster was infected by the reservoir, as a function of the reproduction
number R. The number of secondary cases caused by individual human cases is modelled with a Negative binomial distribution with parameters R
and k, where k is the overdispersion parameter [12]. We consider three scenarios for the case-to-case variation in infectiousness: high (i.e., most
transmission events are caused by a small proportion of cases like for SARS; k = 0.16), medium (k = 0.5), and low (k = 5) [12].
doi:10.1371/journal.pmed.1001399.g002
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local transmission in the Dominican Republic from the proportion

G of cases detected in the Dominican Republic that were linked to

Haiti (the latter country here playing the role of the natural

reservoir). By December 18, 2010, three of the 59 confirmed cases

detected in the Dominican Republic were linked to Haiti (G = 5%)

[22]. Our simple estimation method cannot distinguish between

R<1 and R.1; but the observation that G was close to zero is

indicative that transmission in the Dominican Republic was close or

above levels needed for sustained human-to-human transmission.

Combining Information from F and G
Up to this point, in the scenario where the detection of a case did

not affect detection of other cases from the same cluster (scenario 1),

we assumed that cluster information was not available, and thus F

could not be calculated. Let’s now assume that such information is

available and therefore both G and F can be estimated; this allows us

to estimate both R and the case detection rate r, as illustrated in the

simulation study shown in Figure 6. First, 12G gives a point

estimate for R. Second, once R is estimated, it is possible to infer the

case detection rate by determining by how much proportion F

differs from proportion G. If the overdispersion parameter k is

known (e.g., from detailed contact tracing data), it is possible to

accurately estimate the case detection rate; otherwise we can derive

informative bounds (Figure 6).

Discussion

We present simple methods to estimate the reproduction

number of emerging zoonoses from routine surveillance data.

Table 1. Estimate (95% CI) of R for all strains, the H3N2v-M variant, and variants other than H3N2v-M, for different scenarios of
detection and overdispersion in the offspring distribution.

Case Detection
Rate (r)

Overdispersion in Offspring
Distribution (k)

All Strains (n = 27,
F = 74%)a

H3N2v-M Variant (n = 6,
F = 50%)a

Variants Other Than H3N2v-M (n = 21,
F = 81%)a

0.16 0.35 [0.13–0.70] 0.74 [0.20.1] 0.24 [0.05–0.55]

10% 0.5 0.31 [0.12–0.57] 0.66 [0.19.1] 0.22 [0.05–0.47]

5 0.30 [0.12–0.52] 0.60 [0.19.1] 0.22 [0.05–0.44]

0.16 0.30 [0.12–0.55] 0.65 [0.18.1] 0.21 [0.05–0.45]

5% 0.5 0.28 [0.12–0.50] 0.58 [0.18.1] 0.21 [0.05–0.42]

5 0.28 [0.12–0.48] 0.56 [0.18.1] 0.20 [0.05–0.41]

0.16 0.27 [0.11–0.46] 0.54 [0.17.1] 0.19 [0.05–0.39]

1% 0.5 0.26 [0.11–0.45] 0.52 [0.17–0.91] 0.19 [0.05–0.39]

5 0.26 [0.11–0.45] 0.51 [0.17–0.87] 0.19 [0.05–0.39]

0.16 0.26 [0.11–0.45] 0.52 [0.17–0.92] 0.19 [0.05–0.39]

0.5% 0.5 0.26 [0.11–0.45] 0.51 [0.17–0.87] 0.19 [0.05–0.38]

5 0.26 [0.11–0.45] 0.5 [0.17–0.85] 0.19 [0.05–0.38]

0.16 0.26 [0.11–0.45] 0.5 [0.17–0.85] 0.19 [0.05–0.38]

0.1% 0.5 0.26 [0.11–0.45] 0.5 [0.17–0.84] 0.19 [0.05–0.38]

5 0.26 [0.11–0.45] 0.5 [0.17–0.84] 0.19 [0.05–0.38]

0.16 0.26 [0.11–0.44] 0.5 [0.17–0.83] 0.19 [0.05–0.38]

0.01% 0.5 0.26 [0.11–0.44] 0.5 [0.17–0.83] 0.19 [0.05–0.38]

5 0.26 [0.11–0.44] 0.5 [0.17–0.83] 0.19 [0.05–0.38]

We consider three scenarios for the case-to-case variation in infectiousness: high (i.e., most transmission events are caused by a small proportion of cases like for SARS;
k = 0.16), medium (k = 0.5), and low (k = 5) [12].
an is the number of clusters. F is the proportion of first detected cases in each cluster that were infected by the reservoir. The number of first detected cases that were
infected by the reservoir was 20 for all strains, three for H3N2v-M variant, and 17 for variants other than H3N2v-M.
doi:10.1371/journal.pmed.1001399.t001

Figure 3. Is R$1 for H3N2v-M? The values of the overdispersion
parameter k and case detection rate r under which we can reject the
hypothesis that R$1 are indicated with a black dot, and parameter
values for which the assumption cannot be rejected are shown in red.
doi:10.1371/journal.pmed.1001399.g003
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This research project was initiated to answer a seemingly

straightforward question: 50% of the H3N2v-M cases that were

detected in the US in 2011 had no contact with swine. What were

the implications for the level of human-to-human transmission? At

the time, however, the answer did not appear as straightforward as

our analysis now shows it to be, with these simple estimators

R = 12G or R = 12F, depending on the surveillance scenario we

are in.

Our approach has specific properties that potentially overcome

some of the limitations of existing methods. First, the investigation

effort required is less than that for other methods. For example, if

there is active case finding (surveillance scenario 2), one only needs

to investigate the source of infection of the first case detected in

each cluster. Second, the statistical treatment of the data is

extremely simple, making it possible for anyone to interpret raw

surveillance statistics about the source of infection of cases

(statistics G or F) in terms of human-to-human transmissibility

(reproduction number R). Third, the method is robust to selection

bias (i.e., the fact that larger clusters are more likely to be detected)

and under-ascertainment (i.e., ability to detect all cases in a cluster

once a cluster is identified).

However, our methods do require that the source of infection

(i.e., human or natural reservoir) can be identified for either the

first detected cases of a cluster or a random subset of detected

cases, depending on the surveillance scenario. In the US H3N2v-

M context, where most individuals have no contact with swine, it is

usually relatively easy to rule out the natural reservoir as a source

of infection. Determining the source of infection might however be

harder in situations where a large part of the population has

regular contacts with the natural reservoir (e.g., backyard poultry

in rural areas). In this case, an in-depth epidemiological

investigation of the potential sources of infection is required.

Clearly our approach cannot be used if the zoonotic source has not

been identified yet. That being said, the examples we have

presented show that proxy measures for the source of transmission

(e.g., contacts with the natural reservoir) are often available.

Although imperfect, these proxy measures are often already used

by the scientific and public health community. For example, the

World Health Organization fact sheet on Nipah virus states that

‘‘in Bangladesh, half of reported cases between 2001 and 2008

were due to human-to-human transmission’’ [23]. Our methods

improve this existing practice in at least three ways: (1) it adds an

essential layer of interpretation by providing estimates of the

reproduction number, R, which allows assessment of how far

transmission is from being sustained (R$1); (2) it clarifies sources

of potential biases; and (3) it provides simple guidelines to reduce

these biases (see summary in Box 1).

If the source of infection is unknown for a subset of cases, different

options are available. If data are believed to be missing at random,

these cases can simply be excluded from the analysis. However, it is

possible that certain sources of infection are more likely to generate

missing data. In such a scenario, upper bounds for R can be

obtained by assuming that all cases with missing data were due to

human-to-human transmission and lower bounds by assuming the

reverse. If human-to-human cases are prone to be classified as

reservoir-to-human transmission, R may be underestimated.

If the source of infection is uncertain, the analysis of detailed

outbreak data [11,24] might allow estimation of the probability

that the case was infected by the reservoir, which could then be used

to estimate F and R using our methods. Phylogenetic analysis

might also help resolve uncertainties about the source of infection.

Clearly, our approach will start to break down if the proportion

of cases with missing data becomes too large or if the classifi-

cation of cases is too unreliable. We note that other methods, for

instance based on contact tracing, would also struggle in these

situations.

It is possible that surveillance intensity might change over time

due to increasing media attention or health concerns. In such a

context, in the surveillance scenario with outbreak investigations

(scenario 2), Figure 5 shows that it is possible to derive bounds on R.

Figure 4. Trade-off between bias and precision for the
estimator 12F of the reproduction number R. (A) Absolute bias,
standard deviation and root mean square error (RMSE) of estimator 12F
as a function of the case detection rate of the surveillance system, in a
scenario with reproduction number R = 0.5, overdispersion parameter
k = 0.5, and where n = 10,000 clusters occur in the country. Optimum
trade-off between bias and precision is obtained when RMSE is
minimum. (B) Optimum case detection rate as a function of the
reproduction number R, for different values of overdispersion
parameter k and of the number n of clusters. (C) Bias at the optimum
case detection rate.
doi:10.1371/journal.pmed.1001399.g004
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In surveillance scenario 1, a change in the case detection rate is not

expected to impact the summary statistic G or the estimate of R.

A bigger source of concern is if the increase in surveillance

intensity focuses disproportionately on those cases that were

exposed to the natural reservoir, as this would lead to overesti-

mating F and underestimating R. For example, with the substantial

increase in H3N2v-M virus infections during the summer of 2012,

CDC changed their recommendations and asked clinicians to

Figure 5. Impact of uncertainty on the case detection rate and the overdispersion parameter on estimates of the reproduction
number R. 12F always acts as a lower bound for R. Furthermore, an upper bound for R can be obtained if it is possible to specify an upper bound
rmax for the case detection rate and a lower bound kmin for the overdispersion parameter k (see Text S1). The figure shows lower and upper bound
for R as a function of rmax. We specify kmin~0:16 which corresponds to the SARS scenario with superspreading events.
doi:10.1371/journal.pmed.1001399.g005

Figure 6. Estimating R and the case detection rate when both summary statistics F and G are available in surveillance scenario 1
(i.e., detection of a case does not trigger an outbreak investigation). In this simulation study, 10,000 clusters are generated for R = 0.5 and
k = 0.5; six case detection rates are considered (1%, 10%, 20%, 30%, 40%, 50%; with a number of detected clusters that is 207, 1,706, 2,922, 4,092,
5,118, 6,125, respectively). First, the formula 12G gives point estimates for R (in the range 0.48–0.51 depending on the case detection rate). For given
values of R and the overdispersion parameter k, it is possible to plot the relationship between F and the case detection rate. Black lines in the figure
correspond to R = 0.5 (dashed line: k = 0.5; plain lines: k = 0.16 and k = 5). Colour triangles show estimates of the case detection rate obtained for each
dataset when k is assumed to be known. When k is unknown, vertical colour plain lines give the range of values consistent with k in interval 0.16–5.
Horizontal colour dashed lines indicate true case detection rate.
doi:10.1371/journal.pmed.1001399.g006
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obtain respiratory specimens from ill persons with recent swine

exposure [25,26]. Therefore, in the summer 2012, ill persons with

recent swine exposure may have been more likely to have been

tested for H3N2v-M infection than those without such exposure.

For this reason, we cannot use our method to analyze data

collected in 2012.

Nonetheless, it is interesting to note that our estimate of R of

around 0.5 for H3N2v-M in 2011 seems larger than what is

suggested by data collected in summer 2012. We believe that these

differences could at least partly be explained by seasonal variations

in the ability of the virus to transmit [27]. Indeed, five of the six

human-to-human transmission events detected in 2011 occurred in

November–December; the remaining one happened in late August.

Our method has been developed for routine surveillance

systems where cases are detected independently of each other. It

would require modification to be applied to data collected from

cluster detection surveillance systems of the type developed after

the SARS epidemic, which target unexplained clusters of severe

respiratory infection [10].

While a positive property of our approach is that it does not

require a full-blown outbreak investigation, there are still many

good reasons to target and investigate large outbreaks. Detailed

investigations of large outbreaks are indeed needed to estimate

essential parameters such as transmission risk factors or the

generation time with adequate power.

Our method is designed to estimate R in the context of

subcritical outbreaks, i.e., R,1. As illustrated with the cholera in

the Dominican Republic example, the method can give a hint that

transmission is at levels close or above what is needed for sustained

transmission (R<1 or R.1). However if R$1, other estimation

methods are necessary to derive a point estimate of R.

If transmissibility of a zoonotic infection suddenly increased (for

example due to seasonal factors or genetic changes in the virus), it

might take time for estimates to adjust (since the method uses data

from all clusters detected so far). Future developments of the

method could aim to detect sudden changes in the frequency of

cases linked to the reservoir, building on methods for the

sequential detection of change points in quality control and

dynamical systems [28–30].

Finally, we hope that simplicity of our method and its limited data

requirements will facilitate more robust monitoring of the epidemic

potential of many zoonoses known to cause occasional human case

clusters (such as Crimean-Congo hemorrhagic fever, Monkeypox

virus, E. coli O157:H7, or Mycobacterium bovis) [12] around the world.

Supporting Information

Figure S1 Probability F that the first detected case of a
cluster is infected by the reservoir as a function of the
reproduction number R, for different assumptions on the
number of chains of transmission per cluster and for
different scenarios on the detection rate r and over-
dispersion in the offspring distribution k. We model the

number of chains per cluster with a negative binomial distribution

with mean ML+1 (where ML = 0, 1, 2, 4, 8, 12) and overdispersion kL

( = 0.1, 0.5, 1, 5), truncated to interval 0–30. The color scale gives ML.

(EPS)

Figure S2 Log-likelihood profiles for H3N2v M, for
different scenarios of detection and overdispersion in
the offspring distribution.
(EPS)

Figure S3 Log-likelihood profiles for variant viruses
other than H3N2v M, for different scenarios of detection
and overdispersion in the offspring distribution.
(EPS)

Figure S4 Log-likelihood profiles for all strains, for
different scenarios of detection and overdispersion in
the offspring distribution.
(EPS)

Figure S5 Thinning the data. Red line shows how estimator

12F of the reproduction number changes with thinning coefficient

(for example, a thinning coefficient of 30% means that 30% of

cases detected in original dataset are randomly picked up for

analysis). Blue line shows true value of reproduction number.

(EPS)

Table S1 Estimates of R for H3N2v M, for different
scenarios of detection and overdispersion in the off-
spring distribution.
(DOCX)

Table S2 Estimates of R for variant viruses other than
H3N2v M, for different scenarios of detection and
overdispersion in the offspring distribution.
(DOCX)

Table S3 Estimates of R for all strains, for different
scenarios of detection and overdispersion in the off-
spring distribution.
(DOCX)

Text S1 Description of supporting information.
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Box 1. Approach to Assessing the
Reproduction Number for Different
Surveillance Scenarios

This box summarizes the relationships between G (pro-
portion of detected cases infected by the reservoir), F
(proportion of first detected cases in each cluster infected
by the reservoir), and the reproduction number R, for the
different surveillance scenarios.

N If detection of a case does not affect detection of other
cases from the same cluster (surveillance scenario 1), R
can be estimated by R = 12G. This is a general result that
is independent of the case detection rate and the
overdispersion parameter.

N If detection of a case may trigger an outbreak
investigation (surveillance scenario 2), the selection bias
that arises may lead to R#12G. In addition, 12F always
acts as a lower bound to R. An upper bound for R can be
obtained if it is possible to specify an upper bound rmax

for the case detection rate and a lower bound kmin for
the overdispersion parameter k (see Text S1). If the case
detection rate is low, R can be estimated by 12F.

N If cluster information is available in surveillance scenario
1, R can be estimated by R = 12G. Furthermore, it is
possible to estimate the case detection rate by
comparing statistics F and G (see Figure 6).

Estimating the Epidemic Potential of Zoonoses

PLOS Medicine | www.plosmedicine.org 9 March 2013 | Volume 10 | Issue 3 | e1001399



References

1. Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, et al. (2009) Emergence

of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:
2605–2615.

2. Donnelly CA, Fisher MC, Fraser C, Ghani AC, Riley S, et al. (2004)
Epidemiological and genetic analysis of severe acute respiratory syndrome.

Lancet Infect Dis 4: 672–683.

3. WHO (2012) WHO Novel coronavirus infection - update. Available: http://www.
who.int/csr/don/2012_11_23/en/index.html. Accessed 28 November 2012.

4. Antia R, Regoes RR, Koella JC, Bergstrom CT (2003) The role of evolution in
the emergence of infectious diseases. Nature 426: 658–661.

5. CDC (2011) CDC Case count: Detected U.S. human infections with H3N2v by

State since August 2011. Available: http://www.cdc.gov/flu/swineflu/h3n2v-
case-count.htm#table1. Accessed 28 November 2012.

6. CDC (2012) Update: Influenza A (H3N2)v transmission and guidelines - five
states, 2011. MMWR Morb Mortal Wkly Rep 60: 1741–1744.

7. CDC (2011) Limited human-to-human transmission of novel influenza A
(H3N2) virus–Iowa, November 2011. MMWR Morb Mortal Wkly Rep 60:

1615–1617.

8. CDC (2012) Evaluation of rapid influenza diagnostic tests for influenza A
(H3N2)v virus and updated case count - United States, 2012. MMWR Morb

Mortal Wkly Rep 61: 1–3.
9. Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JR, et al. (2009)

Epidemic dynamics at the human-animal interface. Science 326: 1362–1367.

10. Ferguson NM, Fraser C, Donnelly CA, Ghani AC, Anderson RM (2004) Public
health. Public health risk from the avian H5N1 influenza epidemic. Science 304:

968–969.
11. Yang Y, Halloran ME, Sugimoto JD, Longini IM (2007) Detecting human-to-

human transmission of avian influenza a (H5N1). Emerg Infect Dis 13: 1348–
1353.

12. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and

the effect of individual variation on disease emergence. Nature 438: 355–359.
13. Nishiura H, Yan P, Sleeman CK, Mode CJ (2012) Estimating the transmission

potential of supercritical processes based on the final size distribution of minor
outbreaks. J Theor Biol 294: 48–55.

14. De Serres G, Gay NJ, Farrington CP (2000) Epidemiology of transmissible

diseases after elimination. Am J Epidemiol 151: 1039–1048.
15. CDC (2011) Swine-origin influenza A (H3N2) virus infection in two children–

Indiana and Pennsylvania, July–August 2011. MMWR Morb Mortal Wkly Rep
60: 1213–1215.

16. Lindstrom S, Garten R, Balish A, Shu B, Emery S, et al. (2012) Human

infections with novel reassortant influenza A(H3N2)v viruses, United States,

2011. Emerg Infect Dis 18: 834–837.

17. Chua KB (2003) Nipah virus outbreak in Malaysia. J Clin Virol 26: 265–275.

18. CDC (1999) Update: outbreak of Nipah virus–Malaysia and Singapore, 1999.

MMWR Morb Mortal Wkly Rep 48: 335–337.

19. Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, et al. (2000) Case-

control study of risk factors for human infection with a new zoonotic

paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis

in Malaysia. J Infect Dis 181: 1755–1759.

20. Luby SP, Gurley ES, Hossain MJ (2009) Transmission of human infection with

Nipah virus. Clin Infect Dis 49: 1743–1748.

21. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, et al. (2009) Recurrent

zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007.

Emerg Infect Dis 15: 1229–1235.

22. CDC (2010) Update on cholera — Haiti, Dominican Republic, and Florida,

2010. MMWR Morb Mortal Wkly Rep 59: 1637–1641.

23. WHO (2009) Nipah virus. Fact sheet 262. Available: http://www.who.int/

mediacentre/factsheets/fs262/en/. Accessed 9 November 2012.

24. Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, et al. (2011)

Role of social networks in shaping disease transmission during a community

outbreak of 2009 H1N1 pandemic influenza. P Natl Acad Sci U S A 108: 2825–

2830.

25. CDC (2012) Increase in influenza A H3N2v virus infections in three U.S. states.

Available: http://www.bt.cdc.gov/HAN/han00325.asp. Accessed 9 November

2012.

26. CDC (2012) Interim information for clinicians about human infections with

H3N2v virus. Available: http://www.cdc.gov/flu/swineflu/h3n2v-clinician.

htm. Accessed 9 November 2012.

27. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M (2010) Absolute

humidity and the seasonal onset of influenza in the continental United States.

PLoS Biol 8: e1000316. doi:10.1371/journal.pbio.1000316

28. Lai TL (1995) Sequential changepoint detection in quality-control and

dynamical-systems. J Roy Stat Soc B Met 57: 613–658.

29. Lai TL (2001) Sequential analysis: some classical problems and new challenges -

Rejoinder. Stat Sinica 11: 388–408.

30. Sonesson C, Bock D (2003) A review and discussion of prospective statistical

surveillance in public health. J Roy Stat Soc A Sta 166: 5–21.

Estimating the Epidemic Potential of Zoonoses

PLOS Medicine | www.plosmedicine.org 10 March 2013 | Volume 10 | Issue 3 | e1001399



Editors’ Summary

Background When a virus emerges in the human popula-
tion, such viruses can cause global epidemics potentially
harming large numbers of people. Zoonotic viruses are
viruses that are transmissible from animals to humans; the
global health threat of zoonotic viruses was recently
demonstrated by the 2009 H1N1 influenza pandemic and
the SARS epidemic in 2003. Many zoonotic viruses are
transmitted by means of an infected vector, while others can
be transmitted by inhalation, contact with infected excre-
tions, or by direct contact with an infected animal. Zoonotic
viruses primarily cause occasional infections in human
populations exposed to reservoir species (the animal species
harboring the virus) because the pathogens are usually
poorly adapted for sustained human-to-human transmission.
However, zoonotic viruses are under strong selective
pressure to acquire the ability for human-to-human trans-
mission.

Why Was This Study Done? The highly pathogenic H5N1
avian influenza epidemic was alarming to many because of
the high mortality rate in humans and its rapid spread in
avian populations. Public health response to outbreaks such
as those of H5N1 avian influenza and SARS required reliable
estimates of transmissibility (how easily it spreads between
people) and severity (the proportion of infected people who
needed hospital treatment). For efficient prevention and
control of the emerging epidemic, quantitative and rigorous
assessment of the associated risks is needed. Specifically,
health officials and researchers need fast, reliable methods
for estimating the extent to which a virus has acquired the
ability to transmit from person to person. In this study, the
authors developed a novel method to estimate a standard
measure of transmissibility, the human-to-human reproduc-
tion number R (average number of persons infected by a
human case) of a zoonotic virus, which overcomes many of
the limitations of existing methods.

What Did the Researchers Do and Find? The authors
developed a simple method to estimate the reproduction
number of emerging zoonoses from routine surveillance
data. By using two simple summary statistics, the proportion

infected by the natural reservoir among detected cases (G)
and among the subset of the first detected cases in each
cluster (F), the authors estimated R, the reproduction
number of zoonoses in humans. The authors then applied
their new approach to assess the human-to-human trans-
missibility of swine-origin influenza A variant (H1N1v, H1N2v,
and H3N2v) virus, in particular that of the H3N2v-M virus,
from US surveillance data for the period December 2005–
December 2011, Nipah virus in Malaysia and Bangladesh, as
well as to a non-zoonotic pathogen Vibrio Cholerae in the
Dominican Republic. This study demonstrates the applica-
bility of this novel approach to estimating R during zoonotic
and certain non-zoonotic outbreaks.

What Do These Findings Mean? Cauchemez and
colleagues show that their new approach will be useful in
assessing human-to-human transmissions during zoonotic
outbreaks. The authors show that their new method does
not require as much of an investigation effort as existing
methods, the statistical treatment of the data is extremely
simple, and the robustness of the method is demonstrated
even if larger clusters are more likely to be detected and if
the ability to detect all cases in a cluster once a cluster is
identified is low. This method of estimating R is designed for
the context of subcritical outbreaks, i.e., R,1. However if
R$1, other estimation methods will be needed.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/
10.1371/journal.pmed.1001399.

N The US Centers for Disease Control and Prevention’s (CDC)
National Center for Emerging and Zoonotic Infectious
Diseases provides information on infectious disease

N The CDC also has resources for pandemic flu and H3N2v

N The University of Wisconsin’s School of Veterinary medi-
cine has an online tutorial on zoonotic diseases

N The European Food Safety Authority (EFSA) also provides
comprehensive information on zoonotic diseases
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