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SUMMARY

Most solid tumors are aneuploid, and p53 has been implicated as the guardian of the euploid 

genome. Previous experiments using human cell lines showed that aneuploidy induction leads to 

p53 accumulation and p21-mediated G1 cell cycle arrest. We find that adherent 2-dimensional 

(2D) cultures of human immortalized or cancer cell lines activate p53 upon aneuploidy induction, 

whereas suspension cultures of a human lymphoid cell line undergo a p53-independent cell cycle 

arrest. Surprisingly, 3D human and mouse organotypic cultures from neural, intestinal, or 

mammary epithelial tissues do not activate p53 or arrest in G1 following aneuploidy induction. 

p53-deficient colon organoids have increased aneuploidy and frequent lagging chromosomes and 
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multipolar spindles during mitosis. These data suggest that p53 may not act as a universal 

surveillance factor restricting the proliferation of aneuploid cells but instead helps directly or 

indirectly ensure faithful chromosome transmission likely by preventing polyploidization and 

influencing spindle mechanics.

Graphical Abstract

In brief

By investigating how various cell lines and organotypic cultures respond to the induction of 

aneuploidy, Narkar et al. show that p53 does not constitute a universal surveillance mechanism 

against aneuploidy. p53 prevents aneuploidy by limiting mitotic errors in colon organoids.

INTRODUCTION

Aneuploidy refers to the state of unequal chromosome copy numbers and is one of the most 

prominent genomic aberrations in solid tumors (Beroukhim et al., 2010; Lengauer et al., 

1998; Taylor et al., 2018; Weaver and Cleveland, 2006; Zack et al., 2013). In unicellular 

eukaryotes, it was shown that aneuploidy, by altering the stoichiometry of a large number of 

genes, can result in dramatic changes in cellular phenotypes and physiology and confer 

evolutionary adaptation under selective pressure (Dephoure et al., 2014; Kaya et al., 2015; 

Pavelka et al., 2010; Selmecki et al., 2006; Sterkers et al., 2012; Sunshine et al., 2015; Torres 

et al., 2007; Yona et al., 2012). Such basic insight about aneuploidy helps explain recent 
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findings that karyotype alterations are associated with cancer initiation as well as the 

emergence of drug resistance (Cai et al., 2016; Davoli et al., 2013; Graham et al., 2017; 

Lane et al., 2014; Lee et al., 2011; Navin et al., 2011; Sack et al., 2018; Stichel et al., 2018; 

Yang et al., 2019). Indeed, cancer may be viewed as a disease of cellular evolution in a 

multicellular setting, whereby cells of metazoans turn to resembling unicellular organisms 

that are free to undergo evolutionary adaptation for better survival and proliferation through 

gross genomic alterations (Chen et al., 2015; Duesberg et al., 2001; Gerstung et al., 2020; 

Nowell, 1976).

It is thought that a key difference between mammals and freely adapting unicellular 

eukaryotes is the presence of p53 that guards genome stability by regulating the DNA 

damage response, senescence, and apoptosis. (Aylon and Oren, 2011; Hafner et al., 2019; 

Kastenhuber and Lowe, 2017; Mello and Attardi, 2018; Mijit et al., 2020; Reinhardt and 

Schumacher, 2014). The loss of functional p53 has been associated with the onset of many 

metastatic cancers with heightened chromosomal instability; in contrast, an increased p53 

gene copy number is thought to be chemopreventive (Bykov et al., 2018; Donehower et al., 

2019; Sulak et al., 2016; Wasylishen and Lozano, 2016). Studies in recent years have further 

suggested roles for p53 in limiting the proliferation of aneuploid cells. However, these 

studies were limited to established human cell lines that were chromosomally stable and 

near diploid, such as RPE1, an hTERT-immortalized retinal pigmented epithelial cell line; 

HCT116, a colon carcinoma cell line; and a few other cell lines (Cianchi et al., 1999; Giam 

et al., 2019; Hinchcliffe et al., 2016; Janssen et al., 2011; Kurinna et al., 2013; Li et al., 

2010; Potapova et al., 2016; Santaguida et al., 2017; Soto et al., 2017; Thompson and 

Compton, 2010). Recent studies also revealed complex interplay between p53 and several 

other genome-protective proteins, such as p38, H3.3, and BCL9L (Hinchcliffe et al., 2016; 

López-García et al., 2017; Simões-Sousa et al., 2018). However, it has been unclear whether 

a universal signal elicited by abnormal karyotypes may be sensed by the p53 pathway or 

whether karyotype-specific stress states are sensed through diverse mechanisms and 

converge upon p53 activation. It was also unknown whether cell type or growth environment 

could contribute to the p53-mediated response to aneuploidy.

Here, we investigated p53 regulation and downstream cell fate after aneuploidy induction in 

diverse cell culture models. We set out to answer the following three questions. (1) Is the 

relationship between aneuploidy induction and p53 activation universal? (2) What are the 

downstream cell fate consequences after acute aneuploidy induction in different types of cell 

culture models? (3) Does p53 play a direct or indirect role in faithful mitosis rather than 

sensing aneuploid cells after erroneous mitosis? Although we confirm that upon acute 

aneuploidy induction by treating cells with an inhibitor of the spindle assembly checkpoint 

(SAC) kinase MPS1 (MPS1i), p53 and p21 were upregulated and cause growth arrest in 

RPE1 and HCT116 cell lines, this response was not conserved in three-dimensional (3D) 

organotypic cultures of primary cells from mouse and human tissues. Live imaging in colon 

organoids further supports a role for p53 in mitotic fidelity, as opposed to limiting the 

proliferation of aneuploid cells.
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RESULTS

Induction of aneuploidy with MPS1i in mammalian cell lines and 3D organotypic cultures

To investigate the response to aneuploidy in a broadly representative panel of cell models, 

we included not only the previously used RPE1 and HCT116 cell lines but also Nalm6, a 

chromosomally stable pre-B cell lymphoma line that grows in suspension (Hurwitz et al., 

1979), and 3D organotypic cultures of primary cells. Potentially influential parameters also 

included different stages of development, for which we included embryonic and adult mouse 

neural progenitor cells (eNPCs and aNPCs, respectively). For 3D cultures of primary cells 

that better mimic in vivo tissues, we also included human mammary organoids (hMOs) 

(Cheung et al., 2013) and mouse colon organoids (mCOs) (Sato and Clevers, 2013). To 

induce aneuploidy, each type of culture was treated with the MPS1 inhibitor NMS-P715 

(Colombo et al., 2010) for 24 h followed by drug washout and recovery growth for 24 or 48 

h in drug-free media to alleviate any direct drug effects before various analyses (Figure 1A). 

We first quantified the percent numerical aneuploidy by chromosome counting of metaphase 

spreads 24 h after the MPS1i treatment. For RPE1, HCT116, Nalm6, hMOs, and mCOs, the 

basal whole-chromosome aneuploidy levels were low in untreated cultures, and a significant 

increase in aneuploidy percentages, to 45%–55%, was observed in each MPS1i-treated 

culture (Figure 1B). NPCs also showed increased aneuploidy after MPS1i treatment, but the 

basal aneuploidy percentages were higher, consistent with earlier reports (Rehen et al., 2005; 

Yang et al., 2003). The chromosome number distributions showed both gains and losses of 

chromosomes across most cell models, consistent with the production of aneuploidy as a 

result of random mitotic errors (Figures 1C and 1D). We also measured the doubling time 

for RPE1, HCT116, and mCOs and found it to be in the range of 16–22 h (Figure S1A). For 

metaphase spreads, Colcemid was used to arrest cells in metaphase. However, this limited 

our analysis to only cells that were able to enter mitosis, which could result in an 

underestimation of the true aneuploidy frequency. To also analyze interphase cells, we 

performed chromosome counting in RPE1, HCT116, and mCOs by using Calyculin A, 

which causes premature chromosome condensation and does not require mitotic entry. We 

observed close to 60% aneuploidy in RPE1, HCT116, and mCOs after MPS1i treatment 

using this method (Figure 1E). We also performed live-cell imaging of H2B-mNeon RPE1, 

HCT116, and mCOs and observed comparable increases in lagging chromosome frequency 

during MPS1i treatment. (Figure 1F). Together, these analyses demonstrate that we induced 

similar levels of aneuploidy in each cellular system. Importantly, our method of inducing 

aneuploidy did not involve cell synchronization, as some agents altering cell cycle 

progression may cause DNA damage (Darzynkiewicz et al., 2011; Halicka et al., 2016), 

which could activate p53. As expected, pH2AX immunoblots and immunofluorescence 

staining showed that the MPS1i treatments used in our experiments did not induce DNA 

damage (Figures S1B–S1D). We also quantified the frequency of micronuclei—a possible 

source of DNA damage following MPS1i-induced chromosome missegregation (Crasta et 

al., 2012; Terradas et al., 2009; Zhang et al., 2015). Micronuclei formed infrequently and at 

a similar frequency in MPS1i-treated RPE1, HCT116, and mCOs (Figure S1E), suggesting 

that micronuclei formation was not a source of DNA damage in our study.
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Adherent RPE1 and HCT116 but not suspension Nalm6 cells depend on p53 for growth 
arrest after aneuploidy induction

We next determined the effect of acute aneuploidy induction on p53 and the CDK inhibitor 

CDKN1A (p21), a well-studied direct transcriptional target of p53 that controls cell cycle 

progression (Dulić et al., 1994; el-Deiry et al., 1993). p53 is known to be regulated 

predominantly by posttranslational modifications that affect its stability or nuclear 

accumulation (Haupt et al., 1997; Kruse and Gu, 2009; Oren, 1999). Acute induction of 

aneuploidy using drugs that perturb mitosis or SAC led to increased p53 stabilization and a 

consequent G1 arrest upon transcriptional activation of p21 (Kollu et al., 2015; Li et al., 

2010). We observed significant increases in p53 levels in the adherent RPE1 and HCT116 

cells and suspension Nalm6 cells, but not in the NPCs or 3D organotypic cultures (presented 

further below), after aneuploidy induction using MPS1i (Figures 2A and 2B). Additionally, 

nuclear localization of p53 was confirmed in HCT116 and RPE1 cells by 

immunofluorescence staining (Figures S1F and S1G). All cell lines showed increased p53 

protein abundance upon treatment with nutlin-3 (Shen and Maki, 2011), which stabilizes p53 

by disrupting the p53-MDM2 complex, and DNA damaging agents such as doxorubicin and 

bleomycin (Figures 2A, 3A, 3B, S1F, and S1G).

p53 plays a critical role in controlling cell proliferation and death in response to stress 

(Kastenhuber and Lowe, 2017; McKinley and Cheeseman, 2017). We examined whether p53 

induction was associated with either cell cycle arrest or apoptosis by assaying DNA 

synthesis using the 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay (Salic and 

Mitchison, 2008) and apoptosis using Annexin V and propidium iodide. In MPS1i-treated 

RPE1, HCT116, and Nalm6 cells, there was a significant reduction in EdU-positive cells 

(Figures 2C and 2D), consistent with a suppression of proliferation, but these populations 

did not display a significant increase in apoptotic cells (Figure S2E). Cell cycle analysis for 

RPE1, HCT116, and Nalm6 cells showed significant G1 arrest after aneuploidy induction 

(Figures S3A and S3B). To test the requirement for p53 in mediating this arrest, we used 

TP53−/− HCT116 (Bunz et al., 2002), RPE1 TP53−/− (Lambrus et al., 2016), and TP53−/− 

Nalm6 cells generated using CRISPR-Cas9. p53 knockout was confirmed in RPE1, 

HCT116, and Nalm6 cell lines by immunoblotting (Figure S2A). These lines lacking p53 

did not show p21 upregulation after aneuploidy induction. Additional genotyping validation 

was performed for Nalm6 (Figure S2B). Deviation from the diploid chromosome number in 

these cells lacking p53 was observed even without MPS1i treatment (Figure S2C). p53 

knockout rescued cell proliferation, as indicated by the increased EdU-positive cells, in 

MPS1i-treated HCT116 and RPE1 populations (Figures 2C and 2D). However, this rescue 

was not observed in Nalm6 TP53−/− suspension cells (Figure 2D), suggesting that, although 

p53 was induced after aneuploidy, it was not required for the reduced proliferation in Nalm6 

cells. TP53−/− Nalm6, but not HCT116 or RPE1, cells also showed an increase in apoptosis 

after aneuploidy induction (Figure S2E).

3D organotypic cultures do not activate p53 or undergo growth arrest in response to 
aneuploidy

The three established cell lines (RPE1, HCT116, and Nalm6) responded to aneuploidy as 

expected despite a lack of p53 dependence for the growth arrest in Nalm6 cells, whereas we 
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did not observe an increase in p53 or p21 protein abundance after aneuploidy induction in 

3D cultures of NPCs, mCOs, or hMOs (Figures 2B, 3A, and 3B). As a positive control, 

treatment with nutlin, doxorubicin, or bleomycin increased p53 and p21 protein abundance, 

suggesting that p53 is generally functional in these cell models. Consistent with a lack of 

p53 activation in 3D organotypic cultures after aneuploidy induction, an EdU incorporation 

assay showed unimpeded cell proliferation, in contrast to reduced proliferation of the same 

cultures treated with nutlin or DNA-damaging agents (Figures 3C, 3D, and S2D). Also, cell 

cycle analysis for mCOs did not show significant G1 arrest after aneuploidy (Figure S3B). A 

recent study demonstrated that cellular architecture has profound impacts on chromosome 

segregation fidelity (Knouse et al., 2018). To rule out the possibility that the differential 

responses to aneuploidy observed between the adherent epithelial cell lines and organotypic 

cultures was due to a 2D versus 3D culture environment, we cultured HCT116 cells as 3D 

spheres in Matrigel (Figure S4A). These cells grew into spherical structures with high-level 

EdU incorporation, indicating active proliferation (Figure S4C). Upon aneuploidy induction, 

HCT116 cells cultured in 3D exhibited similar levels of p53 and p21 increase and growth 

arrest, as observed for those cultured in 2D (Figures S4B, S4C, and S4D). This result 

suggests that the difference in aneuploidy responses observed among the different cell types 

tested was unlikely attributed to 2D versus 3D culture environment.

Trp53−/− mCOs exhibit frequent mitotic aberrations

Although mCOs did not exhibit elevated p53 or G1 arrest after aneuploidy induction, mCOs 

generated from Trp53−/− mice showed around 40% aneuploidy (Figures S5A and S5B) 

compared to (Figure 1B) 15% aneuploidy in Trp53+/+ mCOs, suggesting that p53 may have 

a role in preventing aneuploidy occurrence instead of inhibiting the proliferation of 

aneuploid cells. To test this, Trp53+/+ and Trp53−/− mCOs were transduced with H2B-

mNeon, and mitotic cell divisions were observed using live 3D confocal imaging (Videos S1 

and S2). Mitotic aberrations including multipolar divisions and lagging chromosomes were 

quantified from the live movies. The fraction of cells exhibiting lagging chromosomes was 

increased in Trp53−/− when compared to Trp53+/+ mCOs, and there was also an increase in 

multipolar divisions (Figures 4A and 4B; Videos S3 and S4). In the presence of low-dose 

nocodazole, the time in mitosis (from nuclear envelope breakdown [NEBD] to anaphase 

onset) was lengthened significantly in both Trp53+/+ and Trp53−/− mCOs, suggesting that 

p53 loss did not disrupt canonical kinetochore-based SAC signaling (Figure 4C). 

Interestingly, induction of SAC by low-dose nocodazole reduced the frequency of lagging 

chromosomes in Trp53−/− mCOs, suggesting that lengthening mitotic duration facilitates 

error correction in the p53-deficient background. The lagging chromosomes could occur 

secondary to polyploidization or centrosome amplification (Fukasawa et al., 1996; Galipeau 

et al., 1996; Lopes et al., 2018). Analysis of nuclear volume immediately before (G2) and 

after (G1) mitosis from the videos confirmed nuclear volume scales with DNA content 

(Figure 4D). The G2 nuclear volume of cells with lagging chromosomes in bipolar spindles 

was not significantly different from cells undergoing normal mitoses (Figure 4D). In 

contrast, the average G2 nuclear volume of cells that underwent multipolar divisions was 

approximately double that of cells with normal divisions (Figure 4D). This finding suggests 

that tetraploidization occurred prior to multipolar divisions but was not the cause of lagging 

chromosomes in Trp53−/− cells with bipolar mitoses. Centrosome amplification, independent 
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of genome doubling, gives rise to lagging chromosomes (Ganem et al., 2009). In Trp53−/− 

mCOs, increased centrosome number determined by pericentrin immunofluorescence was 

exclusively associated with increased mitotic chromatin volume (Figure 4E). Total 

pericentrin fluorescence intensity per centrosome was similar in cells with two centrosomes 

and those with more than two centrosomes in Trp53+/+ and Trp53−/− mCOs (Figure S5C), 

indicating centrosome clustering was not impeding our ability to accurately count 

centrosome number. This result suggests that extra centrosomes are associated with 

tetraploidization in Trp53−/− mCOs. Therefore, centrosome amplification is unlikely to be 

the cause of lagging chromosomes in diploid Trp53−/− cells in mCOs.

DISCUSSION

We have examined the generality of p53 upregulation and cellular responses after acute 

induction of aneuploidy in a variety of cell models linked to different tissue origins and 

growth environments. Based on earlier findings in immortalized and cancer cell lines such as 

RPE1 and HCT116, our original interest was to identify aneuploidy-associated signals that 

induce p53 activation in these cells. However, our inability to generate a similar response in 

NPCs and the observation of a p53-independent response in Nalm6 pre-B lymphocytes 

suggested to us that p53 activation after aneuploidy induction is not necessarily a universal 

response but may be more cell line specific. This led us to conduct a more comprehensive 

investigation of cellular responses in 3D organoid cultures. We found that induction of 

aneuploidy does not result in p53 accumulation or cell proliferation arrest in organotypic 

cultures from epithelial tissues of neural, intestinal, and mammary origins from mouse or 

human. The p53 response and cell cycle fate after aneuploidy induction in each of the 

cellular systems used in our study are summarized in Table S1. Testing organoids derived 

from a broader range of tissues will allow further assessment of the generality of our 

findings.

We recognized that two previous studies found that not all aneuploid RPE1 cells resulting 

from erroneous mitoses activate p53 (Santaguida et al., 2017; Soto et al., 2017). Those 

studies concluded that the p53-mediated G1 arrest may be more associated with complex 

aneuploidy or structural aneuploidy in RPE1 cells. Our data in RPE1 and HCT116 cells do 

not contradict these conclusions but differ in the degree of p53 induction. Also, our data do 

not address the nature of the signal that activates p53. In our experiments, the 24-h MPS1i 

treatment did not induce DNA damage, although we cannot rule out that continued 

propagation of aneuploid cells in organotypic cultures could lead to DNA damage and p53 

activation at a later time. Responses to aneuploidy induction in the Drosophila brain varied 

in different cell types and at different times (Mirkovic et al., 2019). The different p53 

response observed in our study was also unlikely to be due strictly to a 2D versus 3D 

culturing system because 3D cultures of HCT116 cells showed a similar p53 response to 

those cultured in 2D.

Given that 3D organotypic cultures of primary cells are better mimics of native tissues than 

immortalized or cancer cell lines (Schutgens and Clevers, 2020), our findings do not support 

the notion that p53 acts in a surveillance mechanism against aneuploidy in vivo. It is 

possible that stress associated with artificially immortalized or cancer cell lines passaged in 
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the conventional cell culture environment combined with the stress caused by aneuploidy 

can trigger p53 accumulation and cell cycle arrest. Interestingly, the Nalm6 pre-B 

lymphocyte cell line showed a p53-independent cell cycle arrest following aneuploidy 

induction, suggesting that another yet unidentified mechanism exists to limit the 

proliferation of aneuploid blood cells. This may be in line with the observation that certain 

hematological cancers show lower TP53 mutational rates (Olivier et al., 2010; Prokocimer et 

al., 2017; Robles et al., 2016). Further studies are warranted to understand the specific 

molecular mechanisms driving the differences in p53 response to aneuploidy induction.

Although our data do not support a role for p53 in aneuploidy surveillance in organotypic 

cultures, there is strong evidence indicating that the loss of p53 is associated with 

chromosome instability and poor prognosis in the development of several cancers 

(Donehower et al., 2019; Foijer et al., 2014; Fujiwara et al., 2005; Watson and Elledge, 

2017), and a majority of tumors show varied TP53 mutations (Clausen et al., 1998; Muller 

and Vousden, 2013). Live-cell imaging of Trp53+/+ and Trp53−/− mCOs showed that mitotic 

errors, including lagging chromosomes and multipolar mitoses, occurred frequently in cells 

lacking p53, consistent with several published studies (Artegiani et al., 2020; Drost et al., 

2015). Our analysis also indicates that tetraploidization is likely to be a precursor to 

multipolar divisions in Trp53−/− mCOs. There has been significant debate surrounding the 

role of p53 in suppressing the division of tetraploid cells (Andreassen et al., 2001; Ganem 

and Pellman, 2007; Horii et al., 2015; Uetake and Sluder, 2004; Wong and Stearns, 2005). 

Recent work showed that p53 transcriptionally regulates multiple genes important for 

mitotic processes, including Aurka, Foxm1, and Plk4, and that a loss of p53 leads to 

polyploidization during liver regeneration in vivo (Kurinna et al., 2013). Aberrant expression 

of these mitotic genes in the absence of p53 may drive tetraploidization and lead to 

multipolar divisions in Trp53−/− mCOs. Importantly, tetraploidization was found to be 

sufficient to drive tumorigenesis in cells lacking p53 (Fujiwara et al., 2005).

The underlying cause of the observed lagging chromosomes in Trp53−/− mCOs remains 

unclear. An increase in lagging chromosomes was also reported for p53-deficient human 

liver and colon organoids (Artegiani et al., 2020; Drost et al., 2015). Our results suggest that 

lagging chromosomes in bipolar divisions do not occur secondarily to polyploidization or 

centrosome amplification. p53 loss does not appear to disrupt SAC activation induced by 

nocodazole treatment, and in fact, SAC activation reduced the occurrence of lagging 

chromosomes. It is thus possible that the loss of p53 directly or indirectly leads to the type 

of mitotic problems, such as faulty kinetochore-microtubule attachments, that can be 

corrected when mitosis is lengthened by SAC. Interestingly, lagging chromosomes can 

impede cytokinesis and result in the generation of tetraploid cells (Lens and Medema, 2019; 

Shi and King, 2005; Steigemann et al., 2009). Thus, it is possible that lagging chromosomes 

in Trp53−/− mCOs contribute to the generation of tetraploid cells that then undergo 

multipolar divisions. A better understanding of the precise role for p53 in suppressing 

aneuploidy in physiological settings may allow for the development of therapeutics for the 

prevention of mitotic abnormalities and, ultimately, cancers associated with p53 loss.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Rong Li (rong@jhu.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The published article includes all datasets and code 

generated or analyzed during this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Wild-type C57BL/6J were purchased from the Jackson Laboratory and Trp53−/− 

mice (The Jackson Laboratory) were a gift from Andrew Holland’s lab. Mice used for NPC 

and colon organoid isolation were between 6 and 12 weeks old. Male and female wild-type 

mice were used for NPC and colon organoid isolation and male Trp53−/− mice were used for 

colonoid isolation. All mouse care and use were approved by the Institutional Animal Care 

and Use Committee at the Johns Hopkins University.

Tissues—Normal mammary reduction samples were acquired from the Cooperative 

Human Tissue Network in compliance with a study protocol (NA_00077976) that was 

categorized as exempt/not human subject research by the Johns Hopkins School of Medicine 

Institutional Review Board. Each sample was deidentified prior to receipt and shipped 

overnight in basal DMEM/RPMI medium.

Cell culture—hTERT-RPE1 were grown at 37°C in 5% CO2 in DMEM supplemented with 

10% fetal bovine serum (FBS). RPE-1 TP53−/− cells were a gift from Andrew Holland’s lab. 

HCT116 cells were grown at 37°C in 5% CO2 in McCoy’s media supplemented with 10% 

fetal bovine serum (FBS). HCT116 TP53−/− cells were a gift from Bert Vogelstein lab. 

Nalm6 cells were a gift from Mike Tyers’ lab and were grown at 37°C in 5% CO2 in RPMI 

supplemented with 10% fetal bovine serum (FBS). Nalm6 TP53−/− cells were generated in-

house using lentiCRISPRV2. TP53 knockout was confirmed by sequencing and western blot 

validation. Neuronal Progenitor cells isolated from embryonic mouse brain (frontal) and 

adult 10-week-old mice SVZ and DG areas and cultured as neurospheres on ultra-low 

attachment plates using DMEM and Ham’s F-12 medium in a 1:1 ratio (DMEM/F-12; 

Omega Scientific, cat. no. DM-25) B27 serum-free supplement (B27; Invitrogen/GIBCO, 

cat. no. 17504-044) Basic fibroblast growth factor-2 (FGF-2; PeproTech, cat. no. 100-18B-

B) Epidermal growth factor (EGF; PeproTech, cat. no. 100-15) l-Glutamine (Invitrogen/

GIBCO, cat. no. 2503-081) Antibiotic-antimycotic (Anti-Anti; Invitrogen/GIBCO, cat. no. 

15240-062) as previously described in Guo et al. (2012).

Colonoid isolation and culture—Mouse colon organoids were generated from wild-

type C57BL/6J and Trp53−/− mice. All mouse care and use were approved by the 

Institutional Animal Care and Use Committee at the Johns Hopkins University. Trp53−/− 

genotype was determined using the following primers: 5′-
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CCCGAGTATCTGGAAGACAG-3′ and 5′-ATAGGTCGGCGGTTCAT-3′. Murine colon 

organoids were generated as previously described (Sato et al., 2011). The distal third of the 

colon was removed and rinsed with PBS. The distal colon was placed in complete chelating 

solution and minced. Minced tissue was then incubated with 150 rpm shaking in 31.25 mM 

EDTA in chelating solution for 30 minutes-1 hours at 4°C to release crypts. Tissue 

fragments were allowed to settle and supernatant containing crypts was collected. Crypts 

were centrifuged at 200 × g for 5 minutes and embedded in Matrigel and seeded on 24 well 

plates. After solidification of Matrigel, 500 μl WENR culture medium was added (Sato et 

al., 2011). Media was changed every 2 days and mCO were passaged using enzymatic 

dissociation with TrypLE Express every 7 days.

Generation of primary human mammary organoids—Normal mammary reduction 

samples were acquired from the Cooperative Human Tissue Network in compliance with a 

study protocol (NA_00077976) that was categorized as exempt/not human subject research 

by the Johns Hopkins School of Medicine Institutional Review Board. Each sample was 

deidentified prior to receipt and shipped overnight in basal DMEM/RPMI medium. Upon 

receipt, samples were washed with an anti-fungal solution, minced, and digested in a 

collagenase (Sigma C2139) solution. Normal mammary epithelial organoids were then 

enriched by performing a series of differential centrifugation steps, as previously described 

(Nguyen-Ngoc et al., 2012). Mammary organoids were then embedded in growth factor 

reduced Matrigel and cultured in the presence of medium containing EGF, hydrocortisone, 

insulin, and cholera toxin (Cheung et al., 2013).

METHOD DETAILS

Lentivirus production—Plasmids used: pMD2.G, psPAX2, pLV-H2B-Neon-ires-Puro. 

HEK293FT cells were co-transfected with the lentiviral transfer plasmid, packaging 

plasmid, and envelope plasmid. Media containing lentivirus was collected 24 and 48 hours 

after transfection. Lentivirus was concentrated using a centrifugal filter (Amicon Ultra-15, 

100,000 NMWL). Lentiviral titer was determined by qPCR (abm qPCR Lentivirus Titration 

Kit, cat. # LV900).

Live imaging—mCO, HCT116 and RPE1 were transduced with H2B-Neon lentivirus as 

described previously (Bolhaqueiro et al., 2018, 2019). Following transduction, mCO were 

cultured in WENR culture media for 5–7 days. mCO were then dissociated to single cells 

and allowed to grow for 2 days in WENR culture media. Then, cells stably expressing the 

construct were selected with 1 μg/ml puromycin for 2–4 days. Transduced HCT116 and 

RPE1 cells were selected beginning 48 hours after addition of lentivirus using 1 μg/ml and 3 

μg/ml puromycin, respectively. For live imaging, mCO, HCT116 and RPE1 were seeded on 

8-well coverglass bottom chamber slides. 3–5 days after seeding for mCO and 2 days after 

seeding HCT116 and RPE1 cells were imaged using a laser-scanning confocal microscope 

(Zeiss 780). The environmental chamber was maintained at 37°C with 5% CO2. Cells were 

imaged with a 40x water-immersion objective. Cells were imaged every 3–3.5 minutes with 

15–20 2.0 μM z slices for mCO and 15–20 1.0 μM z slices for HCT116 and RPE1. Images 

were processed using a custom ImageJ macro modified from the ImageJ plugin “Temporal-

Color Code” (Miura, 2010). Mitotic errors were scored manually.
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Metaphase chromosome spreads—Chromosome spreads were obtained by arresting 

cells in mitosis in Karyomax Colcemid solution (1:100; Life Technologies) for 4–8 h, 

followed by harvesting using trypsin and/or accutase. Trypsinized cells were collected by 

centrifugation for 5 min at 300 × g and gently resuspended in a small amount of medium (~1 

ml). Resuspended cells were allowed to swell for 7–10 min in 0.4% KCl solution at room 

temperature and prefixed by addition of freshly prepared methanol: acetic acid (3:1) fixative 

solution (~100 μL per 10 mL of total volume). Prefixed cells were collected by 

centrifugation and fixed in methanol:acetic acid (3:1) fixative solution. Spreads were 

dropped on a glass slide and incubated at 65°C for at least 1 h. For counting, spreads were 

mounted in Vectashield containing 4′,6-diamidino-2-phenylindole (DAPI; Vector 

Laboratories, Burlingame, CA), imaged on a Nikon TiE-Eclipse epifluorescence microscope 

(60 × oil immersion objective), and counted using the Cell Counter plug-in in ImageJ 

(Schneider et al., 2012)

Immunoblotting—Mammary organoids were isolated from Matrigel by incubation with 

dispase (Corning) at 37°C for 1 hr. Digestion was terminated by addition of 5 mM EDTA 

and organoids resuspended by trituration. Colon organoids were isolated from Matrigel by 

shaking at 150 rpm at 4°C in Cell Recovery Solution (Corning). Organoids and cells were 

pelleted at 200 g for 5 min and resuspended in RIPA buffer (50 mM Tris pH 8.0, 150 mM 

sodium chloride, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) containing Complete 

Mini Protease Inhibitor Cocktail (Roche). Lysates were homogenized by vortexing, 

incubated on ice for 20 min, and centrifuged at 13,000 rpm at 4°C for 20 min. Protein 

concentration of supernatants was measured using Bradford dye (Bio-Rad) on a 

spectrophotometer. Lysates were diluted in 5X sample buffer (250 mM Tris pH 6.8, 50% 

glycerol, 5% β-mercaptoethanol 0.025% bromophenol blue, 5% SDS). Samples were 

separated on homemade polyacrylamide gels or Bolt 4–12% Bis-Tris Plus gels 

(ThermoFisher) and transferred to Immobilon-P membranes (Millipore) via wet transfer or 

PVDF membranes via iBlot dry transfer (ThermoFisher). Membranes were blocked with 5% 

milk in TBST (50 mM Tris pH 8.0, 150 mM NaCl, 0.1% Tween-20) for 1 hr at room 

temperature. Membranes were incubated in primary antibodies diluted in 5% milk in TBST 

at 4°C with rocking for 16 hr and washed with TBST for 10 min thrice. Membranes were 

incubated in secondary antibodies diluted in TBST at room temperature with rocking for 1 

hr and washed with TBST for 10 min thrice. Membranes were incubated in ECL Prime 

Western Blotting Detection Reagent (GE Healthcare) for 5 min and imaged on an 

ImageQuant LAS 4000 luminescent image analyzer (GE Healthcare).

Immunofluorescence—For p53 and pH2AX immunofluorescence, cells were fixed in 

4% PFA/PBS for 15 min and permeabilized with 0.5% Triton X-100. Blocking was done 

with 5% boiled normal goat serum in PBS/0.5% Triton X-100. Primary and secondary 

antibodies were diluted in 2.5% (wt/vol) bovine serum albumin (BSA)/PBS/0.5% Triton 

X-100. Specimens were incubated with primary antibodies overnight, washed three times for 

5–10 min, and incubated with fluorescently conjugated secondary antibodies for 2–4 h. All 

washes were performed with PBS/0.5% Triton X-100. DNA was counterstained with DAPI 

or Hoechst 33342 (Thermo Fisher Scientific). Vectashield (Vector Laboratories) was used 

for mounting. p53 and pH2AX images were acquired with the Nikon TiE-Eclipse 
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fluorescence microscope (20 × air and 60 × oil immersion objectives). For p53 

immunofluorescence, three or four tiled images containing hundreds of cells were analyzed 

to determine the mean number of positive cells and the SD. At least 30 cells were imaged for 

each condition. Data were visualized and analyzed using ImageJ. After background 

subtraction, images were thresholded and the area of each object quantified using 

MetaMorph software. For pericentrin IF in mCO, cells were grown in 8 well glass-bottom 

coverslides and fixed with 4% paraformaldehyde for 10 min. Cells were permeabilized with 

for 1 hour at room temperature with 0.5% Triton X-100 in PBS and blocked for 3 hours at 

room temperature with 10% FBS + 0.1% Triton X-100 in PBS. Primary and secondary 

antibodies were diluted in 2% FBS + 0.1% Triton X-100. Specimens were incubated with 

primary antibodies overnight, washed three times for 10 minutes, and incubated with 

fluorescently conjugated secondary antibodies for 2 hours. All washes were performed with 

PBS. DNA was counterstained with DAPI and F-actin was labeled with Alexa Fluor 555 

Phalloidin. Images were acquired using an LSM780 confocal microscope (40x water 

immersion objective). At least 8 organoids were imaged per condition.

EdU labeling—For EdU incorporation assays, cells were typically seeded in multiwell 

black, optically clear bottom, tissue culture–treated plates (PerkinElmer) for imaging and 

treated with 10 μM EdU (Thermo Fisher Scientific) for the indicated times. Cells were fixed 

in 4% paraformaldehyde (PFA)/phosphate-buffered saline (PBS) for 15 min and then 

permeabilized with 0.5% Triton X-100. Fixed cells were washed with PBS and stained with 

1 μM Alexa Fluor 488 or Alexa Fluor 555–conjugated azide diluted in PBS containing 2 

mM CuSO4 and 50 mM ascorbic acid. To counterstain the DNA, Hoechst 33342 was added 

to 2 μg/ml. Cells were incubated for several hours or overnight at room temperature 

protected from light and evaporation and then washed three times with PBS. Later they were 

subjected to imaging using Nikon TiE-Eclipse epifluorescence microscope (60 × oil 

immersion objective) and/or Attune flow analyzer.

Image analysis—Nuclear and mitotic chromatin volumes in mCO were calculated using 

the commercial software Imaris, version 9.5. Nuclei and mitotic chromatin were segmented 

by H2B-mNeon (live imaging) or DAPI (fixed cells) fluorescence using the “Surface” 

function of Imaris. Volume of the generated surfaces was quantified and reported. 

Centrosomes were segmented using the “Spots” function of Imaris. Centrosome number per 

mitotic cell was manually counted following segmentation.

Doubling time analysis—Cell population doubling time was quantified in HCT116, 

RPE1, and Trp53+/+ H2B-mNeon mCO. For the 2D cell lines (HCT116 and RPE1), cell 

number was counted using flow cytometry. Dead cells were identified and excluded from the 

cell count by staining with 1 μg/mL propidium iodide. To quantify mCO doubling time, 

Trp53+/+ H2B-mNeon mCO were dissociated to single cells using TrypLE Express Enzyme 

(GIBCO, catalog 12604013) and plated in a 96 well glass-bottom imaging plate at a density 

of 3,000 cells per well. Twenty randomly selected mCO were imaged using a using a laser-

scanning confocal microscope (Zeiss 780). Nuclei number per organoid was quantified by 

segmenting individual nuclei using the “Surface” function of Imaris as described above. 
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Doubling time was calculated by: g =
ln N(t)

N(0)
t . g = growth rate, N = average cell number, t = 

24 hours. Doubling time  = ln(2)
g .

Drug Treatments—We used the following chemical inhibitors: MPS1 Inhibitor (NMS-

P715) 0.4 μM for NPC and 1μM for all other cell lines and organoid cultures, Nutlin-3 at 1–

5 μM, Bleomycin at 2.5 μg/ml, Doxorubicin at 0.5–5 μM, ZM 447439 at 1 μM, Nocodazole 

at 80nM and CalyculinA at 50 nM.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of biological replicates, the number of cells analyzed per biological replicate, 

and the statistical test performed are indicated in the figure legends. A biological replicate 

was defined as tissue or cells harvested from a single mouse or patient sample. Statistical 

tests performed and figures generated using Prism (GraphPad) and/or R-Studio. For all 

statistical tests, a cutoff of p < 0.05 was used to indicate significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell lines exhibit variable p53 dependence in growth arrest after aneuploidy

• Aneuploidy induction does not activate p53 or arrest growth in organotypic 

cultures

• p53 knockout increases mitotic errors and aneuploidy production in colon 

organoids
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Figure 1. Induction of aneuploidy with MPS1i in mammalian cell lines and 3D organotypic 
cultures
(A) Schematic of the workflow to induce aneuploidy and detect p53 regulation in RPE1, 

HCT116, Nalm6, neural progenitor cells (NPCs), and organoids and downstream cell fate 

analysis.

(B) Representative images of metaphase spreads from untreated and MPS1i-treated RPE1 

cells (top). Quantification of the percent of metaphase spreads with an aneuploid 

chromosome number in each cellular model (bottom). Cell lines RPE1, HCT116, Nalm6, 

human mammary organoid (hMO), and mouse colon organoid (mCO) were treated with 1 

μM MPS1i and 400 nM for mouse NPCs for 24 h, followed by drug washout and recovery 

growth in drug-free media for 24 h before sample collection. n ≥ 3 biological replicates; n ≥ 

30 mitoses counted for each condition per replicate. Scale bar, 10 μm.
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(C and D) Histograms represent the number of spreads with the indicated number of 

chromosomes by metaphase spreads of cell lines and organoid cultures as described in (B).

(E) Percent aneuploidy for calyculin-A-treated RPE1, HCT116, and mCOs. n ≥ 30 mitotic 

spreads counted for each condition.

(F) Lagging chromosome frequency quantified by live-cell imaging of H2B-mNeon-labeled 

cells. MPS1i was added 1 h prior to the start of imaging. n = 3 biological replicates, n > 120 

mitoses scored per condition for mCO and HCT116, and n > 40 mitoses scored per 

condition for RPE1.

Error bars represent mean ± SEM. *p ≤ % 0.05; **p ≤ % 0.01; ***p ≤ % 0.001; one-tailed 

Fisher’s exact test (B, D, and E) and one-way ANOVA (F); n.s., not significant.
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Figure 2. Adherent RPE1 and HCT116 but not suspension Nalm6 cells depend on p53 for growth 
arrest after aneuploidy induction
(A) Levels of p53 and p21 as determined by immunoblot analysis. Unsynchronized 

populations of mammalian cell lines RPE1, HCT116, and Nalm6 and NPCs either untreated 

or MPS1i treated for 24 h followed by drug washout and recovery growth in drug-free media 

for 24 h or 48 h. Bleomycin, doxorubicin, and nutlin were used as positive controls for p53 

and p21 induction. GAPDH served as a loading control.

(B) Quantification of p53 fold change by densitometry analysis; n ≥ 3 biological replicates 

of the data in (A).

(C) Representative fluorescence-activated cell sorting (FACS) profiles of EdU incorporation 

in untreated, MPS1i-treated with drug-free recovery, and nutlintreated TP53+/+ or TP53−/− 

RPE1 cells.
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(D) Quantification of the percentages of EdU+ cells from the FACS data; n ≥ 3 biological 

replicates in the same experiment as in (C). Graphs show mean ± SEM. *p ≤ % 0.05, **p ≤ 

% 0.01, ***p ≤ % 0.001; multiple t test (B) and one-tailed Fisher’s exact test (D); n.s., not 

significant.
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Figure 3. 3D organotypic cultures do not activate p53 or undergo growth arrest in response to 
aneuploidy
(A) Representative immunoblots from mCOs and hMOs showing p53 and p21 protein 

abundance after aneuploidy induction with MPS1i and positive-control cells treated with 

bleomycin, nutlin, or doxorubicin.

(B) Quantification of p53 and p21 fold change by densitometry analysis; n ≥ 3 biological 

repeats of the data in (A).

(C) Quantification of the percentages of EdU+ cells from the FACS data; n ≥ 3 biological 

replicates in Trp53+/+ and Trp53−/− mCOs either untreated or treated with MPS1i, followed 

by EdU incorporation for 16 h.

(D) 3D reconstruction of a hMOs showing EdU+ cells along with quantification; n ≥ 3 

biological replicates. Scale bar, 20 μm.
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Graphs show mean ± SEM. *p ≤ % 0.05, **p ≤ % 0.01, ***p ≤ % 0.001; multiple t test (B) 

and one-tailed Fisher’s exact test (D); n.s., not significant.
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Figure 4. Trp53−/− mCOs exhibit frequent mitotic aberrations
(A) Representative frames from time-lapse videos of Trp53+/+ and Trp53−/− mCOs with 

chromosomes labeled with H2B-mNeon undergoing normal mitosis (top row), mitosis with 

lagging chromosomes (middle row), and multipolar mitosis (bottom row). Arrowheads 

indicate relevant mitotic aberrations. Scale bars, 10 μm.

(B) Quantification of the percentage of mitoses with a mitotic error in untreated and 80 nM 

nocodazole-treated Trp53+/+ and Trp53−/− mCOs. Each data point represents one organoid. 

Percentage was obtained by dividing the number of mitoses with an error by the total 

number of mitoses observed. n ≥ 6 organoids observed per condition, n > 150 divisions 

scored for untreated Trp53+/+ and Trp53−/−, and n > 80 divisions scored for nocodazole-

treated Trp53+/+ and Trp53−/−.
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(C) Quantification of time from nuclear envelope breakdown (NEBD) to anaphase onset. 

Points with black outlines represent the mean of one organoid. Light-gray points represent 

one mitosis. n > 150 divisions scored for untreated Trp53+/+ and Trp53−/−, and n > 80 

divisions scored for nocodazole-treated Trp53+/+ and Trp53−/−.

(D) Quantification of nuclear volume immediately prior to (G2) or after (G1) mitosis in 

H2B-mNeon Trp53−/− mCO.s Each point represents one nucleus. n ≥ 6 organoids observed 

per replicate.

(E) Quantification of mitotic chromatin volume and centrosome number of dividing cells in 

Trp53+/+ and Trp53−/− mCOs. Chromatin was labeled using DAPI, and centrosome number 

was quantified by pericentrin immunofluorescence (IF) staining. n ≥ 8 organoids per 

replicate.

Bars in (B) and (C) represent mean ± SEM of n ≥ 6 total organoids for n = 3 independent 

experiments. Lines in (D) and (E) represent mean of all data points. *p ≤ % 0.05, **p ≤ % 

0.01, ***p ≤ % 0.001; Wilcoxon rank-sum test (B and C) or unpaired Welch’s unequal 

variances t test (D and E). See also Videos S1, S2, S3, and S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-p53 [DO-1], mouse monoclonal Abcam Cat# ab1101; RRID:AB_297667

Anti-p53 (1C12), mouse monoclonal Cell Signaling Cat# 2524; RRID:AB_331743

Anti-p21 Waf1/Cip1 (12D1), rabbit monoclonal Cell Signaling Cat# 2947; RRID:AB_823586

Anti-p21 Waf1/Cip1 (F-5), mouse monoclonal Santa Cruz Cat# sc-6246; RRID:AB_628073

Anti-GAPDH (D16H11), rabbit monoclonal Cell Signaling Cat# 5174; RRID:AB_10622025

Anti-pericentrin, mouse monoclonal BD Biosciences Cat# 611814; RRID:AB_399294

Anti-phospho-histone H2A.X (Ser-139), rabbit monoclonal Cell Signaling Cat #9718; RRID:AB_2118009

Anti-rabbit IgG, HRP-linked Antibody Cell Signaling Cat# 7074; RRID:AB_2099233

Anti-mouse IgG, HRP-linked Antibody Cell Signaling Cat# 7076; RRID:AB_330924

Alexa Fluor 488 Polyclonal Antibody ThermoFisher Cat# A-11094; RRID:AB_221544

Biological samples

Normal human mammary reduction samples Cooperative Human Tissue Network https://www.chtn.org/

Chemicals, peptides, and recombinant proteins

NMS-P715 EMD/Millipore Cat# 475949

Nutlin-3 Sigma Aldrich Cat# N6287

Bleomycin EMD/Millipore Cat# 203410

Nocodazole Sigma Aldrich Cat# M1404

ZM 447439 Selleckchem Cat# S1103

Calyculin A Cayman Chemical Cat# 19246

Doxorubicin Sigma Aldrich Cat# AMBH324A4B72

Critical commercial assays

Click-iT EdU Alexa Fluor 488 Invitrogen Cat# C10420

Annexin V, Alexa Fluor 488 conjugate Invitrogen Cat# A13201

Experimental models: cell lines

RPE-1 hTERT ATCC CRL-4000

RPE-1 TP53−/− Laboratory of Andrew Holland N/A

HCT116 Laboratory of Bert Vogelstein N/A

HCT116 TP53−/− Laboratory of Bert Vogelstein N/A

Nalm6 Laboratory of Mike Tyers N/A

Nalm6 TP53−/− This study N/A

Experimental models: organisms/strains

Mouse: wild-type C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:000664

Mouse: B6.129S2-Trp53tm1Tyj/J The Jackson Laboratory RRID:IMSR_JAX:002101

Recombinant DNA

pLV-H2B-Neon-ires-Puro Bolhaqueiro et al., 2018, 2019 N/A

pMD2.G Laboratory of Didier Trono RRID:Addgene_12259

psPAX2 Laboratory of Didier Trono RRID:Addgene_12260

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

IMARIS Oxford Instruments 2021 https://imaris.oxinst.com/

Prism (version 8) Graphpad N/A

R, version 3.6.1 R Core Team, 2019 https://www.R-project.org/

RStudio, version 1.1.463 RStudio Team, 2020 https://www.rstudio.com/

ggplot2, version 3.2.1 Wickham, 2016 https://ggplot2.tidyverse.org/
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