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Abstract: Lipoxygenases have proven to be a potential biocatalyst for various industrial applications.
However, low catalytic activity, low thermostability, and narrow range of pH stability largely limit
its application. Here, a lipoxygenase (LOX) gene from Enterovibrio norvegicus DSM 15893 (EnLOX)
was cloned and expressed in Escherichia coli BL21 (DE3). EnLOX showed the catalytic activity of
40.34 U mg−1 at 50 ◦C, pH 8.0. Notably, the enzyme showed superior thermostability, and wide pH
range stability. EnLOX remained above 50% of its initial activity after heat treatment below 50 ◦C for
6 h, and its melting point temperature reached 78.7 ◦C. More than 70% of its activity was maintained
after incubation at pH 5.0–9.5 and 4 ◦C for 10 h. In addition, EnLOX exhibited high substrate
specificity towards linoleic acid, and its kinetic parameters of Vmax, Km, and Kcat values were
12.42 mmol min−1 mg−1, 3.49 µmol L−1, and 16.86 s−1, respectively. LC-MS/MS analysis indicated
that EnLOX can be classified as 13-LOX, due to its ability to catalyze C18 polyunsaturated fatty acid
to form 13-hydroxy fatty acid. Additionally, EnLOX could improve the farinograph characteristics
and rheological properties of wheat dough. These results reveal the potential applications of EnLOX
in the food industry.

Keywords: lipoxygenase; Enterovibrio norvegicus; characterization; application

1. Introduction

Lipoxygenases (LOXs) are a family of non-heme iron dioxygenases, which catalyze
the regiospecific and stereospecific insertion of molecular oxygen in polyunsaturated fatty
acids (PUFAs), containing 1-Z, 4-Z-pentadiene moieties into hydroperoxides fatty acid
with (Z), (E)-diene conjugations [1–3]. LOXs have a broad potential for application in food,
chemical, and pharmaceutical industries, of which the application prospects in dough
products are due to the reinforcement effect by enhancing the gluten network [4,5]. LOX
is extracted mainly from soybean powder [6–9], which contains multiple enzymes, and
may reduce the catalyzing effects of LOX and produce unpleasant odor after the catalytic
process, thus, limiting the application of LOXs in flour products [7,10,11]. Hence, the
hunt for LOXs with desired properties has gained widespread attention for its application
prospects in dough products.

LOXs are widely found in animals, plants, and microorganisms, but only microbial-
LOXs are of industrial significance due to its high yield, low cost, and simple preparation
process [12,13]. To date, many LOXs from microorganisms have been characterized [14,15],
especially LOXs from Anabaena [16], Burkholderia thailandensis [15], Pseudomonas aerugi-
nosa [14], and Myxococcus xanthus [1]. However, these LOXs cannot meet all the require-
ments of high catalytic activity, good thermostability, and wide pH-stability simultaneously.
Directed evolution, rational design, and semi-rational design were used to improve bio-
chemical characteristics of LOX [17–20]. Consensus design method was used to improve
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the thermostability of LOX from Anabaena [21]; the specific activity of P. aeruginosa LOX
was improved using the fused self-assembling amphipathic peptides [19]. Although re-
searchers have made a lot of efforts to improve the properties of LOXs by protein engi-
neering [17,19,21], LOX, with the comprehensive properties, has not yet been obtained.
Meanwhile, these methods are dependent on the analysis of crystal structures or the estab-
lishment of a high-throughput screening library, and it is hard to obtain mutant enzymes
with superior properties in a short period of time [20]. Therefore, microbial-LOXs have
been reported to not be suitable for industrial application, which calls for high yield, high
purity, acid and alkali resistance, good thermal stability, and high catalytic activity [7,21].
Considering the demand of LOXs with satisfactory properties, it is reasonable to gain new
types of high-efficiency, thermo-stable, and wide pH-range stable LOXs by excavating the
genetic reservoir in nature [20,22].

In this study, a novel LOX gene from E. norvegicus DSM 15893 was analyzed using
bioinformatics technology, then cloned and expressed in Escherichia coli BL21 (DE3). The
properties of the recombinant E. norvegicus LOX (EnLOX) have been characterized. More-
over, the influence of EnLOX on the farinograph characteristics and rheological properties
of dough were evaluated.

2. Materials and Methods
2.1. Strains, Plasmids, and Reagents and Study Design

The LOX coding gene from E. norvegicus DSM 15893 (accession number WP_074927588)
was codon-optimized and cloned to the plasmid pET-28a (+) with Nde I and Xho I, as the
inserted restriction sites by Genewiz. E. coli strains DH5α (Novozymes, Wilmington,
USA) and BL21 (DE3) (Novozymes, Wilmington, USA) were preserved in our laboratory.
Kanamycin and isopropyl-β-D-thiogalactopyranoside (IPTG) were purchased from Solarbio
(Beijing, China). PUFA standards, including linoleic acid (LA), α-linolenic acid (ALA),
and γ-linolenic acid (GLA), were purchased from Sigma (Steinheim, Germany). Hydroxy
fatty acid (HFA) standards, including 13-hydroxyoctadecaenoic acid (13-HODE), 13(S)-
hydroxyoctadeca trienoic acid (13S-HOTrE), were purchased from Cayman Chemical (Ann
Arbor, MI, USA). All other chemicals were analytical grade. The study design was shown
in Figure 1.
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2.2. Phylogenetic Analysis and Structural Modeling of EnLOX

SWISS-MODEL was used to build the three dimensional (3D) model [23]. Pymol was
used to analyze the 3D structure of EnLOX [24]. ProtParam tool of Expasy was used to
predicted the molecular mass of EnLOX [25]. The nucleotide and amino acid sequences
of EnLOX were subjected to homology sequence similarity retrieval and analysis on the
NCBI, and then the percent identities among the nucleotide and amino acid sequences
were calculated by MEGA 5.05.

2.3. Expression and Purification of EnLOX

E. coli BL21 (DE3)/pET28a-EnLOX combination was inoculated into the Luria Broth
medium (LB) containing 100 µg mL−1 kanamycin at 37 ◦C and agitation rate of 180 rpm
until the optical density at 600 nm reached 0.6–0.8. The final concentration of 100 µg mL−1

IPTG was added to induce the protein expression at 16 ◦C for 16 h. The cells were collected
by centrifugation (8000× g, 5 min), and resuspended in Tris-HCl buffer (0.05 mol L−1

Tris-HCl, 0.3 mol L−1 NaCl, pH 7.5). After cells were completely broken by D-3L High
Pressure Homogenizer (PhD Technology LLC, Minnesota, USA), cell debris were removed
by centrifugation (4 ◦C, 10000× g, 30 min). The supernatant loaded onto Ni-NTA affinity
column for purification. The purity and molecular mass of EnLOX were checked by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) [1,21].

2.4. Determination of EnLOX Activity and Protein Concentration

EnLOX activity was assayed in 20 mmol L−1 Tris-HCl buffer (pH 8.0) at 50 ◦C by
monitoring the increase in absorbance at 234 nm. The final concentration of 1.73 mmol L−1

PUFAs was added to a 3 mL reaction system. One unit of activity was defined as the
amount of enzyme required to synthesize 1 mmol hydroperoxide per min with an extinction
coefficient of 25,000 L mol−1 cm−1 [1,20,21,26]. The protein concentration was measured
by Bradford method [27,28].

2.5. Kinetic Parameters of EnLOX

Substrate specificity of EnLOX was determined with different final concentration
of PUFAs from 10 to 300 mmol L−1. All measurements were carried out at 50 ◦C in
20 mmol L−1 Tris-HCl buffer (pH 8.0). The kinetic parameters of Km, Vmax, and Kcat were
calculated by nonlinear regression fitting of the experimental data to Michaelis–Menten
equation using GraphPad software. Michaelis–Menten equation is shown as follows [29,30]:

v0 =
Vmax [S]
Km + [S]

(1)

where v0, Vmax, [S], and Km represent the initial rate, the maximum velocity of reaction, the
substrate concentration, and the Michaelis constant, respectively.

2.6. Product Detection of EnLOX

Product specificity of EnLOX was determined by incubating PUFAs, EnLOX, and
Tris-HCl buffer (pH 8.0) at 50 ◦C for 10 min. Hydroperoxides formed were reduced to
their corresponding hydroxides with addition of 10 mmol L−1 cysteine. The reaction
mixtures were extracted according to the method of HUANG et al. [31]. The products
were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), with
an UPLC column (2.1 × 100 mm ACQUITY UPLC BEH C18 column containing 1.7 µm
particles). Buffer A consisted of 0.1% formic acid in water; buffer B consisted of 0.1% formic
acid in acetonitrile. The gradient was 20% Buffer B for 0.5 min, 20–98% Buffer B for 10 min,
and 98% Buffer B for 4 min, with a flow rate of 0.4 mL min−1. Mass spectrometry was
performed using electrospray source in negative ion mode with MS acquisition mode,
with a selected mass range of 100–1000 m/z. The lock mass option was enabled using
leucine-enkephalin (m/z 556.2771) for recalibration. The ionization parameters were the
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following: capillary voltage was 2.5 kV, sample cone was 40 V, source temperature was
120 ◦C, and desolvation gas temperature was 800 ◦C. Data acquisition and processing were
performed using Masslynx 4.1.

2.7. Effect of pH and Temperature on EnLOX Activity and Stability

The effect of pH on EnLOX activity was measured from pH 3.0 to pH 9.5 using
citrate sodium citrate buffer (pH 3.0–6.0), phosphate buffer solution (pH 6.0–7.0), Tris-HCl
buffer (pH 7.0–9.0), and borax-sodium hydroxide buffer (pH 9.0–9.5) at 50 ◦C [32,33]. The
highest activity of EnLOX as 100% to calculate the relative activities of varied pH value. To
determine the pH stability, we measured the residual activity after incubating the enzyme
in buffers with different pH at 4 ◦C for 10 h [3].

The enzyme activity was measured at different temperatures (20–80 ◦C) to determine
the optimum temperature of EnLOX. The maximum activity was set as 100%; the relative
activities at different temperatures were plotted to obtain the optimum temperature of
EnLOX [34,35]. Thermostability was analyzed by measuring the residual enzyme activity
after incubation at different temperatures (20–70 ◦C) for different times (0–12 h) before
a 5 min ice bath [3,21,35]. Enzyme activity without heat treatment was defined as 100%
for comparisons.

2.8. Thermal Shift Assay of EnLOX

Protein Thermal Shift was performed using Sypro Orange dye from Sigma-Aldrich [36].
The thermal shift assay was conducted in Light Cycler 480 Real Time Detection System,
designed for PCR, for melting point temperature analysis. An amount of 1 µL of 1 ng µL−1

of EnLOX, 2 µL of 10X Sypro orange, and 16 µL of 40 mmol L−1 Tris-HCl (pH 8.0) were
added to the wells of the 96-well Cycler PCR plate. The plate was heated from 25 to
95 ◦C with a heating rate of 0.5 ◦C min−1. The melting point temperature (Tm) tested
is the results of multiple independent experiments, each in triplicate and reported as
mean ± standard deviation (SD).

2.9. Effect of Metal Ions and Solvents on EnLOX Activity

To investigate the effect of metal ions and solvents on EnLOX activity, different metal
ions (CaCl2, ZnCl2, KCl, MgCl2, FeCl3, FeCl2, MnCl2, NaCl, LiCl, (NH4)2SO4, CuSO4)
with a final concentration of 0.1 mmol L−1 and various solvents (phenylmethanesulfonyl
fluoride (PMSF), dimethyl sulfoxide (DMSO), sodium dodecyl sulfate (SDS), ethylenedi-
aminetetraacetic acid (EDTA), IPTG, β-mercaptoethanol (β-ME), and Tween 20) with a final
concentration of 1.0 mmol L−1 were added to the reaction system. The residual activity was
measured after 4 ◦C of incubation for 30 min [1,26,37,38]. The activity of EnLOX without
treatment by any metal ions or solvents was defined as 100%.

2.10. Farinographical Properties

Farinographical properties of wheat flour blends were examined using a Brabender
farinograph-E according to AACC 54–21 method [39]. Wheat flour was put into the
mixing bowl of the farinograph after being weighed according to its water absorption,
then the sample solutions were added, and then the dough was kneaded for 20 min at
30 ◦C [40]. Water absorption (WA), dough development time (DDT), stability time (ST), and
softening degree (SD) were determined [11]. Sample solution was distilled water contained
50 µg g−1 potassium bromate (KBrO3), 0 (blank control), 5, 10, 20, 30, 40, 50 IU g−1 EnLOX,
respectively [4,7]. Mean values of three measurements were reported.

2.11. Dynamic Rheological Properties

Rheological properties were measured by using a Physica MCR301 rheometer with
a parallel plate (40 mm diameter, 2.5 mm gap), according to the reported research with
some modifications [4,41]. The wheat dough was prepared by Brabender farinograph-E, as
described before. The dough was taken out immediately and stored at 25 ◦C for 1 h with
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plastic film sealing. The rim of the dough was coated with paraffin oil to prevent dryness
of the sample. The dough was relaxed for another 5 min to relax the residual stress during
sample loading. The tests were measured at 25 ◦C. The linear viscoelastic zone was tested
by stress sweeps (0.01–30%) at 1.0 Hz frequency. Frequency scan tests were performed from
0.1 to 20.0 Hz at constant strain amplitude (30% strain). Data were reported as the means
of three measurements.

2.12. Statistical Analysis

All the tests were performed in triplicate, and data were expressed as mean± SD. SPSS
21.0 were used to analyze the differences between the variables. Statistical differences in
correlation analysis and linear regression analysis were determined by one-way analysis of
variance (ANOVA), and Duncan’s test and the significance level of p < 0.05 were used [42,43].

3. Results and Discussion
3.1. Bioinformatic Analysis of EnLOX

The EnLOX sequence resides in an open reading frame encoding 726 amino acids,
with the calculated molecular mass of 81.45 kDa. The nucleic acid sequences of original and
codon-optimized EnLOX were illustrated in Supplementary Materials Figure S1. A phy-
logenetic tree of LOXs, which were reported and functionally identified, was constructed
(Figure 2). Analysis of amino acid sequences in Figure 2a revealed that EnLOX had the
maximum identity with E. norvegicus LOX (WP_017011269). Nevertheless, no characteri-
zation experiments of LOX from E. norvegicus have been reported so far. The nucleotide
sequences showed significant differences between EnLOX and LOXs from other sources
(Figure 2b). The differences for LOX genes between nucleotide and amino acid levels
indicated the distinction among the organisms. As aligned with amino acid sequences of
the characterized linoleate 13-lipoxygenases from soybean, P. aeruginosa, Calothrix, and Rivu-
laria (Figure S2), the catalytic key residues of EnLOX (His404-His409-His601-Asn605-Ile726)
are completely conserved.
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sequences of EnLOX.

In order to identify the structural differences with other LOXs, a 3D structural model
of EnLOX was predicted. The 3D structure of EnLOX was predicted by Swiss-Model using
P. aeruginosa LOX (PDB ID: 4rpe) structure as a template, which revealed that EnLOX
was composed of 44.0% α-helix, 8.4% strands, and 47.6% random coil (Figure 3a). The
proportion of α-helix in an EnLOX structure is similar to P. aeruginosa LOX (PDB ID: 4rpe)
and Cyanothece LOX (PDB ID: 5med). The results also suggested that EnLOX had the
lowest (21.76%) and the highest (37.47%) identity with Gaeumannomyces graminis LOX (PDB
ID: 5fx8) and P. aeruginosa LOX, which indicated that it was a novel LOX. Soy flour is
used in flour and dough products due to its abundant of soybean LOXs [44]. Soybean
LOX-3 (PDB ID: 1rrl) shared the highest structural homology with EnLOX among all of
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the soybean LOXs. The comparison of the 3D structures of soybean LOX-3 and EnLOX is
shown in Figure 3b. EnLOX has only one domain instead of two, as in soybean LOX-3. The
N-terminal domain in the soybean LOX-3 is β-folds, which is substituted by α-helices in
EnLOX. Increasing α-helix ratio could improve the stability of LOXs [20]. The α-helix ratio
of EnLOX is higher than that of most LOXs, such as human arachidonate 12-LOX (α-helix
ratio: 38.3%, PDB ID: 3d3l), porcine leukocyte 12S-LOX (39.8%, 3rde), and soybean LOX-1
(31.8%, 4wfo), which may contribute to thermostability of the enzyme.
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Figure 3. Molecular model depicting predicted structure of EnLOX and molecular model of soybean
LOX-3. (a) The model structure of EnLOX. The α-helix (blue), strands (pink), and random coil
(orange) of EnLOX. (b) Superposition of a soybean LOX-3 and an EnLOX. Soybean LOX-3 is shown
in pink and EnLOX is shown in blue. (c) The catalytic key residues of EnLOX (His404-His409-His601-
Asn605-Ile726). The orange sphere represents the iron ion in LOXs.

3.2. Expression and Purification of EnLOX

The purified EnLOX showed a single band with a molecular mass of approximately
80 kDa in SDS-PAGE (Figure 4), which was consistent with the predicted value 81.45 kDa.
The biochemical properties of EnLOX and LOXs from various sources are shown in Sup-
plemental Data Table S1. The molecular mass of the enzyme was similar to those of B.
thailandensis (75 kDa) [15] and M. xanthus (80 kDa) [1]. The specific activity of purified
EnLOX was 40.34 U mg−1, which was higher than that of most other sources of LOXs,
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such as LOXs from Anabaena (10.4 U mg−1) [21], B. thailandensis (26.4 U mg−1) [15], and P.
aeruginosa (28.5 U mg−1) [17] but lower than that of Calothrix (73.1 U mg−1) [26], Rivularia
(68.8 U mg−1) [26], and A. aegerita LOX (51.34 U mg−1) [35]. In addition, the total yield of
the purification for EnLOX was 55.3%, with a purification fold of 31.29.
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3.3. Kinetic Properties of EnLOX

Kinetic parameters of EnLOX were determined, which showed a discrepancy in the
kinetic properties for various PUFAs (Table 1). The Vmax, Km, Kcat, and Kcat/Km values of LA
were 12.42 mmol min−1 mg−1, 3.49 µmol L−1, 16.86 s−1, and 4.83 L µmol−1 s−1, respectively.
The Vmax value of LA was the highest among the substrates, indicating that EnLOX had
the strongest catalytic rate to LA. This is consistent with the LOXs from basidiomycete
fungus [2] and M. xanthus [45]. The Km value of LA was the lowest among PUFAs, which
exhibited the highest affinity. EnLOX showed a lower Km than most of the LOXs, such
as LOXs from Calothrix (6.7 µmol L−1) [26], Rivularia (7.5 µ mmol L−1) [26], T. bouteillei
(16.5 µmol L−1) [26], and Anabaena (30.3 µmol L−1) [21] and similar to Nicotiana benthamiana
LOX (3.9 µmol L−1) [31]. The Kcat/Km value for LA of EnLOX were significantly higher than
soybean LOX (0.17 L µmol−1 s−1) [46], M. xanthus LOX (0.02 L µmol−1 s−1) [45], Anabaena
(0.54 L µmol−1 s−1) [21], and Pleurotus ostreatus LOX (0.2 L µmol−1 s−1) [47] but lower than
of LOXs from Calothrix (13.85 L µmol−1 s−1) [26] and Rivularia (10.79 L µmol−1 s−1) [26].
The results revealed that LA is the natural substrate for EnLOX.

Table 1. Kinetic parameters of EnLOX.

Substrate Vmax
(mmol min−1 mg−1)

Km
(µmol L−1)

Kcat
(s−1)

Kcat/Km
(L µmol−1 s−1)

LA 12.42 3.49 16.86 4.83
ALA 4.24 2.32 5.76 2.48
GLA 6.23 8.79 8.45 0.96

LA is linoleic acid, ALA is α-linolenic acid, and GLA is γ-linolenic acid.

3.4. Products Analysis of EnLOX

Products of EnLOX catalyzed PUFAs were analyzed by LC-MS/MS (Table 2). The
main products of LA and ALA formation catalyzed by EnLOX were 13-HODE and 13S-
HOTrE, respectively. The products of GLA catalyzed by EnLOX were both 13-HODE
and 13S-HOTrE. Most LOXs from plants, such as pear LOX [42], rice seed LOX [48] and
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Cucumis sativus LOX [43], catalyzed PUFAs, leading to the fission of the C12-C13 double
bond, and oxygenation at position C13 to form 13-HFAs [2,43,48,49]. The results suggested
that EnLOX can be classified as a 13-LOX.

Table 2. Analysis of products of PUFAs catalyzed by EnLOX.

Substrate Class Product MS/MS Fragments
[M-H]−

Position of
Oxygenation

LA ω-6 13-HODE 295.2273 n-6
ALA ω-6 13S-HOTrE 293.2117 n-6

GLA ω-6 13S-HOTrE,
13-HODE 295.2273, 293.2117 n-6

LA is linoleic acid, ALA is α-linolenic acid, GLA is γ-linolenic acid, 13-HODE is 13-hydroxyoctadecaenoic acid,
and 13S-HOTrE is 13(S)-hydroxyoctadeca trienoic acid.

3.5. Effects of Temperature and pH on the Activity and Stability of EnLOX

The activity of EnLOX was measured at different temperatures, as shown in Figure 5a.
The optimum temperature of most LOXs varied from 30–40 ◦C [1,16,35,48,49], however, En-
LOX showed the highest catalytic activity at 50 ◦C. At present, one of the disadvantages for
the industrial application of LOX to overcome is the poor thermostability [19]. Noteworthily,
EnLOX exhibited high thermostability; more than 50% of the original activity remained
after being stored at 20 ◦C–50 ◦C for 6 h (Figure 5c). The half-life (T1/2) of EnLOX at 50 ◦C
was about 6 h, which was much longer than that of LOXs from soybean (T1/2 = 30 min at
45 ◦C) [50], M. xanthus (7.1 min, 50 ◦C) [1], P. aeruginosa (10 min, 50 ◦C) [19], and Anabaena
(3.8 min, 50 ◦C) [21]. The thermal shift assay of EnLOX was completed to further verify the
thermostability of the enzyme (Figure S3). The melting point temperature (Tm) value of En-
LOX was 78.7 ◦C, much higher than that of human 5-LOX (36.5 ◦C) [36] and human 15-LOX
(50.0 ◦C) [51], which revealed the superior thermostability of EnLOX [52]. These results
suggested EnLOX is thermotolerant and has potential value in industrial applications.
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Figure 5. Effect of temperature and pH on the activity and stability of EnLOX. EnLOX activity was
plotted as the relative activity (%), with the highest activity as 100%. Data are shown as means ± SD
of three independent experiments. (a) The optimum temperature of EnLOX was determined by
measuring the activity in 50 mmol L−1 Tris-HCl (pH 8.0) at 20–85 ◦C. (b) The optimum pH of EnLOX
was determined by measuring the activity in pH 3.0–9.5 at 50 ◦C. (c) Thermostability of EnLOX.
Enzyme samples were incubated at different temperatures (20–70 ◦C) for different times (0–12 h)
before a 5 min ice bath; the residual activities were measured in 50 mmol L−1 Tris-HCl (pH 8.0) at
50 ◦C. (d) The pH stability of EnLOX. Enzyme samples were incubated at each pH at 4 ◦C for 10 h,
the residual activities were measured in 50 mmol L−1 Tris-HCl (pH 8.0) at 50 ◦C.

The activity of EnLOX was assayed at different pHs, as shown in Figure 4b. EnLOX
showed activity in a wide range of pH 3.5–9.5 and had a maximum activity at pH 8.0. This
result was consistent with the most reported optimum pH of LOXs, which are weakly
alkaline [16,35,48,49]. EnLOX displayed excellent stability in assayed pH range (4.0–9.5);
it could retain more than 50% relative activity after being incubated at 4 ◦C for 10 h, and
it could retain above 70% relative activity at a broad pH range (5.0–9.5). Surprisingly,
EnLOX remained above 90% relative activity at pH 7.5–8.0 after being stored at 4 ◦C for
10 h (Figure 5d). Excellent stability over a broad pH range may be due to the reversible
denaturation of the enzyme, so that there is weak effect on the EnLOX activity on incu-
bation at different pH [53]. Nevertheless, M. xanthus LOX is only stable in the range of
pH 3.0–6.0 [1]. LOXs from soybean [46], B. thailandensis [15], and Cyanothece [54] are only
stable under alkaline conditions. Therefore, EnLOX could be well-suited for industrial
production, as it was stable in weak acidic and alkaline environment.

3.6. Effect of Metal Ions and Solvents on EnLOX Activity

As shown in Table 3, the activity of EnLOX varies with the addition of different metal
ions and solvents. Ca2+, Mn2+, Fe3+, and DMSO enhanced EnLOX activity by 2.37, 2.12,
1.89, and 2.13 times, respectively. The promotion of enzyme activity by metal ions possibly
related to the N-terminal PLAT domain, cofactors, and coenzyme of EnLOX [55,56]. These
results were similar to M. xanthus LOX [1] and Cyanobacterium Cyanothece LOX [55]. Zn2+,
Li+, and K+ had no effects on the enzyme activity. The activating effect on EnLOX of DMSO
may be due to DMSO changing some secondary bonds in the enzyme and influencing the
flexibility of the activity site [38]. The enzyme activity was completely inhibited by EDTA,
SDS, and β-ME. EDTA could chelate iron ion in LOX, thus EnLOX was proved to be a metal
enzyme [57]. Some solvents could affect iron ion or change the conformation of LOX, thus,
showing the inhibitory effect of the enzyme activity [58]. The activation function of Ca2+,
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Mn2+, Fe3+, and DMSO provide new methods for the industrial application of EnLOX to
optimize the fermentation conditions.

Table 3. Effect of metal ions and solvents on EnLOX activity. EnLOX activity was plotted as the
relative activity (%), with the highest activity as 100%.

Metal Ion and Solvent Relative Activity (%)

Control 100
Ca2+ 236.8 ± 2.1
Mn2+ 212.22 ± 6.0
Fe3+ 189.47 ± 3.8
Zn2+ 101.24 ± 2.7
Li+ 98.44 ± 11.0
K+ 98.11 ± 5.0

Mg2+ 92.59 ± 5.2
Cu2+ 84.53 ± 3.5
NH4

+ 82.21 ± 1.4
Na+ 76.85 ± 16.4
Fe2+ 55.66 ± 9.4

DMSO 213.41 ± 6.9
IPTG 69.15 ± 0.1
PMSF 60.88 ± 4.1

Tween 20 15.05 ± 7.1
EDTA 0
SDS 0
β-ME 0

Data are shown as means ± SD of three independent experiments.

3.7. Effect of EnLOX on Farinographical Properties

The effects of EnLOX on the farinographical properties of wheat flour are shown in
Table 4. Compared with the blank group, water absorption, dough development time,
and stability time of flours fortified with 5–30 IU g−1 EnLOX increased, softening degree
decreased. Water absorption, dough development time, and stability time of flours fortified
with 20 IU g−1 EnLOX increased by 3.89%, 0.50 min, and 1.14 min, respectively; softening
degree was reduced by 39 FU. Fatty acid hydroperoxides generated by EnLOX in the
catalytic process can induce protein polymerization [5], and, at the same time, oxidize
the sulfhydryl group (-SH) of gluten to the disulfide bond (-S-S-) to the enhanced gluten
network [59], which promotes the stability of the wheat dough, manifested as dough devel-
opment time and stability time prolongation, and decreases the softening degree value [11].
The indicators of flour, which added KBrO3, had no significant changes apart from the
softening degree decreasing significantly. EnLOX exhibited favorable farinographical
properties of wheat flour and could be added in flour products to improve its quality.

Table 4. Effect of EnLOX enzyme on farinograph quality of the wheat dough.

Sample WA (%) DDT (min) ST (min) SD (FU)

Blank 53.04 ± 1.27 e 1.20 ± 0.05 d 2.23 ± 0.12 def 103.33 ± 3.06 c

50 µg g−1 KBrO3 53.80 ± 0.26 de 1.30 ± 0.05 cd 2.37 ± 0.06 cde 74.33 ± 0.58 d

5 IU g−1 EnLOX 55.17 ± 0.15 bc 1.40 ± 0.10 c 2.53 ± 0.06 bcd 77.67 ± 2.08 d

10 IU g−1 EnLOX 55.53 ± 0.23 b 1.53 ± 0.05 b 2.60 ± 0.05 bc 75.67 ± 0.58 d

20 IU g−1 EnLOX 56.93 ± 0.85 a 1.70 ± 0.10 a 3.37 ± 0.47 a 64.33 ± 2.08 e

30 IU g−1 EnLOX 55.93 ± 0.12 ab 1.20 ± 0.05 d 2.73 ± 0.06 b 75.00 ± 1.00 d

40 IU g−1 EnLOX 54.43 ± 0.6 cd 1.03 ± 0.05 e 2.17 ± 0.05 ef 116.67 ± 3.79 b

50 IU g−1 EnLOX 52.93 ± 0.21 e 0.83 ± 0.17 f 1.99 ± 0.12 f 126.67 ± 1.53 a

Data are shown as means ± SD of three independent experiments. Means with different lowercase letters indicate
significant differences between groups (p < 0.05). WA is water absorption, DDT is dough development time, ST is
stability time, and SD is softening degree.
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3.8. Effect of EnLOX on Rheological Properties

Rheological characteristics of dough treated with different concentrations of EnLOX
were evaluated (Figure 6). Dough samples added with EnLOX showed a significant
increase in elastic value (G′) (Figure 6a) and viscous (G′′) value (Figure 6b); both of the two
values elevated with the increase in EnLOX concentration, revealing the good elasticity and
extensibility of dough [4]. The degree of polymerization in dough can be described by tan δ
(G′′/G′) [60]. With the increase in the frequency, the tan δ value was always lower than 1.0
(Figure 6c), which suggested that elastic properties were more prominent, and the dough
exhibits solid phase properties. Dough treated with 10–50 IU g−1 EnLOX exhibited higher
elastic and viscous characteristics than that of the blank group, indicating that EnLOX could
enhance the cross-linking of gluten [60]. EnLOX has been proven to have the reinforcement
ability in wheat dough, similar to previously reported Anabaena LOX [4] and soybean
LOX [46], indicating that the enzyme could be a potential enzymatic preparation [7].
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Figure 6. The effect of EnLOX on dough rheology. (a) The influence of EnLOX on the elastic modulus
(G′) of the dough; (b) The influence of EnLOX on the viscosity modulus (G′′) of the dough; (c) The
influence of EnLOX on the tan δ of the dough.

4. Conclusions

To overcome the low enzyme activity, poor thermal stability, and narrow pH range
stability of existing LOX enzymes, a novel LOX from Enterobacter norvegicus was expressed
and characterized in this study. EnLOX only showed 37.47% identity with P. aeruginosa
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LOX, and the enzyme exhibited superior properties; good thermostability at 50 ◦C; out-
standing pH stability at pH 5.0–9.5; and high activity of LA, achieving 40.34 U mg−1. In
addition, the application of EnLOX to wheat dough further improved the farinograph and
rheological properties. Our research indicated EnLOX is a potential enzyme agent for food
industrial applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods11182864/s1, Figure S1: The nucleic acid sequences alignment of original and codon-
optimized EnLOX. Figure S2: Multiple sequences alignment of LOXs. Figure S3: Melt curves
of EnLOX in Thermal shift assay. Table S1: Biochemical properties of EnLOX and LOXs from
various sources.
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