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Abstract
Estrogen surge following progesterone withdrawal at parturition plays an important role in

initiating maternal behavior in various rodent species. Systemic estrogen treatment short-

ens the latency to onset of maternal behavior in nulliparous female rats that have not experi-

enced parturition. In contrast, nulliparous laboratory mice show rapid onset of maternal

behavior without estrogen treatment, and the role of estrogen still remains unclear. Here the

effect of systemic estrogen treatment (for 2 h, 1 day, 3 days, and 7 days) after progesterone

withdrawal was examined on maternal behavior of C57BL/6 mice. This estrogen regimen

led to different effects on nursing, pup retrieval, and nest building behaviors. Latency to

nursing was shortened by estrogen treatment within 2 h. Moreover, pup retrieval and nest

building were decreased. mRNA expression was also investigated for estrogen receptor α

(ERα) and for genes involved in regulating maternal behavior, specifically, the oxytocin

receptor (OTR) and vasopressin receptor in the medial amygdala (MeA) and medial preop-

tic area (MPOA). Estrogen treatment led to decreased ERαmRNA in both regions. Although

OTRmRNA was increased in the MeA, OTR and vasopressin receptor mRNA were

reduced in the MPOA, showing region-dependent transcription regulation. To determine the

mechanisms for the actions of estrogen treatment, the contribution of estrogen synthesis in

the brain was examined. Blockade of estrogen synthesis in the brain by systemic letrozole

treatment in ovariectomized mice interfered with pup retrieval and nest building but not nurs-

ing behavior, indicating different contributions of estrogen synthesis to maternal behavior.

Furthermore, letrozole treatment led to an increase in ERαmRNA in the MeA but not in the

MPOA, suggesting that involvement of estrogen synthesis is brain region dependent. Alto-

gether, these results suggest that region-dependent estrogen synthesis leads to differential

transcriptional activation due to exogenous estrogen treatment, and thereby results in differ-

ent effects on maternal behavior.
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Introduction
Estrogen plays an important role in initiation of maternal behavior in rodents [1]. In the first
stages of pregnancy, progesterone levels increase and then decrease towards parturition [2]. At
the same time as this progesterone withdrawal, plasma estrogen concentration increases, and
this surge shortens the latency to onset of maternal behavior, which is known as sensitization.
Additionally, the dominant effect of progesterone enhances the effect of estrogen regardless of
treatment duration [3]. Hormone treatment that mimics this hormonal event at parturition
(i.e., estrogen surge combined with progesterone withdrawal) also shortens the latency to sensi-
tization in nulliparous females that have not experienced parturition [4]. In nulliparous female
rats, it takes approximately 1 week to initiate maternal behavior without any treatment. How-
ever, hormone treatment shortens the latency to a few days, demonstrating the role of hor-
monal involvement at parturition in initiation of maternal behavior.

In rats, estrogen contributes to both reduced anxiety and increased pup approaches, both of
which underlie the onset of maternal behavior [5, 6]. Nulliparous female rats treated with
estrogen move more rapidly into a novel field compared with vehicle-treated rats [4]. In con-
trast, estrogen surge at parturition contributes to pup-reinforced lever pressing, indicative of a
high motivational state towards pups [7]. Thus, these results suggest that estrogen regulates
maternal behavior by modulating anxiety and approach to pups.

In comparison with rat studies, research on the effect of estrogen treatment on maternal
behavior in mice is more controversial. Maternal behavior is severely impaired in estrogen
receptor α (ERα) knockout mice and gonadally intact female mice with decreased ERα expres-
sion, due to shRNA treatment in the medial preoptic area (MPOA), showing the indispensable
role of ERα in mouse maternal behavior [8, 9]. Moreover, estrogen treatment leads to a short-
ened latency to pup retrieval and recognition of ultrasonic vocalization, which contributes to
pup recognition in ovariectomized (OVXed) female mice [10]. In contrast, other studies have
shown that estrogen treatment in adult nulliparous female mice causes loss of maternal behav-
ior and infanticidal behavior [11, 12]. In intact female mice, estrogen treatment alone results in
poor nest-building ability [13, 14]. Furthermore, a recent study reported that gonadal hor-
mones have no effect on crouching nor pup retrieval [15]. These results suggest that estrogen
has complex effects on maternal behavior in mice.

This complexity may arise from estrogen synthesis in the brain. Estrogen at parturition is
synthesized in the ovaries and secreted to the blood, with resulting effects in the brain [2]. How-
ever, estrogen is also synthesized in the brain [16, 17]. Given that virgin female mice spontane-
ously elicit rapid onset of maternal behavior without estrogen treatment [18], it is possible that
brain-derived estrogen contributes to onset of maternal behavior in mice, regardless of ovarian
estrogen surge at parturition. To determine the role of estrogen in mouse maternal behavior, we
first treated OVXed nulliparous C57BL/6 mice with exogenous estrogen following progesterone
withdrawal, thereby mimicking the hormonal event at parturition. Then, we analyzed maternal
behavior such as nursing, pup retrieval, and nest building. Additionally, gene expression was
examined in brain regions involved in regulation of maternal behavior, including the MPOA
and medial amygdala (MeA). Finally, we addressed the contribution of brain-derived estrogen
to maternal behavior by inhibiting estrogen synthesis in the brain of OVXed mice.

Materials and Methods

Animals
Inbred female C57BL/6 mice (aged 8–10 weeks) were housed singly under a reversed light–
dark cycle (12:12 h, lights off at 10 am). Food and water were available ad libitum. Behavioral
tests were performed within the first 4 h of the dark period, and videotaped for further analysis.
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All procedures were approved by The Rockefeller University Institutional Animal Care and
Use Committee. The Public Health Services Policy on Humane Care and Use of Laboratory
Animals was followed.

Surgery and preparation of hormone containing capsules
Virgin female mice were OVXed under nembutal anesthesia (50 mg/kg body weight). Hor-
mone treatments were performed by subcutaneous implantation of silastic capsules containing
sesame oil (vehicle), 50 mg/mL progesterone (Sigma, MO, USA), or 0.5 mg/mL 17-β estradiol
3-benzoate (EB; Sigma), which delivered physiological concentration of these hormones, as
demonstrated in previous studies [19]. Each capsule was made of 2-cm-long silastic tubing (ID:
0.078 inches, and OD: 0.125 inches), which was sealed off with medical grade silicone adhesive.
To ensure constant hormone release from the capsules, prior to implantation all capsules were
incubated in saline at 37°C overnight.

Hormone treatment and behavioral analyses
Paradigm 1: maternal behavior analysis with unfamiliar pups. A total of 59 virgin

female mice were OVXed and progesterone-containing capsules implanted. The mice were
kept in their home cages for 4 to 10 days, and then the progesterone capsule removed and EB-
or vehicle-containing capsules implanted. Mice were kept in their home cages for 2 h, 3 days,
or 7 days prior to behavioral analysis (Fig 1, upper). For the behavioral analysis, all observa-
tions were started 10 min after placing the cage under the camera. Three pups (aged 2–4 post-
natal days) from a primiparous mother were separately put in different corners of the cage.
Latency to nursing and duration of nursing were measured for the first 15 min. Initiation of

Fig 1. Schematic representation of the treatment paradigms.Maternal behavior was independently
examined after hormonal treatments according to three paradigms. Paradigm 1: after OVX surgery, a
progesterone capsule was implanted for 4–10 days. Simultaneously upon removal of the progesterone
capsule, EB- or vehicle-containing capsules were implanted for 2 h, 3 days, or 7 days. Maternal behavior was
then analyzed. Paradigm 2: hormonal treatment was the same as for 3 days EB treatment in paradigm 1. The
difference from paradigm 1 was the use of familiar pups from communal nests for behavioral analyses.
Paradigm 3: ten days after OVX surgery, mice were intraperitoneally injected with letrozole for 4 days. Four
hours after the final treatment, maternal behavior was analyzed.

doi:10.1371/journal.pone.0150728.g001
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nursing was defined as the experimental mouse hovering over at least two pups to enable them
to access the female’s ventral surface for more than 30 sec. If the mother did not show any sign
of nursing behavior, the latency was counted for 15 min and then the pups placed in one corner
by an experimenter before starting the next session.

For the next 30 min, nest materials were scattered within the cage, and latency to nest build-
ing and nest quality at the end of the session analyzed according to previously reported criteria
[20]. Briefly, nest quality was rated as follows: score of 1 (poor), shavings evenly spread over
the cage floor in the absence of an apparent nest area; 2 (fair), shavings evenly distributed over
the cage floor and presence of a nest with a low wall; 3 (good), the majority of the shavings in
one quadrant of the home cage and a nest with a high wall; and 4 (excellent), all shavings incor-
porated into a nest with a high wall. If a nest was not built, the latency was counted for 30 min
and the nest materials placed in a corner with the pups before starting the next session.

In the final session, two pups were removed from the nest and separately repositioned to
corners away from the nest. Latency to retrieval of both pups and the number of retrieved pups
were measured for 15 min. If the experimental mouse did not retrieve both pups, the latency
was counted for 15 min.

Using the same paradigm of EB treatment for 3 days, a total of 15 virgin female mice were
examined for anxiety using the dark and light apparatus. An enclosed black acrylic
box (40.0 × 20.5 × 20.5 cm) was set in the right half of an acrylic chamber (40.5 × 40.5 × 20.5
cm). Three pups were placed in the open compartment, which was directly illuminated by a 40
W white light placed above the compartment floor. Duration in the light compartment, num-
ber of entries, and latency before entering the compartment were scored for 5 min.

Paradigm 2: nursing behavior analysis with familiar pups from communal nesting. As
in paradigm 1, a total of 54 virgin female mice were OVXed and prepared for vehicle and EB
groups. EB treatment was performed for only 3 days. The main difference from paradigm 1
was the use of familiar instead of unfamiliar pups. For the familiar pups, mice were kept with a
pregnant female mouse during progesterone treatment. On the day of parturition, experimen-
tal mice were subjected to EB treatment and kept for 3 days with the original postpartum
female and her pups, resulting in communal nesting (Fig 1, middle). Nursing behavior was
then analyzed in the same cage with three pups from the communal nest by removing the
mother and extra pups. Latency to nursing was analyzed, as in paradigm 1. However, the
amount of nursing was determined using a modified approach for the following reason. In par-
adigm 1, latency to nursing and its duration were analyzed for a total of 15 min. Therefore,
mice showing early onset have a longer time for nursing, which can overestimate the actual
amount of nursing. Thus, in paradigm 2, the observations started 10 min after initiation, and a
time-sampling procedure performed, whereby nursing every 15 sec for 45 min was recorded.

Approach analysis was measured after 2 h and 3 days of EB treatment, as described in Litvin
et al., with a few modifications [21]. Briefly, three pups from the communal nest were placed at
the edge of a box (50 cm × 12 cm × 50 cm; constructed of white Plexiglas except for the front).
Next, the experimental mouse was transferred to the opposite edge and the behavior was
observed for 5 min. The box was divided into three equal sections and duration in the section
with pups was analyzed.

Paradigm 3: maternal behavior analysis in mice treated with letrozole. A total of 15 vir-
gin female mice were OVXed. Letrozole was prepared by dissolving in ethanol (8 mg/mL) fol-
lowed by addition of 0.9% NaCl to a final concentration of 0.8 mg/mL. Ten days later, the mice
were intraperitoneally injected with letrozole (Novartis, Basel, Switzerland) at a dosage of 4 μg/
g body weight, or vehicle as a control once per day for 4 days (Fig 1, lower). Four hours after
the final letrozole treatment, behavior was analyzed as described in paradigm 1. Additionally,
approach to pups was analyzed as in paradigm 2.
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Molecular analysis
Molecular analysis was performed as described previously [22]. Briefly, following the behavioral
studies, animals were deeply anesthetized with isoflurane and decapitated. The brains were
quickly removed and stored at −80°C. Coronal slices of the entire brain were cut at 1-mm thick-
ness using a mouse brain matrix, and the MPOA andMeA dissected using razor blades. Total
RNA was isolated from each brain region using Trizol reagent, according to the manufacturer’s
specifications (Invitrogen, San Diego, CA, USA). The amount and quality of total RNA were
determined using a Nanodrop spectrophotometer (Thermo Scientific, Rockford, IL, USA).

Total RNA (0.5 μg) from each sample was reverse transcribed using a High-Capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA, USA), according to the manufacturer’s spec-
ifications. The reverse transcription reaction consisted of 10 min at 25°C followed by 2 h at
37°C. Samples were diluted with nuclease-free H2O and stored at −80°C until use.

Quantitative real-time PCR (Q-PCR) was performed for the following gene products: ERα,
oxytocin receptor (OTR), vasopressin receptor (V1aR) and 18S rRNA mRNA levels. Gene
expression assays were purchased from Applied Biosystems for each gene product: ERα, Assay
ID Mm00433149_m1; OTR, Assay ID Mm01182684_m1; V1aR, Assay ID Mm00444092_m1;
and 18S rRNA, Assay ID 4352930E. Q-PCR reactions were performed using the TaqMan
detection system (Prism 7000; Applied Biosystems) with the following conditions: 2 min at
50°C, 10 min at 95°C, and 40 cycles of 95°C for 15 sec and 60°C for 1 min. All Q-PCR reactions
were run in triplicate, and relative gene expression levels calculated by delta Ct (dCt), subtract-
ing the average cycle threshold (Ct) value for each gene product by the average Ct for 18S
rRNA mRNA. The amount of each gene product in each brain region was set at 1 in the vehicle
group using the following formula: F(x) = 2-(X-Y). X is dCT for the gene of interest, and Y the
average dCT from a comparable vehicle group.

Statistical analysis
For all analyses, a minimum significance level of P = 0.05 was used. For behavioral analysis, two-
tailed Student’s t-test was used for two group comparisons. For analysis of more than two groups,
one-way ANOVA was used followed by Newman–Keuls multiple comparison test. For mRNA
expression, dCt values were compared using the two-tailed Student’s t-test. For correlation analy-
sis, the following equation: t0 = r/sqrt[(1-r2)/ (N-2)]was used. In this equation, r represents the
correlation coefficient, N the number of samples, and then t0 distributes as t with d.f. = N-2.

Results

The effect of estrogen on maternal behavior with unfamiliar pups
(paradigm 1)
To examine the effect of estrogen on maternal behavior, we examined nursing, pup retrieval,
and nest building behaviors in OVXed virgin female C57BL/6 mice that had experienced pro-
gesterone withdrawal followed by EB or vehicle treatment for 2 h, 3 days, and 7 days (Fig 1,
paradigm 1). A total of 59 mice were used and divided into these four groups. In this paradigm,
unfamiliar pups from host mothers were used to observe maternal behavior in the home cage
of the experimental mouse. No differences were observed among mice treated with vehicle for
different durations in all behavioral analyses, therefore these mice were combined into a single
vehicle group.

Mice treated with EB for 2 h exhibited significantly shortened latencies to nursing. However,
longer EB treatment gradually increased the latency, and at 7 days of treatment it was compara-
ble to vehicle-treated mice (Fig 2A, left; one-way ANOVA, F(3, 37) = 4.90, �P< 0.05). Nursing
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duration was concordant with the change in latency. Mice treated with EB for 2 h showed lon-
ger nursing duration, while extended EB treatment for 7 days reduced the duration to a similar
level as vehicle-treated mice (Fig 2A, right; one-way ANOVA, F(3, 41) = 6.54, �P< 0.05). These
results show that EB has a dual effect on nursing: a rapid improving effect within 2 h, followed
by a slow inhibitory effect for up to 7 days.

In contrast to nursing, estrogen only exerted an inhibitory effect on pup retrieval. Compared
with vehicle-treated mice, onset of pup retrieval was delayed by 2-h EB treatment. This delay
was further exacerbated by 3 days of treatment, and persisted until 7 days (Fig 2B, left; one-way
ANOVA, F(3, 52) = 7.23, �P< 0.05). Accompanying this increased latency, fewer pups were
retrieved by mice treated with EB for 2 h, and the number was even lower for animals treated
with EB for 3 and 7 days (Fig 2B, right; one-way ANOVA, F(3, 53) = 7.23, �P< 0.05). Similar to
retrieval behavior, nest building behavior was impaired by EB treatment. Latency to nest

Fig 2. Maternal behavior of OVXedmice after estrogen treatment.Maternal behavior of OVXed mice was
analyzed using unfamiliar pups after progesterone withdrawal followed by EB treatment for 0 (vehicle), 2 h, 3
days, and 7 days. (A) Latency to nursing (left) and duration of nursing (right) were analyzed. (B) Latency to
pup retrieval (left) and number of retrieved pups (right) were analyzed. (C) Latency to nest building (left) and
nest quality (right) were analyzed.

doi:10.1371/journal.pone.0150728.g002
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building increased (Fig 2C, left; one-way ANOVA, F(3, 54) = 4.58, �P< 0.05) and nest quality
decreased at 3 and 7 days of EB treatment (Fig 2C, right; one-way ANOVA, F(3, 55) = 6.14,
�P< 0.05). These results indicate that only inhibitory actions on pup retrieval and nest build-
ing behaviors are observed following EB treatment.

The effect of estrogen on anxiety and approach to pups
Anxiolytic and prosocial effects are thought to be primitive roots of maternal behavior, with
estrogen inducing these effects in rats [4, 7]. To examine these effects in mice, anxiety and
approach to pups were analyzed after progesterone withdrawal followed by EB treatment or vehi-
cle in OVXed mice. Only 3 days of EB treatment was examined because of the behavioral effect
observed in paradigm 1. The effect of estrogen on anxiety was analyzed using the light/dark appa-
ratus with pups placed in the light compartment. This environment creates a more stressful situa-
tion than in the home cage, and is expected to exaggerate the anxiolytic effect of estrogen.
Anxiety was determined by the latency to enter the light compartment, number of entrances, and
duration in the light compartment. A total of 15 mice were used and divided into vehicle and EB
groups. In contrast to previous studies demonstrating an anxiolytic effect of EB on rats [4], EB-
treated mice showed increased anxiety, as evidenced by longer latencies and decreased number
of entrances into the light compartment, compared with vehicle mice (Fig 3A, left and middle;
two-tailed Student’s t-test, t = 2.16 for latency; t = 2.53 for number, �P< 0.05). Although the
duration in the light compartment was similar in EB- and vehicle-treated mice (Fig 3A, right; 67
sec for vehicle and 55 sec for EB), these results indicate that estrogen treatment enhances anxiety.

To examine the prosocial effect of estrogen, approach to pups was investigated using familiar
pups from communal nesting. This decreases the anxiety of experimental mice to the pups, and
is expected to reduce the anxiolytic effect of estrogen [23, 24]. After progesterone withdrawal,
experimental mice spent 3 days with the pups in communal nests during EB or vehicle treat-
ment (Fig 1, paradigm 2). For this experiment, a total of 12 mice were used and divided into two
groups. Treatment of EB for 3 days increased pup approaches, as indicated by increased dura-
tion with pups (Fig 3B left; two-tailed Student’s t-test, t = 2.41, �P< 0.05). Because EB treatment
as short as 2 h was sufficient to shorten the latency to nursing, the effect of 2-h EB treatment on
pup approaches was also investigated. This short treatment increased the duration time with the
pups, as seen after 3 days EB treatment (Fig 3B, right; two-tailed Student’s t-test, t = 2.75,
�P< 0.05), suggesting that estrogen rapidly increases pup approaches within 2 h.

Using familiar pups from communal nests, nursing behavior was also examined. A total of
54 mice were used and divided into vehicle and EB groups. Three days of EB treatment short-
ened the latency to nursing (the same as in the analysis with unfamiliar pups) (Fig 3C, left;
two-tailed Student’s t-test, t = 2.47, �P< 0.05). To exclude the effect of different latencies, the
amount of nursing was analyzed 10 min after initiation using a time-sampling procedure for
45 min. This observation approach found no effect of estrogen on the amount of nursing (Fig
3C, right). Overall, these results suggest that estrogen shortens the latency, but not the amount
of nursing once initiated. It should be noted that latency to nursing with familiar pups was
much shorter than with unfamiliar pups (Fig 2A, left), showing reduced anxiety of the experi-
mental mice to familiar pups from communal nests. However, reduced anxiety did not change
the effect of EB treatment on nursing. These results suggest that the observed estrogen-induced
shortened latency to nursing depends on increased pup approaches.

The effect of estrogen on expression of ERα, OTR, and V1aR
To gain insight into the molecular mechanisms of how estrogen differently regulates maternal
behavior, ERαmRNA expression levels were determined in brain regions involved in

Contribution of Estrogen Synthesis in the Mouse Brain

PLOS ONE | DOI:10.1371/journal.pone.0150728 March 23, 2016 7 / 16



regulation of maternal behavior, such as the MeA and MPOA of the hypothalamus. A total of
15 mice were randomly chosen for each group from mice that were examined for nursing with
familiar pups (paradigm 2). Mice were sacrificed immediately after behavioral analysis. In both
the MeA and MPOA, EB treatment led to an approximately 60% reduction in ERαmRNA
compared with the vehicle group (Fig 4A; two-tailed Student’s t-test, t = 3.79 for MeA, t = 3.86
for MPOA, �P< 0.05). This suggests negative autoregulation of ERα by estrogen, consistent
with previous reports [25, 26]. Next, OTR and V1aR mRNA levels were examined because
estrogen binding to ERα activates expression of these genes. Moreover, these receptors are cru-
cial to the onset of maternal behavior [27, 28]. In the MeA, EB treatment increased OTR

Fig 3. Effect of estrogen on anxiety and approach to pups. (A) Anxiety of OVXed mice following
progesterone withdrawal and 3 days EB treatment, was measured using the light/dark apparatus with
unfamiliar pups placed in the light compartment. Latency to entering the light compartment (left), number of
entries (middle), and duration in the light compartment (right) were examined. (B) Approach to familiar pups
from communal nests was examined in OVXedmice treated with EB for 3 days (left) or 2 h (right). (C) Latency
to nursing (left) and amount of nursing (measured by the time-sampling procedure) (right) were analyzed
using familiar pups from communal nests in OVXedmice treated with EB for 3 days.

doi:10.1371/journal.pone.0150728.g003
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Fig 4. mRNA expression in OVXedmice after 3 days-EB treatment following progesterone withdrawal.
(A) Estrogen receptor α (ERα) mRNA in the medial amygdala (MeA) and medial preoptic area (MPOA) was
examined. (B) Oxytocin receptor (OTR) mRNA in the MeA and MPOA was examined. (C) Vasopressin
receptor V1a (V1aR) mRNA in the MeA and MPOA was examined. (D) Correlation between ERα and OTR
mRNA in the MeA and MPOA. (E) Correlation between ERα and V1aR in the MeA and MPOA. Quantity of
mRNA was determined by the relative ratio against the vehicle group.

doi:10.1371/journal.pone.0150728.g004
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mRNA to 117% compared with the vehicle group, whereas it decreased to 83% in the MPOA
(Fig 4B; t = 2.37 for MeA, t = 2.43 for MPOA, �P< 0.05). Although V1aR mRNA levels were
comparable in the MeA of EB- and vehicle-treated mice (Fig 4C, left), they reduced to 69% in
the MPOA of EB-treated mice (Fig 4C, right; two-tailed Student’s t-test, t = 4.31, �P< 0.05).

To further investigate how estrogen differentially regulates OTR and V1aR mRNA through
ERα, correlations between ERα and OTR or V1aR mRNAs were examined. Positive correla-
tions were observed between ERα and OTR mRNA in the MeA in vehicle- and EB-treated
groups (Fig 4D, left; r = 0.72, t = 3.91, P< 0.01 for vehicle; r = 0.71, t = 3.66, P< 0.01 for EB).
Thus, OTR expression is under estrogen control via ERα in both groups. However, in the EB
group, the regression line has a larger slope compared with the vehicle group (0.37 for vehicle
and 1.21 for EB). Because the slope of the regression line represents the ratio of OTR to ERα
mRNA, a larger slope shows activated OTR transcription in the EB treatment group. Therefore,
despite the reduction of ERα in the MeA, more transcriptional activation of OTR results in a
net increase of OTR mRNA compared with vehicle mice. In the MPOA, OTR and ERαmRNA
were correlated in both the vehicle and EB groups (Fig 4D, right; r = 0.67, t = 3.19, P< 0.01 for
vehicle; r = 0.52, t = 2.21, P< 0.05 for EB). The slopes in both groups were practically identical
(0.26 for vehicle and 0.33 for EB), showing that EB treatment did not activate OTR transcrip-
tion in the MPOA. Decreased ERα expression combined with lack of transcriptional activation
results in decreased OTR mRNA in the MPOA.

Similar to OTR, V1aR positively correlated with ERα in the MPOA of both vehicle and EB
groups (Fig 4E, right; r = 0.68, t = 3.27, P< 0.01 for vehicle; r = 0.67, t = 3.20, P< 0.01 for EB).
The regression line slopes were almost the same in both groups (0.45 for vehicle and 0.30 for
EB), showing no transcriptional activation by EB treatment. In the MeA, V1aR did not corre-
late with ERαmRNA in either group (Fig 4E, left; r = 0.32, t = 1.24, P = 0.24 for vehicle;
r = 0.22, t = 0.77, P = 0.46 for EB). It should be noted that V1aR mRNA expression levels in the
MeA were only 10% that observed in the MPOA, and 1% that in the MeA of male mice (by esti-
mation from qPCR analysis [22]). Given the much lower expression, it is predicted that in the
MeA, the contribution of V1aR in female mice is much smaller. Taken together, the results
demonstrate that estrogen treatment activates OTR transcription in the MeA. However, nei-
ther OTR nor V1aR expression are activated in the MPOA, suggesting region-dependent acti-
vation of gene expression.

The effect of letrozole on maternal behavior (paradigm 3)
Estrogen synthesis in the brain may contribute to region-dependent activation of transcription
by estrogen treatment [16, 17], because the effect of exogenous estrogen can be modified in
brain regions where estrogen is synthesized. To determine the contribution of estrogen synthe-
sis in the brain to maternal behavior, latency to nursing, pup retrieval, nest building, and
approach to unfamiliar pups were investigated after systemic treatment of OVXed virgin
female mice with letrozole, an inhibitor of estrogen synthesis, or vehicle for 4 days (Fig 1, para-
digm 3). This treatment paradigm is enough to reduce estrogen synthesis in the brain [29–31].
A total of 18 mice were used and divided into these two groups. Letrozole treatment had no
effect on latency to nursing (Fig 5A, left). Additionally, approach to pups was not affected (Fig
5A, right). In contrast, letrozole treatment impaired pup retrieval behavior, as shown by signifi-
cantly delayed retrieval onset (Fig 5B, left; two-tailed Student’s t-test, t = 3.27, �P< 0.05) and
reduced average number of retrieved pups (Fig 5B, right; two-tailed Student’s t-test, t = 2.62,
�P< 0.05). Similarly, letrozole significantly delayed initiation of nest building (Fig 5C, left;
two-tailed Student’s t-test, t = 3.03, �P< 0.05). Nest quality was also decreased in the letrozole
group (Fig 5C, right; two-tailed Student’s t-test, t = 2.22, �P< 0.05). These results show a
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Fig 5. Maternal behavior of OVXedmice treated with letrozole.Maternal behavior of OVXed mice was
analyzed using unfamiliar pups after treatment with or without letrozole. (A) Latency to nursing (left) and
approach to pups (right) were analyzed. (B) Latency to pup retrieval (left) and number of retrieved pups (right)
were analyzed. (C) Latency to nest building (left) and nest quality (right) were analyzed. (D) ERαmRNA was
analyzed in the medial amygdala (MeA) (left) and medial preoptic area (MPOA) (right) of mice treated with or
without letrozole immediately after behavioral analysis. Quantity of mRNA was determined by the relative
ratio against vehicle group.

doi:10.1371/journal.pone.0150728.g005
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contribution of estrogen synthesis in the brain to pup retrieval and nest building, but not to
nursing and approach to pups.

Because ERα expression is negatively autoregulated by estrogen (Fig 4A), it is possible that
brain-synthesized estrogen also contributes to its regulation. To investigate this possibility,
ERαmRNA was examined in the brains of mice treated with letrozole in the above experiment.
Letrozole treatment enhanced expression of ERαmRNA to 170% that of the vehicle group in
the MPOA but not the MeA (Fig 5D; two-tailed Student’s t-test, t = 2.37, �P< 0.05 for
MPOA). These results suggest the possible involvement of estrogen synthesis in the MPOA but
not the MeA.

Discussion

Estrogen in mouse maternal behavior
This study shows that estrogen contributes to nursing, pup retrieval, and nest building in
C57BL/6 mice in different fashions. Furthermore, it shows potent contribution of brain-syn-
thesized estrogen to maternal behavior. Prior studies genetically manipulating the ERα gene
have clearly shown that ERα is necessary for normal maternal behavior [8, 9]. In contrast,
estrogen treatment results in ambiguous behavioral effects in mice. This study shows that
region-dependent synthesis of estrogen in the brain may contribute to maternal behavior and
explain these discrepancies.

With nursing behavior, estrogen shortened the latency but had no effect on the amount of
nursing after its onset. This is consistent with previous findings demonstrating that estrogen is
particularly important for initiation of maternal behavior but not its maintenance [15, 32, 33].
Upon detailed examination of the nursing analysis, I found that the effect of estrogen consisted
of two phases: a rapid improving effect (within 2 h) followed by a slow inhibitory effect, which
is explained by decreased ERα expression observed in the MPOA and MeA. Indeed, exogenous
estrogen treatment reduces ERα expression in the MPOA of rats [34], indicating negative auto-
regulation of ERα expression by estrogen [25, 26]. A two-phased effect of estrogen is physiolog-
ically reasonable because the time window for inducing maternal behavior upon presentation
of pups is limited in postpartum mothers, and if the mothers are separated from pups during
this period, maternal behavior cannot be induced in various species [35, 36].

In contrast to nursing behavior, estrogen treatment had only an inhibitory effect, with no
rapid improving effect, on pup retrieval and nest building. Poor nest building behavior after
estrogen treatment has previously been reported in mice [13, 14]. The different effect of estro-
gen on retrieval and nest building, compared to nursing, indicates that different mechanisms
for estrogen’s action underlie each behavior.

Contribution of estrogen synthesis in the brain
The lack of an improving effect of estrogen treatment on pup retrieval and nest building may
appear to conflict with previous findings showing an indispensable role of ERα in the maternal
behavior of mice [8, 9]. Estrogen synthesis in the brain may explain this discrepancy. When
estrogen is synthesized, further treatment would have no improving effect and excess estrogen
would have only a slow inhibitory effect [19] (Fig 6B). Indeed, this study found an inhibitory
effect of letrozole on pup retrieval and nest building in OVXed mice, which indicates the con-
tribution of estrogen synthesis to these behaviors. The MPOA is a predominant nucleus for
governing pup retrieval and nest building behaviors. Studies with rats show that lesions of lat-
eral MPOA projections severely disrupt pup retrieval and nest building, but only slightly dis-
rupted nursing behavior. This indicates that the MPOA is particularly important for retrieval
and nest building behaviors [37–39]. Furthermore, the MPOA is the most critical site for
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estrogen synthesis in other species [40]. Here, letrozole increased ERαmRNA expression in
the MPOA, which may be due to withdrawal of endogenously synthesized estrogen under neg-
ative autoregulation. Because of estrogen synthesis in the MPOA, exogenous estrogen treat-
ment would fail to activate transcription of OTR and V1aR expression, and excess estrogen
would inhibit pup retrieval and nest building. Given that ERα in the MPOA is involved in regu-
lation of anxiety [41], it is possible that excess estrogen in the MPOA increases anxiety, and
this mechanism contributes to inhibition of these behaviors. Because the MPOA is also
involved in other social behaviors such as sexual behavior and aggression towards intruders in
a semi-natural environment [9], estrogen synthesis in the MPOAmay also contribute to regu-
lation of these behaviors.

In contrast, letrozole had no effect on latency to nursing, suggesting that nursing initiation
is independent from estrogen synthesis in the brain. This implies that estrogen is not synthe-
sized in brain regions dominantly governing nursing behavior. Furthermore, shortened latency
to nursing by estrogen treatment may be due to lack of estrogen synthesis in these regions,
because exogenous estrogen would only have an effect when the amount of estrogen is not suf-
ficient (Fig 6A). The MeA may be a candidate nucleus contributing to the onset of nursing.
The MeA receives direct projections from olfactory systems and sends projections to the
MPOA [42–44]. Because ERα expression in the MeA is important for social interaction [22], it
is possible that the same mechanism underlies the approach to pups and nursing behavior.
Additionally, this study found no modification of ERαmRNA by letrozole or activation of
OTR transcription by estrogen treatment in the MeA, consistent with the notion that estrogen
synthesis is not dominant in this region. Altogether, these results support the idea that exoge-
nous estrogen has an effect in brain regions important for the onset of nursing, where estrogen
synthesis is not dominant, as in the MeA. It should be noted that in contrast to humans, the
adrenal gland of rats and mice is devoid of P450 17α-hydroxylase, which is responsible for

Fig 6. Schematic illustration of estrogen and letrozole contribution in OVXedmice. (A) In the absence
of brain estrogen synthesis, estrogen treatment restores maternal behavior in OVXed mice, while letrozole
has no effect. (B) In the presence of brain estrogen synthesis, further estrogen treatment leads to excess
estrogen and impairs maternal behavior in OVXed mice. In contrast, letrozole treatment inhibits estrogen
synthesis in the brain and impairs maternal behavior.

doi:10.1371/journal.pone.0150728.g006
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estrogen synthesis [45, 46], and OVX results in no plasma estrogen [47]. This means that letro-
zole treatment in OVXed mice does not have an effect in peripheral organs, only in the brain.

Conclusion
In conclusion, this study shows the important role of estrogen in maternal behavior of C57BL/
6 mice, which is the same as in other species. Exogenous estrogen shortens the latency to nurs-
ing within 2 h, and this effect is gradually eliminated along with treatment duration. Con-
versely, letrozole interferes with pup retrieval and nest building behaviors, suggesting that
estrogen synthesis in brain regions such as the MPOAmay contribute to these behaviors.
Because these results are based on OVXed mice, it is important to assess the contribution of
brain-derived estrogen to maternal behavior in intact female mice at parturition, during which
various hormonal changes occur. Direct measurement of estrogen concentration in brain
regions related to maternal behavior is also needed in future studies. Altogether, our findings
provide a potential mechanism for the different actions of brain- and ovary-derived estrogen
on mouse maternal behavior.
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