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Abstract

Species tree inference from multilocus data has emerged as a powerful paradigm in the postgenomic era, both in terms of
the accuracy of the species tree it produces as well as in terms of elucidating the processes that shaped the evolutionary
history. Bayesian methods for species tree inference are desirable in this area as they have been shown not only to yield
accurate estimates, but also to naturally provide measures of confidence in those estimates. However, the heavy com-
putational requirements of Bayesian inference have limited the applicability of such methods to very small data sets. In
this article, we show that the computational efficiency of Bayesian inference under the multispecies coalescent can be
improved in practice by restricting the space of the gene trees explored during the random walk, without sacrificing
accuracy as measured by various metrics. The idea is to first infer constraints on the trees of the individual loci in the
form of unresolved gene trees, and then to restrict the sampler to consider only resolutions of the constrained trees. We
demonstrate the improvements gained by such an approach on both simulated and biological data.
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Introduction
Species tree inference under the multispecies coalescent
(MSC) model accounts for gene tree heterogenity that arises
due to incomplete lineage sorting (Tajima 1983). This model
has gained much attention in the years since the first infer-
ential methods to implement it were developed (Takahata
et al. 1995; Yang 2002; Degnan and Rosenberg 2009). A wide
array of methods that assume or are inspired by the MSC
have been devised (Liu et al. 2010; Liu and Yu 2011; Chifman
and Kubatko 2014; Mirarab et al. 2014; Wang and Nakhleh
2018), including the Bayesian methods of Ogilvie et al. (2017),
Flouri et al. (2018), and Zhu et al. (2018). The MSC was re-
cently extended to the multispecies network coalescent to
account for reticulation (in addition to incomplete lineage
sorting; see Yu et al. 2014) and Bayesian methods for inference
under this model have been devised (Wen et al. 2016; Wen
and Nakhleh 2018; Wen et al. 2018; Zhang et al. 2018; Zhu
et al. 2018).

The power of Bayesian methods lies in their ability to in-
corporate prior knowledge, infer values of parameters beyond
the tree topology, and provide measures of confidence in the
inference based on the posterior that they sample
(Huelsenbeck et al. 2001). However, for these Bayesian meth-
ods to approximate the true posterior distribution, they de-
mand significant computational resources, an issue that has
thus far limited their applicability in terms of both the num-
ber of taxa and number of loci in the data set (Ogilvie et al.
2016). This is why incomplete lineage sorting aware methods
that have been proven to be statistically consistent under the
MSC and, at the same time very efficient computationally, are

used to infer large-scale species trees (Liu et al. 2010; Liu and
Yu 2011; Chifman and Kubatko 2014; Mirarab et al. 2014).
However, these methods focus almost exclusively on the spe-
cies tree topology and provide neither accurate information
on other parameters, such as divergence times and popula-
tion sizes, nor confidence intervals for their inferences. The
question we address in this article is: Can the convergence of
Bayesian methods be improved in practice without sacrificing
the accuracy of the information they provide?

A rich body of literature exists on the development of
methods for statistical inference outside phylogenetics,
much of which has been adopted by Bayesian phylogenetic
methods. The ubiquitous Markov chain Monte Carlo
(MCMC) arose from nuclear weapons research (Robert and
Casella 2011), and is the basis for tree and network inference
in MrBayes, *BEAST, PhyloNet, and other software tools. The
efficiency of MCMC for phylogenetics has been improved
with the development of new MCMC proposals (e.g.,
Höhna and Drummond 2012; Yang and Rodr�ıguez 2013;
Zhang et al. 2020), including proposals designed to improve
the mixing of MSC models (e.g., Yang and Rannala 2014; Jones
2017; Rannala and Yang 2017).

Metropolis coupling to accelerate MCMC was developed
for the inference of spatial statistics (Geyer 1991), and has
been implemented in various phylogenetics software
(Ronquist et al. 2012; Wen et al. 2018; Bouckaert et al.
2019). Variational Bayes is a radically different approach which
fits parametric distributions to model parameters, unlike
MCMC which is nonparametric. Variational Bayes was origi-
nally developed for graphical models (Attias 1999), and has
recently been applied to compute posterior distributions and
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marginal likelihoods of phylogenetic trees (Fourment and
Darling 2019; Zhang and Matsen 2019).

All of these methods were developed decades before their
adoption for phylogenetic inference because tree and net-
work space is far more complex than the typical multidimen-
sional parameter space. The number of unrooted or rooted
trees grows superexponentially with the number of taxa
(Felsenstein 1978), and is for all practical purposes infinite
when the number of taxa is large. Multilocus MSC inference
embeds gene trees within a species tree, with the constraint
that between-species coalescent events must take place ear-
lier in time than the most recent common ancestor (MRCA)
time of the involved species. This multiplies the complexity of
the inference problem by increasing the number of trees to
infer, and because the probability distributions of node
heights for different trees are not independent.

Rather than trying to adapt an algorithm developed for
other fields of natural sciences or mathematics, we have de-
veloped a heuristic method that specifically applies to the
problem of multi-locus MSC inference. The heuristic method
constrains the space of gene tree topologies to allow for faster
convergence and, consequently, analyses of larger data sets.
The idea behind our approach is very simple: A set of con-
straints in the form of a tree which is usually less than fully
resolved is estimated independently for each individual locus,
and then MCMC walks in the portion of the tree space that is
consistent with these constraints.

In other words, the MCMC sampler considers only gene
trees that are consistent with the constraints on the individ-
ual loci. Using simulated data under a variety of conditions
and employing several metrics for assessing performance, we
demonstrate that this simple approach results in computa-
tional improvements relative to unconstrained Bayesian
MCMC without sacrificing accuracy. We then analyze a bio-
logical data set and show that the new approach enables
analyses that had before necessitated dividing the data set
into smaller ones.

Our work presents an approach for improving the com-
putational requirements of Bayesian inference of species phy-
logenies. The constraints on the individual loci can be
obtained in various ways and the proposals that satisfy these
constraints can be derived in multiple ways as well. In this
work, we implemented one specific method for obtaining the
constraints and a standard set of proposals that satisfy them.
As this approach can be adopted by any Bayesian species
phylogeny inference method, both of these components
can be further modified to achieve even further improvement
to the computational requirements of Bayesian inference.

New Approach
A Bayesian formulation of the multi-locus species tree infer-
ence problem is to estimate the posterior distribution over
species tree topologies, population sizes and species diver-
gence times from multiple sequence alignments given a
model which includes at least some demographic function
(e.g., constant population sizes) and substitution process (e.g.,
Jukes and Cantor 1969).

Here, we use S to represent the species tree, H to represent
the population sizes and divergence times, and X to represent
the multiple sequence alignments. Inspired by Rannala and
Yang (2017), we can formulate the model as

fðS;HjXÞ ¼ 1

fðXÞ fðS;HÞfðXjS;HÞ: (1)

In this formulation, fðS;HjXÞ is the posterior probability
of the species tree topology and associated parameters, fðXÞ
is the marginal likelihood, fðS;HÞ is the prior on the species
tree topology and associated parameters, and fðXjS;HÞ is the
likelihood. To calculate the likelihood we must integrate over
gene trees G and substitution model parameters w:

fðXjS;HÞ ¼
Ð
w

Ð
GfðXjG;wÞfðGjS;HÞfðwÞdGdw:

(2)

In the above formulation, fðXjG;wÞ is the phylogenetic
likelihood and substitution model parameters, fðGjS;HÞ is
the coalescent likelihood, and fðwÞ is the prior for the same
parameters. Note that the coalescent and phylogenetic like-
lihoods are functions of a gene tree, and are calculated over
the space of all possible gene trees. When using MCMC, we
only need a density proportional to the posterior probability,
so the marginal likelihood can be omitted.

Furthermore, under the common assumption of
recombination-free, unlinked loci, the likelihood can be de-
rived from the product of integrations for each locus:

fðXjS;HÞ ¼
Q

i

Ð
w

Ð
Gi

fðXijGi;wÞfðGijS;HÞfðwÞdGidw:
(3)

where Xi is the multiple sequence alignment of the ith locus in
the data set and Gi is the gene tree sampled at locus i.

As the integration in equation (3) cannot be derived an-
alytically, MCMC sampling algorithms are often employed to
obtain samples from the posterior distribution and approxi-
mate it based on those samples. Due to the scaling problems
of MCMC inference (Ogilvie et al. 2016), current algorithms to
approximate equation (3) become computationally infeasible
for larger data sets, getting stuck in the peaks and troughs of
the posterior distribution and requiring extremely large num-
bers of iterations to converge.

Our approach to tackle the computational challenge
works as follows. For each sequence alignment Xi, maximum
likelihood (ML) with bootstrapping is run to obtain a set of
gene trees from which a majority-rule consensus tree with a
prespecified support threshold x is built. For example, for
x¼ 90, a majority-rule consensus tree is built where only
clades that appear in at least 90% of the bootstrap trees
are included. We denote this majority-rule consensus tree by
Ci (we use the value of x explicitly in the naming only when it
is not clear from the context) and call it a constraint gene
tree (CGT). Our approach now samples according to equa-
tion (3) with one difference: The integration is taken over
gene trees that are consistent with, that is, refinements of,
their respective Ci constraints. For example, if
Ci ¼ ðððA; BÞ; CÞ; ðD; E; FÞÞ, the sampler considers gene
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tree Gi ¼ ðððA; BÞ; CÞ; ððD; EÞ; FÞÞ as it is a refinement of Ci,
but does not consider gene tree Gi ¼ ðððA; BÞ; ðC;DÞÞ; ðE;
FÞÞ as it is not a refinement of Ci. This concept is illustrated
in figure 1.

We implemented this restricted sampling of gene tree to-
pologies by comparing proposed topologies with the con-
straint trees, and rejecting incompatible proposals. Future
implementations may be made even more efficient by only
proposing compatible topologies.

Observe that if Ci is a star phylogeny (a tree that has no
internal branches), then the method is effectively sampling
according to equation (3), whereas if Ci is fully resolved (a
binary tree), then the sampler fixes the gene tree topology for
locus i and only samples its parameters. It is important to
note that Ci imposes only topological constraints; that is, Ci

has no branch lengths. Furthermore, we take Ci to be
unrooted, so that the sampler is allowed to sample the roots
of the gene trees.

The posterior of species trees includes a “long tail” region
of model trees where the likelihood of each tree is very small
but the number of trees within such region is very large.
Unfortunately, as the scale of the data set increases, the au-
tocorrelation time of the MCMC chain increases dramatically
(Ogilvie et al. 2016). The motivation of our approach is that
by constraining the gene trees, the sampler can avoid the long
tail and have better mixing. While utilizing these constraints
necessarily means that the sampler is not sampling from the
same posterior distribution as an unconstrained version of
the sampler (except for the case where the constraints are
star phylogenies), we demonstrate below that this has very
little impact on the accuracy of the sampler in practice.

Hereafter, we write CMCMC to denote constrained
MCMC according to our new approach and UMCMC to
denote the unconstrained version of MCMC. We also write
CMCMC-x, where x is a value between 50 and 100, to denote
the use of CMCMC with support threshold x in the majority-

rule consensus tree, or a value of 0 to denote use with the ML
tree.

Parameter values must be initialized somehow at the be-
ginning of each MCMC chain. For both CMCMC and
UMCMC we initialized gene trees by inferring the ML tree
for each locus in RAxML (Stamatakis 2014). We used the
topology of the ML tree, and for each internal node used
the maximum distance from that node to any descendant
leaf as the node height. Although there is a chance that the
ML tree is incompatible with the constraint tree due to the
stochastic nature of bootstrapping, this is probably very un-
common as we did not encounter this in any of our analyses.

Results and Discussion
A simulation study was carried out to comprehensively ana-
lyze the performance of CMCMC and UMCMC. We varied
the simulation data set along three dimensions: evolutionary
scenarios of species, the number of loci and the number of
taxa. When we focused on one dimension, the other two
dimensions were fixed. More details are provided in the
Materials and Methods section. To simulate different scenar-
ios of complexity and signal in the data, we varied evolution-
ary time scales and population sizes in four categories:

• “OH”: old divergence times and high population size;
• “OL”: old divergence times and low population size;
• “YH”: young divergence times and high population size;

and
• “YL”: young divergence times and low population size.

To further examine the performance of each method, we
varied the number of loci (10, 20, 40) for the YH condition
whereas fixing the number of taxa as 16. We also varied the
numbers of taxa (16, 32, 48) for the YH condition and fixed
the number of loci as 10. Unless otherwise stated, there are 10
replicates for each condition.
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FIG. 1. Constraint trees, their resolutions, and acceptable moves. Bootstrap tree and CGTs under the consensus threshold of 50 (CGT-50) and 100
(CGT-100) are shown in the first row. In the second row, three possible proposed gene trees are provided. The left tree is acceptable given the
constraints CGT-50 and CGT-100. The middle tree is not acceptable given the constraints CGT-50 or CGT-100. The right tree is acceptable given
the constraint CGT-100 but not CGT-50.
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CGTs Improve the Convergence of MCMC
The ability to converge within a reasonable time is a key
metric to evaluate the performance of an MCMC sampler.
An effective sample size (ESS) of at least 200 is used as a
threshold for convergence in the popular MCMC diagnostic
and analysis tool Tracer (Rambaut et al. 2018). In this work,
we target the same convergence standard for continuous
parameters including the posterior probability, likelihood,
prior probability, coalescent likelihood, tree height and pop-
ulation size. We terminated any chain still running after 72 h.

Figure 2(a) shows that decreasing the consensus threshold
enables convergence for low population size conditions,
which is impossible for UMCMC within 72 h. We also show
the improved convergence of CMCMC as the number of loci
increases in supplementary figure S1, Supplementary Material
online and as the number of taxa increases in supplementary
figure S2, Supplementary Material online.

When MCMC chains are able to converge, CMCMC
reduces the number of iterations required for convergence
into less than half that of UMCMC under various evolution-
ary parameters as shown in figure 2b. Furthermore, CMCMC
took fewer iterations than UMCMC to converge for different
numbers of loci and different numbers of taxa (supplemen-
tary figs. S3 and S4, Supplementary Material online).

CMCMC and UMCMC Derive Similar Posterior
Distributions
The ultimate goal of phylogenetic inference problem with
Bayesian sampling is to approximate the posterior distribu-
tion of the true species tree. One way to verify the posterior
distribution is to compare the average standard deviation of
split frequencies (ASDSF; Lakner et al. 2008) of the 95% cred-
ible set. Note that the 95% credible set or interval of a well
calibrated Bayesian method covers the true value in 95% of
cases.

The smaller the ASDSF is, the more similar the species tree
distributions are. A threshold of 0.01 on the ASDSF is com-
monly used to assess the convergence of two chains. An
ASDSF value below 0.01 is taken to indicate that the chains
are likely to be sampling from the same underlying distribu-
tion (for examples, see Stun�z_enas et al. 2011; Stensvold et al.
2012; Mazza et al. 2016).

Figure 3 shows the ASDSF between the CMCMC and
UMCMC chains for different evolutionary scenarios, different
numbers of loci, and different numbers of taxa. To compare
the ASDSF, the MCMC chains must be converged. However,
although CMCMC has better convergence ability than
UMCMC, we only compare the ASDSF when all MCMC
chains can converge. For all simulated scenarios in figure 3a,
the ASDSF values of CMCMC and UMCMC in most replicates
are below 0.01. As we increased the number of loci and taxa,
all ASDSF interquartile ranges (IQRs) fell below 0.01, except
for CMCMC-50 for which the top of the range could be
slightly above 0.01, as shown in figure 3b and c.

As the number of loci was increased, ASDSF decreased.
This was expected as with more data more nodes in the
species tree become fully resolved, and the difference in
support between CMCMC and UMCMC for those nodes
will be zero. Conversely, ASDSF increased as the number of
taxa was increased. Again this was expected, as denser taxon
sampling will reduce the proportion of fully resolved nodes,
and hence the proportion of nodes with zero difference
between methods. In summary, although the underlying
distributions sampled by CMCMC and UMCMC are differ-
ent by construction, our results show that in practice they
are almost the same.

If an internal node in one CGT is binary, we consider such
node as resolved. For young divergence time scenarios, there
are fewer substitutions and hence less information available
with which to reconstruct the phylogeny. For a given thresh-
old, CGTs in young divergence time scenarios were less
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FIG. 2. Convergence and efficiency of CMCMC and UMCMC. (a) Convergence of samplers with or without constraint gene trees. Different
samplers are shown on the x-axis and the y-axis shows the number of data sets (out of 10) on which the sampler converged. (b) Ratios of iterations
required for convergence using CMCMC compared with UMCMC. Values above 1 are faster using UMCMC, below 1 are faster using CMCMC.

Wang et al. . doi:10.1093/molbev/msaa045 MBE

1812

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaa045#supplementary-data


resolved than CGTs in old divergence time scenarios in sup-
plementary figure S5, Supplementary Material online. But for
all conditions the proportion of resolved nodes steadily de-
creased as the threshold was raised. A similar trend was ob-
served when increasing the number of taxa in supplementary
figure S6, Supplementary Material online. This shows the role
that the support threshold plays as a useful tuning parameter
for our heuristic.

Although the ASDSF provides a numeric measure reflect-
ing the similarity between the distributions being sampled, we
visualize in figure 4 the distributions sampled by the various
samplers as an illustration of this similarity. Although decreas-
ing the support threshold increases the difference in the

posterior distribution, all CMCMC methods approximate
posterior density distributions similar to UMCMC, except
for CMCMC-0.

Our aim for CMCMC is to closely approximate the uncon-
strained posterior distribution of species trees, and to do so
faster than UMCMC. The posterior density distribution of
CMCMC-0 is very divergent from UMCMC and from
CMCMC when using other thresholds, implying that it is
no longer closely approximating the unconstrained posterior
distribution. For this reason, we do not recommend using
CMCMC-0 (i.e., gene trees with fixed, ML estimated unrooted
topologies) for Bayesian inference of species trees from
sequences.
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CMCMC and UMCMC Predictions Are Essentially
Identical in Accuracy
Although Bayesian MCMC provides an approximation of the
posterior distribution over parameters, the topology of the
species tree is often the main quantity of interest. We com-
pared the average Robinson–Foulds (RF) distance (Robinson
and Foulds 1981) between the true species tree and the in-
ferred species tree topology in the 95% credible set to assess
the topological accuracy. For each topology in the 95% cred-
ible set, we calculated the RF distance and divided it by the
maximum possible RF distance (twice the number of internal
branches in the species tree) to derive the normalized RF
distance (normRF; Kupczok et al. 2010). Then we averaged
all normRF distances, weighted by the frequency of each to-
pology in the 95% credible set. More details about how to
calculate average normRF distance are provided in the
Evaluation Metrics section.

Figure 5 shows the topological accuracy of the species trees
inferred by the various methods. As the figure shows, under
both evolutionary scenarios, all samplers infer almost the
same species trees. For the OH scenario the outlier corre-
sponds to a single-species tree which is difficult to accurately
infer because of its short internal branches (supplementary
fig. S7, Supplementary Material online). The same lack of
variation is also observed when varying the numbers of loci
and taxa (supplementary figs. S8 and S9, Supplementary
Material online).

Within a condition, there was no observed trend in aver-
age normRF distance (fig. 5, supplementary figs. S8 and S9,
Supplementary Material online). In addition to topological
error, we also calculated “branch length error” as the average
branch score of trees in the credible set. The calculation is
described in detail in the Evaluation Metrics subsection. As
expected, branch length error was higher for the “old” case
because branch score is not scale invariant, and average
normRF distance was higher for the “young” case due to
the lower rate of informative mutations. But within a condi-
tion, there was no difference in branch length error between
CMCMC and UMCMC (supplementary figs. S10–S12,

Supplementary Material online). These results further dem-
onstrate the proximity of the posterior distribution of species
trees inferred by CMCMC to UMCMC.

Analysis of a Biological Data Set
Recently, a study that applied exon capture sequencing to
Australian rainbow skinks (Bragg et al. 2018) compared the
phylogenies inferred using summary MSC methods, a full
Bayesian MSC method and concatenation. However, due to
the computational time required, the full Bayesian species
tree method was only applied to nonoverlapping 32 locus
subsets of the data, despite 304 highly informative loci being
available. This data set contains 46 taxa from 43 recognized
species.

CMCMC enabled us to double the number of loci, so in-
spired by Bragg et al. we compared the species trees inferred
using UMCMC from nine nonoverlapping 32 locus subsets
with those inferred using CMCMC from four nonoverlapping
64 locus subsets. All analyses were run until satisfactory con-
vergence was observed. The samples for each analysis were
summarized as maximum clade credibility (MCC) trees. To
quantify the variation between species trees inferred from
different subsets, we calculated the normRF distance between
the MCC tree from one MCMC chain or the inferred tree
from ASTRAL (Mirarab et al. 2014). As shown in figure 6,
CMCMC derived more consistent results compared with
UMCMC, as the highest normRF distance between
CMCMC subsets was 0.23, but the highest pairwise distance
between the smaller UMCMC subsets was 0.3.

The precision of the 64 locus CMCMC posterior distribu-
tions was higher, as expected given the larger number of loci
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FIG. 5. Topological accuracy of the species trees inferred by CMCMC
and UMCMC. The data pertained to simulations of 10 loci from 16
taxa under the OH and YH scenarios.

FIG. 6. Discordance among phylogenies estimated by ASTRAL,
CMCMC, and UMCMC. CMCMC was applied to four nonoverlapping
subsets of 64 loci each, UMCMC was applied to nine nonoverlapping
subsets of 32 loci each, and ASTRAL was applied to gene trees inferred
from all 304 loci. The color and the number in each entry of the matrix
indicate the normalized Robinson–Foulds distance between maxi-
mum clade credibility (MCC) species trees estimated from each
subset.
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employed. For both normRF and branch score, the average
distances between the MCC tree and individual samples in
the posterior distribution were smaller for CMCMC (supple-
mentary figs. S13 and S14, Supplementary Material online).

The increased precision of the CMCMC analyses enables
taxonomic refinement of rainbow skinks. When 32 loci are
used with UMCMC, the trio Carlia inconnexa, Carlia pector-
alis, and Carlia rubigo form a clade but the relationships
within that clade are unclear, as the best supported topology
for this trio has C. rubigo as sister with an average posterior
probability of 69% across subsets. When 64 loci are used with
CMCMC, this average rises to 98% (supplementary figs. S15
and S16, Supplementary Material online).

Conclusions
In this article, we reported on a simple heuristic method for
speeding the convergence of Bayesian MCMC under the
MSC. The heuristic works by restricting the space of gene
trees that can be sampled. The constraints can be obtained
in various ways including bootstrap trees contracted accord-
ing to some support threshold, majority-rule consensus trees
of posterior samples, or even constraints provided based on
biological knowledge. As the approach restricts the explored
space by design, we evaluated the method’s performance in
terms of convergence and, when converged, the distribution
it samples. The evaluation was done on simulated data sets as
well as a biological data set, and for evaluation metrics, we
focused mainly on the time to convergence, the ASDSF be-
tween the constrained version of the sampler (CMCMC) and
the unconstrained one (UMCMC), as well as the topological
accuracy of the inferred species trees.

We have demonstrated that CGTs are advantageous in
two distinct ways. For data sets where it is challenging to
achieve convergence with UMCMC, for example, those which
did not converge even after 20 days in our study, CMCMC
can converge within a reasonable time. For data sets which
did readily converge using UMCMC, applying CGTs reduced
the required number of iterations.

Following from our results, we recommend that CMCMC
can be applied in two ways. The first is to accelerate prelim-
inary analyses, where CMCMC-50 can be used to infer pos-
terior distributions of species trees which are very close to the
unconstrained posterior distributions. This has the additional
benefit of reducing the amount of resources required for a
given study, which range from grant money to pay for com-
puter time, to CPU hours which may be in high demand at a
given institution, to the electricity and natural resources
needed to manufacture and operate computer nodes. As
many preliminary analyses may have to be run for a given
study, this reduction can be substantial.

The second is for final published analyses, where researches
may wish to be more conservative and avoid approximations
and heuristics wherever possible. For example, MCMC chains
of finite lengths and variational Bayes are both approximate
and heuristic methods, but are unavoidable for Bayesian in-
ference of phylogenetic trees from sequences. CGTs are an
additional heuristic which are avoidable for data sets where

convergence is possible within a reasonable time using
UMCMC, but unavoidable otherwise. So our final recommen-
dation is to employ CMCMC for final published analyses of
data sets which fail to converge using UMCMC.

Materials and Methods

MCMC Implementation and Settings
CMCMC can be easily implemented in commonly used
Bayesian based phylogenetics software packages, such as
PhyloNet (Wen et al. 2016), BEAST (Drummond and
Rambaut 2007), and BEAST2.5 (Bouckaert et al. 2019). In
this article, we implemented CMCMC in PhyloNet. In all
our experiments, we generated 50 bootstrap trees for each
locus and obtained the majority-rule consensus trees from
those. Firstly, we generated bootstrap trees given an align-
ment using RAxML (Stamatakis 2014). Then, we estimated
the constraint tree given a specific support threshold.

We applied a uniform prior over the species tree topolo-
gies, a uniform prior Uð0;1Þ on species tree node heights,
and a 1=X prior on the mean population size. More imple-
mentation details are provided in supplementary data,
Supplementary Material online.

Executing MCMC Chains
For the simulation study, we first ran each chain for three days
on the DAVinCI computing cluster. All jobs executed on this
cluster ran on 2.83 GHz Intel Westmere CPUs. Jobs were
restarted each day, and so the total running time of the
MCMC chain was<72 h, as for each job some time was spent
queuing and postprocessing.

For any chain that did not converge within three days, we
restarted it from the beginning on the NOTS computing
cluster at Rice University. Jobs executed on this cluster were
randomly assigned to one of the following CPUs: Intel Xeon
E5-2650 v2 at 2.6 GHz, Xeon E5-2650 v4 at 2.2 GHz, Xeon Gold
6126 at 2.6 GHz, or Intel Xeon Gold 6230 at 2.1 GHz. With the
exception of the 48 taxon analyses, all chains were run for
20 days. The 48 taxon chains were run for only 10 days be-
cause we noticed they had all converged by that time. As with
the shorter chains, jobs were restarted each day so the total
runtime was <480 h, and <240 h for the 48 taxon chains.

For the empirical study, 10 independent chains with differ-
ent random seeds but otherwise identical data and settings
were run for each locus subset and method. This was neces-
sary to achieve convergence on these relatively large data sets.
CMCMC chains on 64 loci were run for 160 million iterations,
taking�25 days. UMCMC chains on 32 loci were run for 120
million iterations, taking �10 days. After all 10 chains had
finished running for a given subset and method, the remaining
samples were concatenated after removing the 10% burnin.

Simulating Data
For all simulated data sets, we used DendroPy (Sukumaran
and Holder 2010) to generate random species trees and ms
(Hudson 2002) to generate gene trees on these species trees
under the MSC. Sequence data were generated by Seq-Gen
(Rambaut and Grass 1997) under the Jukes–Cantor model
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(Jukes and Cantor 1969). We derived the CGT for each locus
by bootstrapping from the sequences by RAxML (Stamatakis
2014).

Because species tree inference methods are employed over
a range of evolutionary time scales and to clades with differ-
ent population sizes, we varied both parameters for our sim-
ulation study which are shown in table 1. For each simulated
species tree we scaled its root to different heights; an “old”
height of 50 Ma akin to the rice-Pooideae split (Sandve et al.
2008), and a “young” height of 10 Ma akin to the split of
gorillas with humans and chimpanzees (Langergraber et al.
2012). Gene trees were scaled before simulating sequences so
that the branch lengths in substitutions per site corresponded
to a substitution rate of 2:5� 10�3 per million years. This
rate is slightly faster than the rates observed for the RAG1
nuclear gene in animals (Hugall et al. 2007), but within the
ranges observed for plant nuclear genes (Huang et al. 2003).

For both the old and young species tree scales, we simu-
lated gene trees under large and small population sizes of
500,000 and 100,000, respectively, with annual generation
times. Chimpanzees, gorillas and ancient humans all have
effective population sizes (Ne) of around 20,000 individuals
(Huff et al. 2010). Assuming a great ape generation time of
25 years, this population will have the same distribution of
coalescent times as a clade of species with annual generation
times and an Ne of 500,000, the same as our large population
size condition. Given that human effective population sizes
are often considered low, the small population size condition
therefore corresponds to species with very low effective pop-
ulation sizes.

The evolutionary parameters also affect the proportion of
resolved internal nodes of the CGT as shown in supplemen-
tary figure S5, Supplementary Material online. The “OH” and
“OL” scenarios have higher proportion of resolved internal
nodes than the “YH” and “YL” which means that the substi-
tution rate more effectively restricts the gene tree search
space. The proportion of resolved internal nodes in consensus
trees decreases as the number of taxa increases as shown in
supplementary figure S6, Supplementary Material online. In
contrast, the population size does not have such obvious
effect as the substitution rate or number of taxa.

More details on the simulations are provided in supple-
mentary data, Supplementary Material online.

Biological Data
We analyzed the Australian skinks data set which is provided
in Bragg et al. (2018). We randomly selected one sample from
each species. Note that the species names in the data set and
in the article are not consistent. More details about how to

map the species in the data set and in the article are shown in
supplementary table S1, Supplementary Material online.

The Australian skinks data set contains three ingroup gen-
era: Carlia, Lygisaurus, and Liburnascincus. There are 46 taxa
from 43 recognized species. All details of the biological data
including genus, species, tissue, collection, sample library, and
focal clade are provided in supplementary table S2,
Supplementary Material online.

To obtain informative gene trees, we included 304 com-
plete informative loci whose length ranges from 240 to 6,534
sites. Supplementary figure S17, Supplementary Material on-
line shows the proportion of resolved internal nodes of CGTs
for different ranges of sequence length. In general, as the
length of sequence increases the number of resolved internal
nodes gets larger. This is because longer sequences are likely
to contain more substitutions to inform the resolution of
nodes.

Evaluation Metrics
Effective Sample Size
The ESS is the number of effectively independent draws from
some distributions sampled by the MCMC chain. Adequate
ESS is a sign of good mixing of the MCMC chain and it has
been argued that the ESS should be >200 (Kuhner 2009), a
value that has been adopted in the Bayesian phylogenetics
community. Therefore, an MCMC chain where the ESS of all
selected probability densities and parameter values were
>200 was considered to have converged. The probability
densities were of the posterior, phylogenetic likelihood, prior
and coalescent likelihood, all of which are dependent on the
tree topologies and continuous parameters. The parameter
values were tree height and population size.

Average RF Distance
When calculating the total RF distance, we only considered
posterior samples where the species tree topology was within
the 95% credible set. We call this credible set of posterior
samples T� to distinguish it from the full set of posterior
samples T. To quantify differences between true tree t and
the 95% credible set T�, we calculate the average normRF
distance (Kupczok et al. 2010) as

1

jT�j
X

t�2T�
normRFðt; t�Þ: (4)

Average Branch Length Error
To evaluate the accuracy of branch length estimates, we cal-
culated the average error between the true tree t and the 95%
credible set T� using a measure based on Euclidean branch
score distances (Kuhner and Felsenstein 1994; St. John 2017).
For every tree t� in the credible set, we take the union B of all
branches in t� and t, where a branch b 2 B is defined by the
taxa associated with its tipward node (i.e., the corresponding
clade). We define dðbÞ as the difference between the length of
b in t and t�. If a branch is missing in one of t and t�, its length
in that tree is defined to be zero. The sum of square differ-
ences

P
b2B dðbÞ2 is known as the branch score distance,

Table 1. The Evolutionary Parameters Varied to Control the
Complexity and Signal in the Data.

Low Population Sizes High Population Sizes

Old divergence
times

OL: 50 Ma, 100 k
individuals

OH: 50 Ma, 500 k
individuals

Young divergence
times

YL: 10 Ma, 100 k
individuals

YH: 10 Ma, 500 k
individuals
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which we will treat as a function BSDðt; t�Þ. The square root
of the branch score is a Euclidean distance, and we define
branch length error as

1

jT�j
X

t�2T�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BSDðt; t�Þ

p
: (5)

Average Standard Deviation of Split Frequencies
ASDSF is a measure of convergence that has been used in
tools, such as ExaBayes (Aberer et al. 2014) and MrBayes
(Ronquist et al. 2012). ASDSF can be calculated by comparing
split or clades frequencies between two MCMC chains. Given
two posterior distributions T1 and T2 from two MCMC chains
and their corresponding 95% credible sets T�1 and T�2 , C is all
unique, nontrivial clades in T�1 [ T�2 . Set C� is defined as

C� ¼ fc 2 Cjmaxðfðc; T1Þ; fðc; T2ÞÞ � �g; (6)

where f(c, T) is the frequency of clade c in distribution T, and �
is a threshold. We used � ¼ 0:1, the same as the default
setting in MrBayes 3.2 (Ronquist et al. 2012). Finally, the
ASDSF between T1 and T2 is defined as

ASDSFðT1; T2Þ ¼
1

jC�j
X

c2C�

jfðc; T1Þ � fðc; T2Þj
2

; (7)

because the standard deviation of two numbers is half of the
absolute difference.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2:
efficient Bayesian phylogenetic inference and model choice across
a large model space. Syst Biol. 61(3):539–542.

Sandve SR, Rudi H, Asp T, Rognli OA. 2008. Tracking the evolution of a
cold stress associated gene family in cold tolerant grasses. BMC Evol
Biol. 8(1):245.

St. John K. 2017. Review paper: the shape of phylogenetic treespace. Syst
Biol. 66(1):e83–e94.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics
30(9):1312–1313.

Stensvold CR, Lebbad M, Clark CG. 2012. Last of the human protists: the
phylogeny and genetic diversity of Iodamoeba. Mol Biol Evol.
29(1):39–42.

Stun�z _enas V, Petkevi�ci�ut_e R, Stanevi�ci�ut_e G. 2011. Phylogeny of
Sphaerium solidum (Bivalvia) based on karyotype and sequences
of 16S and ITS1 rDNA. Central Eur J Biol. 6(1):105–117.

Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phyloge-
netic computing. Bioinformatics 26(12):1569–1571.

Tajima F. 1983. Evolutionary relationship of DNA sequences in finite
populations. Genetics 105(2):437–460.

Takahata N, Satta Y, Klein J. 1995. Divergence time and population size in
the lineage leading to modern humans. Theor Popul Biol.
48(2):198–221.

Wang Y, Nakhleh LK. 2018. Towards an accurate and efficient heu-
ristic for species/gene tree co-estimation. Bioinformatics 34
(17):i697–i705.

Wen D, Nakhleh L. 2018. Coestimating reticulate phylogenies and
gene trees from multilocus sequence data. Syst Biol.
67(3):439–457.

Wen D, Yu Y, Nakhleh L. 2016. Bayesian inference of reticulate phylog-
enies under the multispecies network coalescent. PLOS Genet.
12(5):e1006006.

Wen D, Yu Y, Zhu J, Nakhleh L. 2018. Inferring phylogenetic networks
using PhyloNet. Syst Biol. 67(4):735–740.

Yang Z. 2002. Likelihood and Bayes estimation of ancestral population
sizes in hominoids using data from multiple loci. Genetics
162(4):1811–1823.

Yang Z, Rannala B. 2014. Unguided species delimitation using
DNA sequence data from multiple loci. Mol Biol Evol. 31(12):
3125–3135.

Yang Z, Rodr�ıguez CE. 2013. Searching for efficient Markov chain Monte
Carlo proposal kernels. Proc Natl Acad Sci USA.
110(48):19307–19312.

Yu Y, Dong J, Liu KJ, Nakhleh L. 2014. Maximum likelihood inference of
reticulate evolutionary histories. Proc Natl Acad Sci USA.
111(46):16448–16453.

Zhang C, Huelsenbeck JP, Ronquist F. 2020. Using parsimony-guided tree
proposals to accelerate convergence in Bayesian phylogenetic infer-
ence. Syst Biol. Advance Access published January 27, 2020, doi:
10.1093/sysbio/syaa002.

Zhang C, Matsen FA. 2019. Variational Bayesian phylogenetic inference.
In: International Conference on Learning Representations. [accessed
2019 Sep 15]. Available from: https://openreview.net/forum?
id¼SJVmjjR9FX.

Zhang C, Ogilvie HA, Drummond AJ, Stadler T. 2018. Bayesian inference
of species networks from multilocus sequence data. Mol Biol Evol.
35(2):504–517.

Zhu J, Wen D, Yu Y, Meudt HM, Nakhleh L. 2018. Bayesian inference of
phylogenetic networks from bi-allelic genetic markers. PLOS Comput
Biol. 14(1):e1005932.

Wang et al. . doi:10.1093/molbev/msaa045 MBE

1818

https://openreview.net/forum? id=SJVmjjR9FX
https://openreview.net/forum? id=SJVmjjR9FX
https://openreview.net/forum? id=SJVmjjR9FX

