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As the most complex organ of the human body, the brain is composed of diverse regions, each consisting of distinct cell

types and their respective cellular interactions. Human brain development involves a finely tuned cascade of interactive

events. These include spatiotemporal gene expression changes and dynamic alterations in cell-type composition.

However, our understanding of this process is still largely incomplete owing to the difficulty of brain spatiotemporal tran-

scriptome collection. In this study, we developed a tensor-based approach to impute gene expression on a transcriptome-

wide level. After rigorous computational benchmarking, we applied our approach to infer missing data points in the widely

used BrainSpan resource and completed the entire grid of spatiotemporal transcriptomics. Next, we conducted deconvolu-

tional analyses to comprehensively characterize major cell-type dynamics across the entire BrainSpan resource to estimate

the cellular temporal changes and distinct neocortical areas across development. Moreover, integration of these results with

GWAS summary statistics for 13 brain-associated traits revealed multiple novel trait–cell-type associations and trait-spatio-

temporal relationships. In summary, our imputed BrainSpan transcriptomic data provide a valuable resource for the re-

search community and our findings help further studies of the transcriptional and cellular dynamics of the human brain

and related diseases.

[Supplemental material is available for this article.]

The brain is the most complex organ in the human body (Bassett
and Gazzaniga 2011). The past decade has witnessed a tremen-
dous progress toward a deep understanding of transcriptional reg-
ulation of the developing human brain (Darmanis et al. 2015).
Brain development involves precisely tuned gene expression dy-
namics with strong spatiotemporal specificity and alterations of
many cell types. For example, neuronal development is generally
summarized as neurogenesis, neuronal migration, and axon guid-
ance. During this process, neurons undergo extreme morpholog-
ical and functional changes, combined with the formation of
synapses and intricate neural circuits (Miller et al. 2014; Weyn-
Vanhentenryck et al. 2018), to build connections between neu-
rons. Abnormalities during brain development have been related
to various neurodevelopmental diseases, including psychiatric
disorders (Peralta and Cuesta 2017). Specific brain regions or
developmental stages were found to be involved in different dis-
eases. For a few examples, autism spectrum disorder (ASD)–relat-
ed and intellectual disability (ID)–related genes tended to be
highly expressed during pre- and perinatal stages (Courchesne
et al. 2007; D’Haene et al. 2016); distinguished patterns of gene

expression between frontal and temporal cortices were reported
to be significantly attenuated in brains of autism patients
(Voineagu et al. 2011); schizophrenia (SCZ)-related genes were
found highly expressed during prenatal development (Gilman
et al. 2012); and several regions, including the amygdala, hippo-
campus, and prefrontal cortex, were found to be related to bipo-
lar disorder (Ellison-Wright and Bullmore 2010; Chai et al. 2011).
Although the evidence is accumulating, such studies are still very
limited on the highly qualified brain gene expression data link-
ing to the neurodevelopmental disease. To better understand
the role of disease genes during development, there is a pressing
need for a comprehensive and a complete annotation of the de-
veloping brain.

So far, two large resources, the BrainSpan Atlas of the
Developing Human Brain (Kang et al. 2011) and BrainCloud
(Colantuoni et al. 2011), have provided comprehensive transcrip-
tomic data for humanbrain development.Many studies, including
two of ours (Jia et al. 2017, 2018), used the BrainSpan data to study
disease-associated genes. BrainSpan contains expression data
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across 26 brain regions ranging in age from8postconceptualweeks
(pcw) to 40 yr, covering the entire developmental process.
Critically, because human brain samples are extremely hard to col-
lect (Farahany et al. 2018), not all regions have been profiled across
all time points, and there is a high level of incompleteness. Nearly
∼80% of the individuals profiled in BrainSpan had at least one
missing transcriptome. Such missing data problems are prevalent
in biological studies and are even worse in human brain research,
where it is practically impossible to solve. For example, the
Genotype-Tissue Expression (GTEx) Consortium (The GTEx
Consortium. 2015) collected 14,787 transcriptomes from 948 pa-
tients spanning 53 tissues, including 13 brain regions (version
7). However, all these samples were from adult brains (age≥20),
and the sample size for the brain regions was among the smallest
compared with the other tissues profiled in GTEx. Therefore, com-
putational approaches to impute transcriptome-wide gene expres-
sion data leading to a complete and reference-driven
spatiotemporal data grid have become necessary. So far, several
transcriptomic imputation approaches by integrating eQTL and
genome-wide association studies (GWAS) summary data have
been applied to transcriptomic imputation (Huckins et al. 2019;
Zhang et al. 2019a). However, these imputation methods rely on
tissue-specific (or brain region–specific) eQTL information
(Wang et al. 2016; Xu et al. 2020). Although the BrainSpan Atlas
is the most comprehensive transcriptomic data collection for hu-
man brain development, we did not find any eQTL data in the
BrainSpan consortium with spatiotemporal specificity. On the
other hand, a few tensor-based works have been shown to success-
fully impute epigenomic data at the genome-wide level (Durham
et al. 2018); however, these approaches have not been applied to
transcriptomics data yet. In this study, by considering the special
temporal and spatial design of BrainSpan, we developed a compu-
tational approach to leverage the natural tensor structure of the
data to perform transcriptome-wide imputation. We transformed
all transcriptome data into a three-dimensional (3D) tensor, con-
sisting of spatial, temporal, and gene expression components.
This tensor is first compressed into a low-rank representation of
the data and subsequently transformed to impute entire transcrip-
tome-wide expression profiles.

To understand the neurodevelopmental process, it is crucial
to characterize how cell-type composition (CTC) changes across
different regions and developmental stages. For >20 yr, researchers
have classified neurons that populate the neocortex into two ma-
jor classes: projection neurons (excitatory) and GABAergic inter-
neurons (inhibitory) (Parnavelas 2000). Transcriptional profiling
of these neurons, however, has not been made possible until the
recent advances in single-cell RNA sequencing (scRNA-seq) tech-
nologies (Darmanis et al. 2015; Lake et al. 2016). scRNA-seq of
brain samples has characterized a number of cell types, including
their respectivemarker genes (Lake et al. 2016). Further augmented
by the recent advances in machine learning, several deconvolu-
tion methods have been developed to reliably infer CTC from
bulk gene expression data (Newman et al. 2015; Aran et al. 2017;
Glastonbury et al. 2019).

In this work, we comprehensively characterized CTCs across
the entire spatiotemporal grid of the BrainSpan resource. We sub-
sequently integrated these imputed results with GWAS summary
statistics covering 13 brain-associated traits, aiming to uncover
novel links between cell types, brain regions, developmental stag-
es, and brain-related phenotypes, including major psychiatric
disorders.

Results

Overview of workflow

Our goal is to decode CTCs in spatiotemporal specificity through-
out human brain development and then uncover disease-relevant
cell types for major brain disorders. To this end, we collected vari-
ous public data sources and conducted a range of bioinformatics
and functional genomic analyses (Fig. 1). We constructed compre-
hensive resources for brain, including both bulk (Miller et al. 2014)
and single-cell (Newman et al. 2015; Aran et al. 2017) expression
profiles (Fig. 1). Different analytical strategies were applied for
each data set. For gene expression data from BrainSpan, we com-
pleted the spatiotemporal data grid using a tensor-based imputa-
tion strategy, generating a valuable resource for the research
community of brain-related studies. We applied weighted gene

Figure 1. Analysis workflow. Details are provided in the Methods section. Color of the boxes is as follows: yellow, external input data; blue, statistical
analysis methods; green, cell-type composition (CTC) result; purple, intermediate analysis result; and red, GWAS-related analysis.
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coexpression network analysis (WGCNA) (Langfelder andHorvath
2008) to study the temporal and spatial specificity of human brain
expression profiles. We collected two single-cell expression stud-
ies, each with particular focus on brain cell types and neurons dur-
ing development and subsequently used these data as reference
panels for cell-type deconvolution (Newman et al. 2015) of the
bulk expression data from BrainSpan, for example, characterizing
the dynamic changes of brain CTC during development, and
also investigated cell types in which the disease-associated genes
were enriched.

Robust imputation completes the BrainSpan transcriptome data

To infer missing data points in the spatiotemporal data grid, the
original BrainSpan data was transformed into a 3D tensor
(18,911×42×26) (Fig. 2A). In this original tensor, some individu-
als and brain regions had highmissing data rates. For example, the
individual H376.V.50-52 had only three data points and amissing
data rate of 23/26; the region temporal neocortex (TCx) had only
one data point, with amissing rate of 41/42. Our initial application
of the CANDECOMP/PARAFAC (CP) algorithm showed that these
individuals or regions tended to have a lowR2-values (<0.6 for both
cases mentioned above), indicating a low imputation perfor-
mance. Based on this initial evaluation, we excluded individuals
or regions with a missing data rate >50%, resulting in a working
tensor (18,911×35×16) with 478 measured and 82 missing tran-
scriptomes to be imputed. By applying the CP method to this
working tensor, we evaluated the performance of our imputation
strategy using leave-one-out (LOO) cross-validation. As shown in
Figure 2, B through D, and Supplemental Figure S1, the Pearson
correlation coefficient (PCC) values from LOO ranged from 0.11–
0.99 (median value: 0.96) andR2 ranged from0.012–0.98 (median:
0.93). To avoid potential high correlation confounded by the
mean gene expression level, we also evaluated the performance be-
tween the imputed results and the observed expression for each
sample itself (i.e., thematched pair), as well as the performance be-

tween the imputed results with all the other samples (i.e., the un-
matched pairs). As shown in Supplemental Figure S2, A throughC,
the PCC and R2 between imputed results with the original data
(the matched pair) are significantly higher than the unmatched
pairs’ gene expression profiles and incorrect pairs. Additionally,
we assessed the correlation across samples for each gene. Based
on the gene abundance level, we divided all genes into three
groups, including low-, moderate-, and high-abundance groups.
As shown in Supplemental Figure S2D, the median PCC for low-,
moderate-, and high-abundance gene groups is 0.07, 0.62, and
0.71, respectively, indicating that the performance is relatively bet-
ter for the moderate and high group than the low-abundance
group. Overall, this performance showing that our approach ro-
bustly imputed the entire grid of spatiotemporal transcriptomes
in BrainSpan.

Differences between individuals and temporal stages drive specific

gene expression

To identify biological or technical factors that contribute to the
variance in gene expression, we applied variancePartition (Hoff-
man and Schadt 2016) to the spatiotemporal grid of gene expres-
sion profiles and estimated how much of the variance could be
explained by each factor (Fig. 3A). For each gene, we calculated
the percentage of its variation attributable to individuals (35 pa-
tients), developmental stages (six stages), brain regions (16 re-
gions), imputation status (imputed or measured), and sex
(male/female). The remaining, unexplained variance in expres-
sion was termed residual variation. As shown in Fig. 3A, the
source of individuals explained the largest component (median
value: 30%). Developmental stages and brain regions were the
second and third most contributive factors, explaining a median
of 18.3% and 4.3% of the expression variance, respectively.
Because the factors individual and stage were correlated, we fur-
ther conducted an independent analysis (Supplemental Fig. S3).
The result showed that the individual could explain a median

BA

C D

Figure 2. BrainSpan data completion and imputation evaluation. (A) CANDECOMP/PARAFAC (CP) tensor decomposition framework. (B) The schematic
diagram of leave-one-out (LOO) imputation evaluation strategy. Gray boxes represent missing values. Yellow boxes represent one leave-out sample, as-
suming all gene expression values in that column are not available. X-axis, y-axis, and z-axis correspond to individuals, brain regions, and genes, respec-
tively. (C) R2 of imputation performance of BrainSpan data sets by LOO strategy. (D) One example showing the correlation between observed and
predicted gene expression.
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of 61.0%, whereas the stage could explain 35.1% variance. In
contrast, the factors sex and imputation status could only explain
a very small proportion of the variance, with their median values
being <0.1% (Fig. 3A). This result further confirmed that our im-
putation results were robust with respect to the original expres-
sion distribution and did not create much batch effect between
the measured and imputed transcriptomes. In addition, we con-
ducted a principal component analysis (PCA) and compared
each of these factors with the first two principal components
(PCs). As shown in Figure 3B, early prenatal samples and late
postnatal samples were clearly separable (largely by PC1), where-
as other factors such as temporal stage (Fig. 3C), sex, and impu-
tation status could not effectively separate the samples. Finally,
the high percentage of residual variation unexplained by the fac-
tors we considered here suggested that there were other unchar-
acterized sources of expression variation.

Coexpression analysis links gene modules to specific tissues

in GTEx

We further explored gene function by performing WGCNA. We
identified a total of 29 modules, each labeled with a color by fol-
lowing the WGCNA naming system. For each module, we next
conducted association tests with the biological or technical factors
mentioned above. As shown in Figure 3D, using the thresholds
PCC>0.5 and P< 1×10−10, eight modules were significantly asso-
ciated with at least one developmental stage and four modules
with brain region, respectively. No module was significantly asso-
ciated with sex (Fig. 3D). Only one module was marginally associ-
ated with the imputation status (P=8 ×10−4), further confirming
that the imputation did not introduce systematic biases.

We also conducted a tissue-specific enrichment analysis
(TSEA) using GTEx data. We applied our recently developed tool,

BA C

D

Figure 3. Gene expression in BrainSpan is influenced by spatiotemporal factors. (A) Violin plots of the percentage of variance explained by each variable
over all the genes. Principal component analysis (PCA) of gene expression data from BrainSpan, where samples are colored according to their temporal (B)
and spatial (C) attributes. (D) Correlation between identified modules and spatiotemporal factor indicated by WGCNA.
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deTS, and examined if any module was enriched for tissue-specific
genes. GTEx has 13 brain regions, all of which were from adults
(age≥20). Because these modules were obtained using transcrip-
tome data of brain tissues, the TSEA results served as an indepen-
dent validation for our imputation. As expected, brain tissues
were the most strongly enriched tissues for these modules
(Supplemental Fig. S4). In addition, modules that were associated
with certain brain regions as defined by the original BrainSpan an-
notation were found to be associated with similar brain regions in
GTEx. For example, the salmon module was enriched in the cere-
bellar cortex (CBC; P=5×10−107) as defined by BrainSpan annota-
tions. Correspondingly, the salmon module was associated with
GTEx cerebellum (P=5× 10−74) and cerebellar hemisphere (P=
2.0 ×10−70). The dark redmodulewas en-
riched in the striatum (STR) (P=1×
10−74) in BrainSpan and in the basal gan-
glia (putamen [P=3×10−36], caudate [P=
2×10−33], and nucleus accumbens [P= 4
×10−32]) in GTEx. The full names of
each brain region were summarized in
Supplemental Table S1. Only modules
that were associated with late develop-
mental stages from BrainSpan (brown
and magenta) were found associated
with GTEx brain tissues. This was in line
with the fact that GTEx brain tissues
were all >20 yr old. Modules associated
with prenatal stages (tan, blue, and tur-
quoise) were enriched for the ovary and
uterus. This was likely because of the in-
teraction of the microenvironment of
the female reproductive systemwith fetal
brain development. Collectively, TSEA
and theGTExdata validated the complet-
ed BrainSpan developmental transcrip-
tomes. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) enrichedanalysis of eachmodule
can be found in Supplemental Table S2.

Deconvolution analysis reveals CTCs

Given that we did not observe any signif-
icant associations between coexpression
modules and specific cerebral areas and
given that the bulk RNA-seq data repre-
sented a mixture of numerous cell types,
we performed cell-type deconvolution
analysis. More precisely, we applied
CIBERSORT (Newman et al. 2015) in the
relative mode to estimate CTC scores for
each BrainSpan sample (Supplemental
Table S3). To provide unique yet comple-
mentary insights, we used two reference
panels for the deconvolution analysis.
Panel A containedcell types fromboth fe-
tal and adult brains, whereas panel B con-
tained different neurons from an adult
brain. For improved presentation, we
took the average CTC scores across 16 re-
gions for each individual to visualize the
composition of cell types (panel A) (Fig.

4A) and neuronal subtypes (panel B) (Fig. 4B), respectively. PCA re-
vealed that the largest contribution to the variance in the compo-
sition of cell types or neuronal subtypes was explained by
differences between prenatal and postnatal samples (Fig. 4C,D).
Other factors, such as sex and imputation status, did not show sig-
nificant differences in CTC scores. However, CIBERSORT estimates
the relative composition for each cell type, and thus, the
CIBERSORT results need to be interpreted carefully. For example,
although adult cell types are not expected in fetal samples,
CIBERSORT still reported a small fractionof adult cell types because
these cells are included in the reference panel. We applied
CIBORSORT twice using all cell types of panel A and using only
the adult cell types of panel A, respectively. As shown in

B

A

C D

Figure 4. Deconvolution analysis of BrainSpan bulk-cell RNA sequencing data. Schematic diagram of
relative percent (16 regions averaged) of cell composition by two single-cell panels: (A) panel A, six adult
+ 11 fetal brain-related cell types, and (B) panel B, eight excitatory and eight inhibitory neuronal sub-
types. Samples are colored according to their temporal attributes. PCA plot analysis according to CTC
scores in panel A (C) and panel B (D).

Pei et al.

150 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265769.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265769.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265769.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265769.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265769.120/-/DC1


Supplemental Figure S5, our results revealed that the CTC scores of
most cell types had strong correlation (PCC>0.9). These results
showed the robustness of the “relative score.”

CTC changes across temporal stage and region

By using the CTC scores, we first studied the dynamic changes of
CTC over time. By comparing the CTC scores with developmental
stages, we found that the proportion ofmost fetal cell types (e.g., fe-
tal astrocyte, fetal intermediate progenitor cell [IPC], fetal quies-
cence) decreased with age, whereas other cell types showed
unique trends. As expected, fetal cell types were enriched at early fe-
tal stages and were gradually replaced by nonfetal cell types along

developmental stages (Supplemental Fig. S6). This result showed
the validity of our analysis. We found that the proportion of neu-
rons and oligodendrocytes was positively correlated with temporal
stage (Fig. 5). OPC cells and oligodendrocytes showed inverse
CTC score patterns. OPC cells, the progenitor cells of oligodendro-
cytes (Zhang et al. 2019b), showed high CTC scores at the prenatal
stages (temporal stages 1–3), whereas oligodendrocytes showed
high CTC scores at postnatal stages (temporal stages 4–6).
Moreover, some cell types showed difference betweenmales and fe-
males. For example, we observed a higher proportion of microglia
cells at the intermediate postnatal stage (temporal stage 5) in males
compared with females (Fig. 5A). This is consistent with a previous
report (VanRyzin et al. 2020) that androgen-induced increase in

A

B C

Figure 5. Temporal and spatial changes in different cell-type compositions. (A) The black, blue, and red lines correspond to average CTC scores in all,
male, and female individuals. Error bar, SD of replicates samples. Anatomical visualization of neuron (B) and oligodendrocyte (C) CTC score change be-
tween prenatal and postnatal groups across different regions.
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endocannabinoid tone promoted microglia phagocytosis during a
critical period of AMY development. Consistently, we found that
the astrocyte composition in females was significantly higher
than in males (median increase 0.04, t-test P=0.04) at the interme-
diate postnatal stage (temporal stage 5). These findings suggested
that sexual difference inCTC existed across the spatiotemporal con-
text of normal human brain development. Our results thus provid-
ed insights into the underlying cellular mechanisms determining
sexual difference in social behavior (McKay et al. 2014; VanRyzin
et al. 2019), as well as etiology, epidemiology, and manifestation
of psychiatric diseases (Aleman et al. 2003; Abel et al. 2010).

We also examined the CTC changes across different brain re-
gions. As shown in Figure 5B, the CTC scores of neurons increased
in cerebral areas and the cerebellum but not in the diencephalon
region. In contrast, the CTC scores of oligodendrocytes increased
preferentially in the diencephalon region comparedwith the brain
cortex region (Fig. 5C), which is consistent with the latest finding
that oligodendrocytes are enriched in substantia nigra (Agarwal
et al. 2020). In addition, the decrease of fetal quiescent CTC scores
in the diencephalon region and cerebellum cortex was lower than
in the brain cortex region; the CTC score of astrocytes in CBC only
increased 0.02 compared with 0.13 (median) in the other 15 brain
regions. Although age was primarily associated with gray matter
thickness and fractional anisotropy of water diffusion in white
matter tracts (McKay et al. 2014), our CTC spatial dynamic analysis
implied that the development of the brain has strong spatial spe-
cificity. More results for spatial specificity of CTC in same group
are presented in Supplemental Figure S7.

Neuronal subtype composition changes across temporal stage and

region

To further investigate how different neuronal cell types changed
over brain development, we took advantage of single-cell reference

panel B, which provided expression profiles for eight excitatory
(Ex) neurons and eight inhibitory (In) neurons (Lake et al. 2016).
Indeed, prominent differences were observed for the neuronal sub-
type composition between the prenatal and postnatal samples
(Fig. 6A,B). For example, the proportion of Ex3 neuron, which
was previously reported to be primarily enriched in the visual cor-
tex (Lake et al. 2016), was significantly higher in postnatal individ-
uals and may represent the increased importance of vision in
postnatal compared with prenatal stages. In contrast, the propor-
tions of Ex1, Ex4, and Ex8 negatively correlated with temporal
stage (Fig. 5). In addition, some neuronal subtypes, for example,
In3 and In8, peaked at the intermediate or late prenatal stage.

Wenext investigated the neuronal subtypes in different brain
regions. A direct comparison of each neuronal subtype proportion
in each brain region revealed distinguishable preferences (Fig. 6C,
D). Overall, most excitatory neuronal subtypes were enriched in
the cerebral cortex, which is consistent with the recent finding
that few excitatory neurons are enriched in the substantia nigra
(Agarwal et al. 2020). For example, neuronal subtype Ex1 was en-
riched in the prefrontal cortex (DFC, MFC, OFC, and VFC) and
temporal-parietal cortex regions (IPC, ITC, and STC), which was
consistent with a previous study reporting that Ex1wasmainly en-
riched in brain regions BA21, BA22 (temporal cortex) and BA41/
BA42 (frontal cortex) (Lake et al. 2016). In addition, Ex3 (specific
to the visual cortex region) showed the highest enrichment in
V1C in the postnatal group; Ex4 was enriched in all prefrontal cor-
tex regions (DFC, MFC, OFC, and VFC) and had the highest pro-
portion in ITC; and Ex5 was enriched in OFC and STC. There
was also a difference in the proportion of neuronal subtypes be-
tween prenatal and postnatal groups. For example, the CTC score
of Ex3 in the A1C region was higher than in the V1C region in the
prenatal group, which implied dynamic changes during human
brain development. On the other hand, we foundmost inhibitory
neuronal subtypes were enriched in subcortical or cerebellum

BA

C D

Figure 6. Neuronal subtype deconvolution analysis. Relative proportion of neuronal subtype cell composition in prenatal (A) and postnatal (B). Error bar,
SD of CTC scores across different patients and regions. Because the cell-type scores differed in several scale orders, we took z-score as the normalized CTC
score to elucidate the correlation between neuronal subtype and brain region: (C ) prenatal group and (D) postnatal group. We further separated 16 brain
regions into three categories, (1) cerebral cortex (A1C, DFC, IPC, ITC, M1C, MFC, OFC, S1C, STC, V1C, VFC), (2) cerebellum (CBC), and (3) diencephalon
region (AMY, HIP, MD, STR) for better visualizing.
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regions, for example, In3 in the STR region, In4 and In7 in the cer-
ebellum, In5 in the MD, and In8 in the STR, CBC, and MD. These
inhibitory neuronal subtype and brain region enrichment patterns
were observed in both the prenatal (Fig. 6C) and postnatal (Fig. 6D)
stages. These observations were consistent with previous reports
that interneurons connecting the neocortex were largely inhibito-
ry and were generated by progenitors in the subpallial (ventral)
proliferative zone of the telencephalon before migrating into the
neocortex (Cobos et al. 2001; Wichterle et al. 2001; Wonders
and Anderson 2006). More results for spatial specificity of CTC
in same group are presented in Supplemental Figure S8.

To further investigate neuronal-subtype-based spatiotempo-
ral specificity on cerebral cortex areas, we applied canonical corre-
spondence analysis (CCA). CCA infers information from two
matrices and projects data points into a single embedding space.
As shown in Figure 7, the distance from the center reflects the re-
lationship strength, and the closeness of data points reflects the
strong correlations. For better visualization, we used two-dimen-
sional scatter plots, also known as canonical loading plots, to
show the correspondence between cell types and brain regions
(see Methods). Several tightly coupled relationships between neu-
ronal subtypes and brain regions reinforced that different neuro-
nal subtypes were likely involved in different functions. For
example, neuronal subtype Ex3 is located close to the V1C region
at the intermediate and late postnatal stages (Fig. 7E,F) but not at
the prenatal and early postnatal stages (Fig. 7A–D), implying a
stage-specific role of Ex3 cells in vision. We thus conducted func-
tional enrichment analyses using GO and KEGG pathways for

marker genes of each neuronal subtype. As presented in
Supplemental Table S4, we found that Ex1-specific genes (n =
244)weremainly enriched in postsynaptic density (false-discovery
rate [FDR] = 5 ×10−5), microtubule cytoskeleton organization and
cytoplasm (FDR=7×10−5), and regulation of synaptic plasticity
pathways (FDR=9×10−4). Ex3-specific genes (n=206) were main-
ly enriched in cytosol (FDR=6×10−5), protein binding (FDR=2×
10−3), and extracellular exosome pathways (FDR=0.048). And
In4-specific genes (n=173) were mainly enriched in central ner-
vous system development (FDR=0.07).

Cell type–specific enrichment analysis of 13 major brain-

associated traits

We collected GWAS summary statistics for 13 brain-associated
traits and conducted cell type–specific enrichment analysis
(Supplemental Table S5). These 13 traits included lots of psychiat-
ric disorders, including attention deficit hyperactivity disorder,
ASD, bipolar disorder, major depressive disorder, and SCZ. To ex-
tend our previous tissue-level study (Pei et al. 2019), we found
that for most neuropsychiatric diseases, their susceptible genes
were mainly enriched in excitatory and inhibitory neurons (Fig.
8). Specifically, we observed more excitatory neurons than inhibi-
tory neurons enriched for genes associated with SCZ, education,
neuroticism, ASD, and subjective wellbeing. These findings are
consistentwith recent study that reported the enrichment of excit-
atory over inhibitory neurons for SCZ (Finucane et al. 2018). On
the other hand, we observed more inhibitory than excitatory

E F

BA C

D

Figure 7. Visualization of the canonical correspondence analysis (CCA) results of neuronal subtypes across different brain regions under six growth stag-
es. Assuming that both cell types and regions have unit variance, their projections on the plane reside within a circle of radius one centered at the origin.
Distance to the center refers to the strength of the relationship. The first group (colored in red) consists of eight excitatory neuronal subtypes. The second
group (blue) consists of eight inhibitory neuronal subtypes. The third group (magenta) consists of 11 brain regions on cerebral cortex hemispheres. For
clarity, two circles with radii of 0.5 and 0.75 are shown to distinguish associations of cell types and regions. CCA results revealed a number of neuronal
subtypes in close proximity to specific regions at six different temporal stages: (A–C) early, intermediate, and late prenatal stage; (D–F ) early, intermediate,
and post-postnatal stage.
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neurons that were associated with major depressive disorder.
Althoughprevious study revealed samepattern for bipolar disorder
(Finucane et al. 2018), the results varied slightly with different
thresholds among trait-associated genes.

Our results from the cell type–specific enrichment analysis
were consistent with previous reports (Parikshak et al. 2013;
Willsey et al. 2013). These results may shed light onto the roles
of neuronal subtypes in the manifestation of the GWAS signals.
For example, SCZ-related genes were previously reported to be
highly expressed during prenatal development (Gilman et al.
2012). In our results, we found that SCZ genes were enriched for
the Ex1 (P=3.2 × 10−5) and Ex4 (P=5.5 ×10−4) neuronal subtypes,
and these two neurons were also significantly enriched in the pre-
natal frontal cortex region (Fig. 6C). In addition, bipolar disorder–
related genes were enriched in Ex1 (P=5.7 ×10−3) and In4 (P=
0.04). Of note, neuron In4was enriched for prenatal front amygda-
la and hippocampus regions (Fig. 6C), and the amygdala, hippo-
campus, and prefrontal cortex regions were previously reported
to be related with bipolar disorder (Ellison-Wright and Bullmore
2010; Chai et al. 2011). In addition, ASD, number of education
years, and college status were all enriched in fetal cell types (P<
0.05) (Fig. 8). Genes related to ASD and intellectual ability have
long been implicated in early brain development (Shaw et al.
2006; Kelleher and Bear 2008; Coe et al. 2019), and our results fur-
ther confirmed these conclusions at the cell-type level. Similarly,
SCZ was also enriched in fetal cells. Collectively, these results re-
vealed a cell-type-level enrichment of GWAS genes for several
brain disorders, presenting a new way to interpret GWAS results

in the context of spatiotemporal information from the human de-
veloping brain.

Discussion

scRNA-seq was shown as one of the most popular strategies to
elucidate the heterogeneity of the human brain at the molecular
level (Darmanis et al. 2015; Lake et al. 2016). However, human
brain samples are extremely hard to collect, and there is a high
level of incompleteness for human spatiotemporal transcrip-
tome. In this study, we provided a reference grid of spatiotempo-
ral transcriptome data in human brain using tensor-based
imputation and BrainSpan data. We further gained a comprehen-
sive understanding of human brain development and related
brain disorders by conducting a series of genomics analyses.
The currently available transcriptome data for human brain
have high missing data rates. Our implemented tensor-based
(Khan and Ammad-ud-din 2016) imputation could reliably infer
a completed grid of spatiotemporal transcriptome data in
BrainSpan with high accuracy (median: R2 > 0.9). The resulting
imputed data provide a reliable resource for downstream analysis.
Moreover, our application of deconvolution algorithms
(Newman et al. 2015) to recent scRNA-seq data (Bakken et al.
2018; Wu et al. 2019) enabled us to systematically investigate
brain CTC from both prenatal (range from 12 pcw to 38 pcw)
and postnatal (4 mo to 40 yr) stages. The alterations in neuronal
subtype composition across the entire range of human brain

Figure 8. Association between trait-associated genes and cell-typemarker genes. The color scheme reflects the−log10 transformed P-value. The values 1,
2, and 3 in some cells indicated the rank of the corresponding cell type based on the Fisher’s exact test. Nonsignificant associations (P-value≥0.05) were
replaced by blank color.
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development yielded several interesting results that were beyond
traditional bulk-tissue genomic analyses. We characterized brain
CTC and discovered many neuronal subtypes showing temporal
as well as spatial specificity. In contrast to previous studies, our
results are derived from a large number of individuals, covering
a diverse spectrum of temporal and spatial stages. This increased
the generalizability of our findings.

To our best knowledge, this study provides the most compre-
hensive map of spatiotemporal CTC of the human brain. By inte-
grating human brain spatiotemporal transcriptomics and brain
disease–relevant GWAS data, we systematically interpreted the
cell-type spatiotemporal specificity throughout human brain de-
velopment and uncovered disease-relevant cell types for themajor
psychiatric disorders. Based on the neuronal subtype composition
and functional enrichment ofmarker genes, we inferred the specif-
ic function of each neuronal subtype. For example, previous stud-
ies showed that the frontal cortex is mainly involved in
concentration, planning, judgment, emotional expression, and
creativity (Banks et al. 2007; de Souza et al. 2014); the primary vi-
sual cortex is mainly involved in vision; and the CBC is mainly in-
volved in coordination of movement balance and equilibrium
(Jacobs et al. 2018). However, with the exception of Ex3 being sig-
nificantly enriched in the V1C region at the intermediate and late
postnatal stages, the majority of neuronal subtypes was uniformly
enriched formultiple brain functional areas. One possible reason is
likely because most cellular signaling involves a diverse repertoire
of cell types under precisemolecular regulation (Miller et al. 2014).
Moreover, neuronal subtype classification ismainly based onbrain
layer, as opposed to brain regions (Briggs 2010). A previous study
revealed that the cerebral cortex is composed of six layers charac-
terized by differences in the composition of various neuronal sub-
types (Zeng et al. 2012). For example, layer 4 neurons are the main
targets of thalamocortical inputs, whereas layer 5 and 6 neurons
mainly transmit output projections to various subcortical and con-
tralateral regions (Briggs 2010).

There are still potential limitations to improve upon. First,
current deconvolution method depends on feature selection and
the choice of reference set. Because the adult cells in scRNA-seq
data are unlikely to appear in fetal tissues (and vice versa) and
because there are very different cell populations between the sub-
stantia nigra and cortex region, using suitable reference scRNA-
data for deconvolution analysis is very important (Sosina et al.
2020). However, owing to theminute amount of startingmaterial,
scRNA-seq data are prone to batch effects (Haghverdi et al. 2018).
For better-selected cell-type signature genes, an integration of dif-
ferent large-scale scRNA-seq data generated by various groups in
diverse experiments (Simon et al. 2020) would be an essential
step for better deconvolution analysis. Second, compared with
other imputation approaches (Huckins et al. 2019; Zhang et al.
2019a), our tensor-based model fail to consider genetic variation
(Gusev et al. 2018), sexual differences (VanRyzin et al. 2019),
and pregnancy events (Hoekzema et al. 2017). The imputation per-
formance for a minor fraction of samples is still low. We speculate
that an integrativemodel would further improve the performance.
Nevertheless, we hope that our results will be useful for biomarker
research in psychiatric disorders. Additionally, our analysis strat-
egy may facilitate the generation of novel biological insights un-
derlying brain diseases, and it can be applied to future data.
Furthermore, novel technologies, such as RNA tomography
(Junker et al. 2014; Wu et al. 2016), will generate more spatiotem-
poral gene expression features in tissues or organs. Our method
can be further applied to such data, leading to a deeper under-

standing of the function of the human brain or other types of
organs.

Methods

Neurodevelopmental transcriptome data

Bulk brain transcriptome data

The transcriptomic data (RNA-seq) of the developing human brain
was downloaded from the Allen Institute BrainSpan Atlas (access
date May 21, 2019). The raw data comprised 524 transcriptomes
from 42 individuals ranging in age between 8 pcw and 40 yr across
26 brain regions. The overall missing data rate was ∼52% (568 out
of 42×26=1092 transcriptomes), with 16/26 regions sampled for
at least 20 individuals and 35/42 individuals sampled for at least
five regions. After removing individuals with high missing data
rates (i.e., ≥15%), we obtained a working data set with 35 individ-
uals for 16 regions. Hereafter, we refer one sample as a transcrip-
tome that was measured at a particular developmental stage in a
particular region. One sample has one transcriptome, and an indi-
vidual has multiple samples corresponding to multiple brain re-
gions. The full names of each region as well as other details are
presented in Supplemental Table S1.We also downloaded the tran-
scriptome data from the GTEx consortium for adult human brain
(downloaded on August 15, 2019).

Brain scRNA-seq data

scRNA-seq profiles were downloaded from PsychENCODE
(Akbarian et al. 2015). Based on the original platforms, we defined
two panels as the reference scRNA-seq data for brain. The first pan-
el (denoted as panel A) was a combined data set using the scRNA-
seq data derived from the cortical tissue of eight adults and four
embryonic samples ranging from 16 to 18 gestational weeks
(Darmanis et al. 2015) and PsychENCODE (Akbarian et al. 2015).
The cell types in panel A included astrocytes, microglia, neurons,
oligodendrocytes, oligodendrocyte precursor cells (OPC), and en-
dothelial cells, as well as fetal astrocyte, endothelial, IPC, micro-
glia, neuroepithelium (NEP), oligodendrocyte, fetal OPC,
pericyte, quiescent, and replicating cells. The second panel (denot-
ed as panel B) was derived from six cortical regions of a normal, 51-
yr-old female postmortem brain by single-nucleus RNA sequenc-
ing (snRNA-seq) (Lake et al. 2016), including eight excitatory
and eight inhibitory neuronal subtypes.

BrainSpan data imputation based on tensor decomposition

We transformed the BrainSpan transcriptome data with missing
values into a 3D tensor X , with axes corresponding to the individ-
ual, region, and protein-coding gene, respectively. Because all indi-
viduals have their corresponding ages, the axis for individuals also
represented the dimension of lifespan. Thus, the BrainSpan data
imputation problem was transformed as a tensor decomposition
and completion task. We applied the Bayesian tensor decomposi-
tion method using the trilinear CP factorization (Khan and
Ammad-ud-din 2016) algorithm. The CPmethod factorized an in-
put tensor into a low-dimensional component space U, V, and W
vector (rank-1 tensor), corresponding to the individual, region,
and gene tensor, respectively. The number of components, denot-
ed by R, was tested from 10 to 100. In our case, Rwas automatically
determined and optimized by the package. The factorized tensors
were optimized to approximate the measured data by minimizing
reconstructed variance. The CP decomposition can be written as
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follows:

X ≈
∑R

r=1
ur ◦ vr ◦ wr =: X̂ ,

where R is a positive integer that represents the rank of the tensor,
and ur, vr, wr denote rank-1 tensor with appropriate dimensions.
Here, the notation “°” represents the outer product of tensors.
The optimization function is defined as minX −X̂F , where
X̂ = ∑R

r=1 lrur ◦ vr ◦wr .
After model fitting, we used the factorized tensors to recon-

struct the original tensor, which included not only the approxima-
tion of the measured samples but also the newly generated values
for the originally missing samples. To obtain robust results, we re-
peated the imputation procedure 100 times and used the median
values as final results for downstream analysis.

We performed LOO cross-validation to evaluate the results.
For each sample with measured transcriptome data, we construct-
ed a tensor excluding this sample (i.e., the holdout sample), ap-
plied CP factorization, and imputed the missing transcriptome.
Imputation performance was evaluated using four measurements:
PCC, R2, rootmean squared error (RMSE), andmean absolute error
(MAE).

Variance partition analysis by linear mixed model

After imputation, we organized the completed BrainSpan data as a
matrix, with genes as rows (n=18,921) and samples as columns (n
=560 for 35 individuals across 16 regions). Lowly expressed genes
with RPKM≤1 in >20% of the samples were excluded, resulting in
13,260 high-abundance genes for the following analyses. All gene
expression values, including both measured and imputed, were z-
score transformed. To assess the impact of several covariates, we
applied a linear mixed model as implemented in the R package
variancePartition (v1.8.1) (Hoffman and Schadt 2016), which de-
composes the expression of each gene into components attribut-
able to each variable. In this study, we considered the following
biological or technical factors: individual, imputation status, sex,
and spatial and temporal information. Categorical variables were
modeled as random effects. For temporal information, we grouped
all samples into six stages, corresponding to early prenatal (before
12 pcw), intermediate prenatal (from 13–21 pcw), late prenatal (af-
ter 24 pcw), early postnatal (4mo–4 yr), intermediate postnatal (8–
13 yr), and late postnatal (18–40 yr) stages. A model was fitted for
each gene independently, and the results for all genes were aggre-
gated afterward. The results were visualized using the built-in func-
tion plotPercentBars of the variancePartition package (Hoffman and
Schadt 2016).

WGCNA

WGCNA (v1.67) (Langfelder and Horvath 2008) was used to build
a coexpression network based on the imputed BrainSpan RNA-seq
profiles. The modules with a PCC>0.5 and a correlation test P-val-
ue <1×10−10 were extracted as temporal or spatial associated
modules.

Gene set enrichment analysis

We used RDAVIDWebService (v 1.19.0) (Fresno and Fernandez
2013) for gene set enrichment analysis. All human protein-coding
genes were used as the background gene set. Benjamini and
Hochberg’s approach (Benjamini and Hochberg 1995) was used
for multiple test correction. Significant pathways were defined as
those with adjusted P-value <0.001. We also conducted TSEA us-
ing the deTS method (Pei et al. 2019; Jia et al. 2020) and the
GTEx panel as the reference, without multiple test correction.

Cell composition deconvolution

For bulk transcriptome data, including both measured and imput-
ed RNA-seq expression data, we used CIBERSORT (v1.04)
(Newman et al. 2015) relative mode to perform deconvolution
and quantify CTCs. CIBERSORT uses a reference single-cell expres-
sion panel and implements a support vector regression (SVR)–
based machine learning approach to estimate the composition of
each cell type. Here, we applied CIBERSORT to the BrainSpan
data set with the two single-cell data sets aforementioned. To bal-
ance the number of cells, we randomly selected 50 cells in each cell
type. For a few cell types with fewer than 50 cells, all cells were
used. To balance the batch effect between two panels
(Supplemental Fig. S9), we deconvoluted them using the separate
reference panel. Panel A had 715 signature genes. Panel B had 623
signature genes (Supplemental Table S6). The bulk transcriptome
and the expression signatures of cell types were simultaneously
submitted to the CIBERSORT pipeline. For each bulk transcrip-
tome,weobtained aCTC score for each cell type from the reference
panel. We used the R package cerebroViz (Bahl et al. 2017) for ana-
tomical visualization of spatiotemporal brain data. We applied
PCA to visualize the distribution of CTC scores.

CCA

CCA is a multivariate technique to identify the relationship be-
tween two sets of explanatory variables (Hotelling 1936).
Specifically, CCAprojects the two variables onto a low-dimension-
al space where these variables are maximally correlated. In our
case, we usedCCA to investigate the relationships between the var-
iable of brain regions and the variable of cell types. Let X be an N×
Cmatrix of CTC scores inN samples (i.e., transcriptomes, in which
a transcriptome was obtained from a sample in a particular brain
region at a particular developmental stage) and C cell types.
Similarly, let Y denote an N×R matrix recording the source of
each transcriptome in R brain regions, where yn,r=100% (i.e., the
value one) indicates the nth (n=1,…,N) transcriptomewas collect-
ed from the rth (r=1,…,R) region. Let a1 = (a1

1; . . . ; a
1
c )

T and
b1 = (b1

1; . . . ; b
1
r )

T denote the two basis vectors. Then the projec-
tions of the two explanatory variables onto these basis vectors
are given by

U1 = Xa1 = a11X
[,1] + a12X

[,2] + . . .+ a1c X
c

and

V1 = Yb1 = b11Y
1 + b12Y

2 + . . .+ b1r Y
r.

CCA seeks to find two vectors (a and b) to maximize the corre-
lation r = cor(aTX, bTY). Thus, the correlations between two
projections are mutually maximized as follows:

r1 = cor(U1, V1) = max
a, b

[cor(Xa, Yb)],

where the derived linear projections U1 and V1 are the first canon-
ical components, and ρ1 refers to the canonical correlation be-
tween the first components. Note that the successively
computed canonical correlations decrease by nature; that is, ρ1≥
ρ2≥…≥ ρmin(C,R). The CCA results presented in this work is con-
ducted by the R package CCA (Gonzalez et al. 2008).

Trait-associated genes from GWAS

We downloaded GWAS data sets for 13 brain-associated traits (for
details, see Supplemental Table S6). To define trait-associated
genes, we mapped SNPs to genes if they are located in the gene
body or 50 kb upstream of or downstream from the gene using
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the PASCAL software (Lamparter et al. 2016). PASCAL calculated a
gene-based P-value while taking into account linkage disequili-
brium, gene length, and SNP density. For each trait, we defined
trait-associated genes based on the gene-based P-values using three
thresholds to ensure rigor: P-value <0.05, 0.01, and 0.001.

Cell type–specific enrichment analysis

To conduct cell type–specific enrichment analysis for a list of dis-
ease genes, we merged the single-cell expression profiles from
both panels of cell-type data. Briefly, we fitted a regression model
for each gene to assess its expression specificity in each cell type us-
ing: Y∼X, where Y= [yi], i=1,…, N was a vector of the normalized
gene expression in a total of N cells, and X was the cell-type group
status. Specifically, for a cell type in examination, we defined X=
[xi], i=1,…, N, where xi=1 if the sample belongs to the cell type
in examination and xi=0 otherwise. After model fitting, we ob-
tained t-statistics that can be used to measure the cell-type specif-
icity for each gene. A high t-statistic value indicates that the gene is
specifically expressed in the corresponding cell type. Based on our
previous work (Pei et al. 2019), we defined the top 5% of genes or-
dered by decreasing t-statistic as the cell type–specific genes.
Fisher’s exact test was then used to evaluate the association be-
tween trait-associated genes and cell type–specific genes.

Software availability

Source code implementing all steps, including data preprocessing,
tensor imputation, evaluation scripts, and the completed
BrainSpan data set, is available via GitHub (https://github.com/
bsml320/BrainSpan) and as Supplemental Code.
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