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Abstract: In this study, a novel 6-(allylamino)-2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-
1,3(2H)-dione (NI3) was synthesized and characterized. Its copolymer with styrene was also
obtained. The photophysical characteristics of NI3 were investigated in organic solvents and the
results were compared with those of its structural analogue, 2-allyl-6-((2-(dimethylamino)ethyl)
amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI4). The influences of the pH in the medium and
different metal ions on the fluorescent intensity of monomers and polymers were also investigated.
Computational tools (DFT and TDDFT calculations) were employed when studying the structure
and properties of the 1,8-naphthalimide-based chromophores. Although the position of the
N,N-dimethylaminoethylamine receptor fragment did not significantly impact proton detection, it was
still important for detecting metal ion sensor ability, especially for monomeric 1,8-naphthalimide
structures and their copolymers with styrene.

Keywords: 1,8-naphthalimide; polystyrene; fluorescent sensor; photo-induced electron transfer;
metal ions

1. Introduction

In recent years, 1,8-Naphthalimide derivatives have become one of the most investigated
fluorescent chromophore systems in different vanguard areas. The relatively low molecular
weight, compact molecule, and the possibility to introduce active groups capable of participating in
polymerization processes makes these compounds suitable for structural modification of polymer
materials with fluorescent properties [1,2], or as free-radical polymerization photoinitiators upon visible
light exposure [3,4]. Moreover, researchers have found different biological and medical applications as
antibacterial, antifungal, anticancer, and antiviral agents [5–11].

Derivatives of 1,8-naphthalimide have been increasingly investigated as a signaling unit in the
design of sensor systems for the detection of cations, anions, or neutral analytes, which are major
industrial environmental pollutants [12–17]. For the first time, we have combined the sensor activity
of 1,8-naphthalimides with their ability to copolymerize with vinyl and methacrylate monomers to
produce polymeric sensors [18]. An allyl group directly attached to the imide nitrogen atom was used
as a polymerization group. On the other hand, the groups as N,N-dimethylaminoethylamino [18],
N,N-dimethylaminoethyloxy [19], or N-methylpiperazine [20] were introduced at the C-4 position
for their use as receptor fragments to react with metal ions and protons in the sensor system design,
working in the photo-induced electron transfer (PET) mode.

In this work, a novel 1,8-naphthalimide derivative and its copolymer with styrene was synthesized
and characterized with regard to investigate their structure and spectral characteristics. The detection
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ability of both compounds was investigated. Results found that the polymer sensor can be repeatedly
used as a heterogeneous fluorescent sensor for detection of Fe(III) in aqueous solutions.

2. Materials and Methods

2.1. Synthesis

Synthesis of 2-(2-(dimethylamino)ethyl)-6-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI2)
occurred as follows: 2.43 g (0.01 mol) of 4-nitronaphthalic anhydride was dissolved in 50 mol ethanol
and 1 mL (0.01 mol) mol N,N-dimethylaminoethylendiamine was added drop wise to the solution and
mixture. It was then sired for 3 h at 70 ◦C. The process was controlled by thin-layer chromatography
and the final product was filtered off with a very high yield and purity after pouring the liquor into
500 mL of water. Yield: 94.2%; FT-IR (KBr) cm-1: 3077, 2942, 2820, 2774, 1704, 1655, 1623, 1732, 1336,
1242, 1161, 1046, 836, 786 and 759.

1H NMR (CDCl3, δ, ppm): 8.78 (d; J = 7.14 Hz; 1H); 8.41 (d; J = 8.01 Hz; 1H); 8.36 (d; J = 8.12 Hz,
1H); 8.24 (dd, J = 7.31 Hz; 1H); 7.94 (d; J = 8.10 Hz; 1H); 4.08 (t; J = 6.86; 2H); 2.62 (t; J = 6.91 Hz; 2H);
2.14 (s; 6H); 13C NMR (CDCl3, δ, ppm): 165.2, 164.4, 155.2; 131.2, 131.5, 129.0, 125.2, 123.1, 120.3, 119.5,
109.3, 101.4, 59.5, 49.1 and 45.1.

The elemental analysis occurred as follows: C16H15N3O4 (313.11 g mol−1): Calc. (%): C 61.32,
H 4.79, N 13.41; found (%): C 61.43, H 4.73, N 13.39.

Synthesis of 6-(allylamino)-2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione
(NI3) occurred as follows: 3.13 g (0.01 mol) of compound NI2 was dissolved in 20 mL of
N,N-Dimethylformamide (DMF) and 1.1 mL (0.01 mol) allylamine was added. The mixture was left in
the dark for 24 h then poured into 100 mL of a water-ice mixture. The precipitate was filtered, washed
with water, and dried under a vacuum at 40 ◦C. Yield was 93%; FT-IR (KBr) cm−1 was 3091, 2965, 2891,
2785, 1673, 1640, 1583, 1465, 1388, 1341, 1244, 1123, 1017, 773 and 754. Next, 1H NMR (CDCl3, δ, ppm):
8.47 (d; J = 7.29 Hz; 1H); 8.38 (d; J = 8.42 Hz; 1H); 8.06 (d; J = 8.45 Hz, 1H); 7.53 (dd, J = 7.6 Hz; 1H);
6.6 (d, J = 8.49 Hz; 1H); 6.01 (m; 1H); 5.69 (t; J = 5.38 Hz; 1H); 5.35 (dd; J = 17.35 Hz; J = 1.26 Hz; 1H);
5.28 (dd; J = 10.34; J = 1.24 Hz; 1H); 4.33 (2H; J = 6.86; 2H); 4.03 (t; J = 5.34 Hz; 2H); 2.72 (t; J = 6.8 Hz;
2H); 2.41 (s; 6H); 13C NMR (CDCl3, δ, ppm): 164.7, 164.1, 143.3, 134.3, 133.0, 131.1, 129.6, 126.0, 124.6,
122.8, 120.1, 117.6, 110.2, 104.7, 57.1, 45.0, 45.7, 37.8; elemental analysis: C19H20N3O2 (322.18 g mol−1):
Calc. (%): C 70.56, H 6.20, N 13.03; found (%): C 70.43, H 6.13, N 13.09.

Synthesis and characterization of poly(St-co-NI3) occurred as follows: Fluorescent poly(St-co-NI3)
was synthesized by radical co-polymerization of styrene with NI3 (1.0 wt%) at 70 ◦C for 8 h and 1.0 wt%
dibenzoylperoxide as an initiator. The transparent poly(St-co-NI3) was precipitated with ethanol from
toluene several times, washed with ethanol, and dried. All photophysical and spectral and sensor
measurements were carried out with precipitated polymers.

2.2. Analysis

UV-Vis spectrophotometric investigations were performed on a Thermo Spectronic Unicam UV
500 spectrophotometer. Fluorescence spectra were taken on a “Cary Eclipse” spectrofluorometer.
All spectra were recorded using a 1 cm path length synthetic quartz glass cell at a 10−5 mol L−1

concentration. The fluorescence quantum yield was determined on the basis of the absorption and
fluorescence spectra. Rhodamine (Φref = 0.94) was used as a reference [21]. The effect of the metal
cations and protons on the fluorescent intensity was examined by adding a few µL of the metal cations
stock to a known volume of the sensor solution (3 mL) [22]. The reproducibility of the results was
99%. 1H NMR (600.13 MHz) and 13C (150.92 MHz) spectra were acquired on an AVANCE AV600
II+ NMR spectrometer. Fourier-transform spectrometer (IRAffinity-1 Shimadzu, Kyoto, Japan) with
the diffuse-reflectance attachment (miracle attenuated total reflectance attachment) occurred at a
2 cm−1 resolution.
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Thin layer chromatographic (TLC) analysis was followed by silica gel (Fluka F60 254 20× 20; 0.2 mm)
using an n-heptane/acetone (1:1) solvent system as an eluent. Next, 4-Nitro-1,8-naphthalic anhydride,
ethylenediaminetetraacetic acid (EDTA), N,N-dimethylaminoethylendiamine, allylamine, CuSO4·5H2O,
CoSO4·7H2O, AgNO2, ZnSO4·H2O, and Ni(NO3)2·6H2O were obtained using Sigma-Aldrich (Munich,
Germany). The molecular weight characteristics of poly(St-co-NI3) were determined on a gel
permeation chromatography (GPC) water 244 apparatus equipped with combinations of 100 and 1000 A,
linear Ultrastyragel columns. The solvent was THF at a flow rate of 1.0 mL min−1 at 450 ◦C. Both the
differential refractive index and UV-vis absorption detector (λA = 423 nm) were used. Polystyrene
calibration was used for molecular weight calculations.

2.3. Computational Details

Molecular ground state geometries for NI3 and NI4 products were fully optimized using
B3LYP [23,24] functional. The diffuse function-augmented version of Pople’s basis set 6–31G(d,p) [25–27]
was used. The default optimization algorithm included in the Gaussian 09 [28] and convergence criteria
were applied. C1 symmetry (i.e., no symmetry) was assumed for all systems under study. Local minima
were verified by establishing that the Hessians had only positive eigenvalues. The B3LYP/6–31+G(d,p)
optimized geometries in the gas-phase were re-optimized in toluene, methanol, and water by using
the IEFPCM (Integral Equation Formalism Polarizable Continuum Model) -[29] method. The solvents
were defined by the Gaussian 09 default internal parameters, including the dielectric constant ε
values. TDDFT (Time-Dependent Density Functional Theory) excitation energies were computed at
the TDPBE0/6-311+G(2d,p)//B3LYP/6-31+G(d,p) level; in each TDDFT calculation, the lowest 20 excited
states were computed. Solvent effects were included in TDDFT calculations (via IEFPCM). The B3LYP
functional and 6-31+G(d,p) basis set was employed in optimizing the structures of the NI-metal
complexes, and evaluating the respective Gibbs free energies. The differences ∆Eel, ∆Eth, P∆V (work
term), and ∆S between the products of the complex formation reactions (complexes) and reactants (NI
ligands and metal cations) were used to evaluate the Gibbs energy of the complex formation in water,
∆G78, at T = 298.15 K according to the equation:

∆G78 = ∆Eel + ∆Eth + P∆V − T∆S (1)

A negative ∆G implies a thermodynamically favorable complex formation, where a positive
value implies an unfavorable one. The PyMOL molecular graphics system was used to generate the
molecular graphics images [30].

3. Results

3.1. Synthesis of 6-(Allylamino)-2-(2-(Dimethylamino)Ethyl)-1H-Benzo[de]isoquinoline-1,3(2H)-Dione (NI3)

Herein, 4-Nitro-1,8-naphthalic anhydride (NA1) was used as an initial product for the synthesis of
NI3 (Scheme 1). Its reaction with N, N-dimethylaminoethylendiamine in an ethanol solution yielded
2-(2-(dimethylamino)ethyl)-6-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI2). The final product
(NI3) was obtained after nucleophilic substitution of the nitro group from NI2 with an allylamino
group. The chemical structure of the new compound NI3 was characterized by FTIR, 1H and 13C NMR
spectra, as well as an elemental analysis.

The chemical structure of 2-allyl-6-((2-(dimethylamino)ethyl)amino)-1H-benzo[de]isoquinoline-
1,3(2H)-dione (NI4) is shown in Scheme 2. Its synthesis was previously described [18]. When comparing
its chemical structure with the new compound NI3, the difference between them was only in the
position of the allyl group and the N,N-dimethylaminoethylendiamine receptor fragment. This enabled
us to investigate the effect of the receptor fragment on the photophysical characteristics and sensor
activity of both 1,8-naphthalimides, when it was attached to the imide nitrogen atom (NI3) or to the
C-4 nitrogen atom of the 1,8-naphthalimide chromophore system (NI4). Both compounds were used as
fluorescent monomers for the structural modification of polystyrene.
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Scheme 2. Chemical structure of the NI4 compound.

The molecular weight characteristics obtained from GPC (Mw and Mn) and polydispersity
Mw/Mn of poly (St-co-NI3) and poly(St-co-NI4) are summarized in Table 1. The data confirms the
formation of high molecular weight polymers. Comparing the data for both copolymers, it is seen
that poly(St-co-NI4) has higher molecular weights due to the position of the allyl group. In this case,
the allyl group bonded to the amide nitrogen atom was more polarized and more active than when it
was at the C-4 position. This, in turn, led to the production of a copolymer with a higher molecular
weight. Due to the low concentration of the NI3 linked to the main polystyrene macromolecule,
it was not possible to use NMR spectroscopy to unequivocally prove the chemical bond between them.
The new poly(St-co-NI3) copolymer was characterized by gel permeation chromatography with double
detection: refraction and UV-Vis at 423 nm. The elution time values obtained in both chromatograms
were very close (Figure 1), which indicates that poly(St-co-NI3) was absorbed at 423 nm. This result is
indicative of formation of covalent bond between NI3 and main polystyrene chain.
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Figure 1. Gel permeation chromatograms with double detection of poly (St-co-NI3) in a
tetrahydrofuran solution.
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Table 1. Molecular characteristics of copolymers.

Mw × 105

g/mol
Mn × 105

g/mol
Mw/Mn Chemically Bound NI

%

poly(St-co-NI3) 0.97 0.48 2.02 0.75
poly(St-co-NI4) [18] 1.21 0.64 1.89 0.94

The amount of chemically bonded 1,8-naphthalimide fluorophores were determined by comparing
the fluorescent intensity of the precipitated and unprecipitated polymer, as well as the use of fluorescence
spectroscopy. In this case, fluorescence spectroscopy was preferable to the absorption as a more
sensitive analytical method. Covalently bonded to the polymer chain 1,8-naphthalimide, fluorophores
were found at a concentration of 0.75% for NI3 and 0.94% for NI4. There was no significant effect on
the molecular and film-forming characteristics of the copolymers (Table 1). On the other hand, in this
concentration range, both 1,8-naphthalimides were sufficient to exhibit their sensor qualities.

3.2. Spectral Characteristics of NI3 and NI4

The photophysical characteristics of 1,8-naphthalimide derivatives depended on the polarization
of 1,8-naphthalimide chromophore systems due to the electron donor-acceptor interaction occurring
between the carbonyl groups from the imide structure and the substituents at the C-4 position.

The absorption and fluorescence spectral bands of the 1,8-naphthalimide derivatives largely
depended on the electron donating power of the substituents at the C-4 position. Figure 2 plots an
example of the absorption and fluorescence spectral profile of NI in an acetonitrile solution. In the case
of 4-substituted-1,8-naphthalimide derivatives, a donor-acceptor interaction took place between the
substituent at the C-4 position and carbonyl groups, which caused a band formation in the absorption
spectra with a charge transfer character. The figure also shows that the absorption and fluorescence
spectra were mirror images with a small overlap area, which is an indication that no aggregation
processes occurred at this concentration. Similar spectral curves were observed in all other studied
organic solvents.
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The absorption and fluorescence spectral bands of the 1,8-naphthalimide derivatives largely
depended on the electron donating power of the substituents at the C-4 position. On the other hand,
the organic solvents played a significant role in the photophysical properties via their polarity and
possibility to participate in intermolecular interactions with the 1,8-naphthalimide chromophore
systems [31,32]. The effect of solvent polarity on the photophysical properties of NI3 was investigated
in 10 organic solvents with different polarities: the absorption (λA) and fluorescence (λF) maxima,
the extinction coefficient (ε), the Stokes shift (νA−νF), and the quantum yield of fluorescence (ΦF) are
summarized in Table 2.
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Table 2. Spectral characteristics of compound NI3 in organic solvents.

Solvents ET (30)
Kcal/mol

λA
nm

ε

L mol−1 cm−1
λF
nm

υA−υF
cm−1 ΦF

Acetonitrile 45.6 433 12,400 523 3974 0.61
DMF 43.8 431 13,900 517 3859 0.67

Acetone 42.2 429 12,400 518 4005 0.58
Methanol 55.4 435 15,900 529 4084 0.51

2-Propanol 48.4 436 13,600 527 3960 0.71
Diethyl ether 34.5 418 12,600 486 3347 0.59
Chloroform 39.1 425 11,600 507 3805 0.59

Dichloromethane 39.4 422 12,300 504 3855 0.53
Tetrahydrofuran 37.4 423 13,200 497 3519 0.66

Toluene 33.9 414 13,300 478 3234 0.57

In all investigated organic solvents, NI3 had a yellow color with yellow-green fluorescence.
The long-wavelength bands of the absorption spectra in the visible region were bands of charge
transfer/CT/due to the π→π electron transfer on the S0→S1 transition. The absorption maxima λA were
in the visible region at 414–436 nm and the respective fluorescence maxima were between 478 ÷ 529 nm.
Figure 3 presents the dependence of the absorption position and fluorescence maxima of compound
NI3 from the polarity of organic solvents. As seen, the nature and the polarity of the organic solvents
had significant influence on the spectral properties of NI3. Changes in the position of the NI3 CT bands
in the solvents were brought about by the solvents’ solvatochromic effect. In comparison with the polar
methanol, the absorption and fluorescent maxima in apolar toluene solvent were hypsohromically
shifted (∆λA = 22 nm and ∆λF = 51 nm), as the polarization of the chromophoric molecules depended
strongly on the solvents polarity, as well as on the specific NI3-solvent interactions, which caused a
change in the polarization of the 1,8-naphthalimide chromophore system. As can be seen, NI3 displayed
a positive solvatochromism.Sensors 2020, 20, x FOR PEER REVIEW 7 of 18 
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The Stokes shift (υA−υF) is a parameter that indicates the difference in the properties and structure
of the chromophores between the ground state S0 and the first exited state S1. The obtained values
for NI3 were between 3234–4084 cm−1, which were similar with other 1,8-naphthalimides tat had
secondary amino groups as substituents at the C-4 position [1,33]. From the data in Table 1 and Figure 1,
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it can be also seen then the values of the Stokes shift depended on the nature of organic solvents,
which was higher in the case of polar solvents.

The ability of NI3 to emit absorbed light energy was characterized by the quantum yield of
fluorescence ΦF. It was determined on the basis of respective absorption and fluorescence spectra.
As can be seen from the data in Table 1, the quantum yields of NI3 were between ΦF = 0.53–0.71.
These results were similar to other 1,8-naphthalimides with secondary amino groups as substituents at
C-4 [1,34,35].

Comparing the photophysical characteristics of NI3 with those obtained for NI4 [36], it can be seen
that the position of the substituents had an analogous effect on their spectral characteristics. In both
compounds, the substituents at the C-4 position were with secondary amino groups (allylamino for
NI3 and N,N-dimethylaminoethylamine for NI4) and the polarization of the chromophore system was
approximately the same. A significant difference was found when examining the quantum yield of the
compounds (Figure 4).
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Figure 4. Dependence of quantum fluorescence yields of NI3 and NI4 on the empirical parameter of
solvent polarity ET (30): 1-toluene, 2-diethyl ether, 3-tetrahydrofuran, 4-chloroform, 5-dichloromethane,
6-acetone, 7-DMF, 8-acetonitrile, 9-2-propanol-2, 10-methanol.

For NI3, the values obtained were in the range 0.53–0.71, which was a good emission in every
tested solvent. The polarity of the medium did not significantly affect the emitted fluorescent intensity
(Figure 3). NI4 showed a huge difference in quantum efficiency in organic solvents, with a strict
dependence on polarity. In nonpolar solvents, the quantum yield of NI4 was very high (ΦF = 0.88
at chloroform) and the fluorescence was quenched significantly in polar solvents (ΦF = 0.008 at
methanol) [18]. The difference of the fluorescent intensity was explained by a possible PET process,
which was carried out in polar media and accompanied by weak fluorescence emission and quenched
in nonpolar media, whereby the fluorescence emission was recovered. Brawn et al. also noted this
behavior, investigating similar 1,8-naphthalimide derivatives in organic solvents [37].

To understand the molecular level, the relationship between molecular composition, electronic
characteristics, and photophysical behavior, we theoretically investigated NI3 and NI4 via popular and
affordable DFT calculations. As a first step, a full geometry optimization of the molecular structures
was performed at B3LYP/6-31+G(d,p) level of theory in the gas-phase and in toluene (ε = 2.4) and
methanol (ε= 32.6) solvent environments. The gas-phase optimized low-energy isomers of NI3 and NI4,
which are visualized in Figure 5. TDDFT calculations at TDPBE0/6–311+G(2d,p)//B3LYP/6-31+G(d,p)
level were used to probe the electronic reorganization upon excitation of the studied molecules in
toluene and methanol.

According to the experimental results, the nature and the polarity of the organic solvents
significantly influenced the spectral properties of NI3. The computational approach used to account
for the solvent effects in the studied solvatochromic probes was an implicit solvent model (PCM).
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A well-known significant drawback of implicit approaches is that they do not account for specific
solute-solvent interactions and fail to reproduce the experimental sequence of solvatochromic shifts
that correlate with static dielectrics constant with the solvent [38]. The data reported in Table 3
indicates that the TDDFT method with a hybrid XC functional (PBE0) is suitable to reproduce the linear
optical properties of compounds NI3 (and NI4), including the contrast between the absorption spectra
of the compounds in a non-polar (toluene) and a polar (methanol) medium. A typical systematic
overestimation of the excitation energies (in comparison to the experimental values) by the TDDFT
schemes [39] was observed for NI3: 0.07 eV in toluene and 0.12 eV in methanol.
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Table 3. Time-Dependent Density Functional Theory—p.3 (TDDFT)/PBE0 calculated absorption
maximum (λmax) and oscillator strength for compounds NI3 and NI4 in selected solvents with
different polarities.

Compound Solvent ε, D λmax, nm f

NI3
Toluene 2.4 404 0.32

Methanol 32.6 417 0.27

NI4
Toluene 2.4 409 0.34

Methanol 32.6 417 0.33

The first excited states were determined by HOMO-LUMO transitions with oscillator strengths f
in the range 0.27–0.34. The optimized geometries and frontier orbitals of compounds NI3 and NI4 are
shown in Figure 5. HOMO orbitals were located differently for NI3 and NI4. For NI3, it was located on
the N,N-dimethylaminoethylendiamine receptor fragment and for NI4 it was located entirely on the
1,8-naphtalimide core. LUMOs were delocalized on the 1,8-naphtalimide cores for both compounds.
These differences in the spatial distribution of the frontier orbitals (HOMOs) explain the different
photophysical properties of NI3 and NI4.

Lippert-Mataga investigated the solvent polarity of NI3 and the change of the dipole moment
upon excitation, as well as the relation between the dependence of the Stokes shift and ∆f, as plotted
in Figure 6. The radius of the Onsager cavity (a0 = 5.83 Å) was determined by quantum chemical
calculations (the Monte-Carlo method of calculating molar volume). It was taken as the sphere
equivalent radius of the volume inside a contour of 0.001 electrons, per Bohr3 density, plus 0.5 Å
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(recommended a0 value for Self-Consistent Reaction Field calculations). The solvents diethyl ether,
tetrahydrofuran, and chloroform were excluded. The slope of the line yielded the dipole moment
(∆µ = µe − µg) as a difference between the excited state S1 and ground state S0 dipole moments, µe and
µg, respectively. The DFT calculated the dipole moment in the ground state µg to be 9.0 D in toluene
and 11.0 D in methanol. Calculated ∆µ = µe − µg values indicated an increase of the dipole moment
upon the transition into the excited state from 9.0 D to 9.8 D in toluene and from 11.0 D to 15.0 D
in methanol.
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Figure 6. Dependence of the Stokes shift (υA−υF) on solvent polarity function ∆f for NI3 in organic
solvents: 1-toluene, 2-dichloromethane, 3-acetone, 4-DMF, 5-acetonitrile, 6-2-propanol, and 7-methanol.

The photophysical characteristics of the poly(St-co-N3) were also examined in the toluene solution,
where the copolymer was well soluble and in a thin polymer film (60 µm). In 2% toluene solution,
poly(St-co-NI3) has absorption maximum at 408 nm and emits fluorescence with maximum at 474 nm,
with a Stokes shift of 3412 cm−1. The calculated quantum yield was ΦF = 0.51. These values were very
close to those obtained from the free monomeric NI3. This indicates that the chromophore system did
not change during the co-polymerization, nor for the main polymer chain binding. Figure 7 shows the
excitation and fluorescence spectra of the thin poly(St-co-NI3) film. The excitation spectrum maximum
was at 451 nm, while the fluorescence peak was at 502 nm. The bathochromic shift of excitation and
fluorescence maxima compared to those in the toluene solution can be explained by the solid fixation
of NI3 into the polymer matrix and the inability to undergo conformational changes [40,41].

Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 

 

 
Figure 7. Excitation and fluorescence spectra of poly(St-co-NI3) in thin film (60 μm). 

3.3. Influence of pH of the Fluorescent Intensity 

The influence of pH of the medium (ethanol and water 1:4, v/v) on the fluorescent intensity of 
NI3 was investigated. Figure 8 shows the change in fluorescent intensity with the variation of pH. In 
an alkaline medium (pH = 8–10), the fluorescent intensity was insignificant (ΦF = 0.004). In the pH = 
6–8 range, it enhanced more than 100 fold and in the acidic medium, at pH = 3, the quantum yield 
was ΦF = 0.48. In this case, PET from the tertiary amino group to the chromophore system was carried 
out. In an acidic environment, the electron transfer was stopped by protonation of the tertiary amino 
group and the fluorescence was restored (Scheme 3). 

 
Figure 8. Influence of pH on the fluorescent intensity of NI3 in an ethanol/water (1:4, v/v) solution. 

Figure 7. Excitation and fluorescence spectra of poly(St-co-NI3) in thin film (60 µm).

3.3. Influence of pH of the Fluorescent Intensity

The influence of pH of the medium (ethanol and water 1:4, v/v) on the fluorescent intensity of
NI3 was investigated. Figure 8 shows the change in fluorescent intensity with the variation of pH.
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In an alkaline medium (pH = 8–10), the fluorescent intensity was insignificant (ΦF = 0.004). In the
pH = 6–8 range, it enhanced more than 100 fold and in the acidic medium, at pH = 3, the quantum
yield was ΦF = 0.48. In this case, PET from the tertiary amino group to the chromophore system was
carried out. In an acidic environment, the electron transfer was stopped by protonation of the tertiary
amino group and the fluorescence was restored (Scheme 3).
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The dependence of the fluorescent intensity from pH was analyzed by Equation (2):

pH = pKa + log (IF max−IF)/(IF−IF min) (2)

The calculated pKa value was 7.38.
The Hirshfeld atomic charge was obtained for the optimization in water environment.

NI3 geometry showed that N,N-dimethylamino group protonation was the most probable one (Figure 9).
DFT calculations were carried out on a different N-protonated species in the gas-phase and in water.
It was further confirmed that the protonation occurred in the N,N-dimethylamino group’s nitrogen
atom (Table 4).
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Table 4. Relative stabilities of the protonated NI3 forms in the gas-phase (superscript 1) and in water
(superscript 78).

Structure ∆G1, kcal mol−1 ∆G78, kcal mol−1

NI3-H+ (N1) 0.00 0.00
NI3-H+ (N2) 35.69 41.53
NI3-H+ (N3) 27.51 21.67

3.4. Influence of Metal Cations on the Fluorescent Intensity of NI3 and NI4

Different metal cations (Cu(II), Fe(III), Pb(II), Zn(II), Co(II) and Ni(II)) were used to investigate
the detection ability of NI3 and NI4. As a qualitative indicator of the influence of metal ions on a
compound’s fluorescent intensity, the fluorescence enhancement factor (FE = I/Io) was calculated from
the ratio of the maximum fluorescent intensity (I: after adding metal ions) and the minimum fluorescent
intensity (Io: free of metal ions). Figure 10 plots the enhancement of the fluorescent intensity of both
compounds in the presence of the metal cations. An enhancement of the fluorescence intensities was
observed in NI4 (FE = 4.5 ÷ 9.2), while in NI3 the metal ions had a negligible effect on fluorescent
intensity (FE = 1.2÷1.5). This was true except for Fe(III), where the increase in fluorescent intensity
was significant (FE = 6.7 and Zn(II) with FF = 5.2). The great difference in the fluorescent intensity of
NI3 and NI4 was induced by metal cations and can be explained by the different structure and stability
of the respective tetraaqua complexes.

In the case of NI4, metal ions form a coordinate bond with the free electron pairs of the nitrogen
atoms of the C-4 receptor fragment. As a result, the PET from the distant tertiary nitrogen atom was
quenched and the fluorescent intensity increased. A similar formation of a metal complex with the
substituent at the C-4 position for NI3 was not possible. The respective values for FE were low.

Different possible NI3-Zn2+ and NI4-Zn2+ complexes were modeled and the Gibbs energies
of the complex formation reactions with hydrated Zn2+ cations (Zn(H2O)6q

2+) were evaluated in a
water environment. To determine the geometries of NI-Zn(II) complexes, hydrated metal cations
were placed close to the nitrogen atoms of the ligands and allowed to relax. Figure 11 visualizes
the optimized structures of the complexes. The Gibbs free energy for the NI3/ Zn2+ metal ion
complex formation reaction indicated a spontaneous and energy-favorable complex formation process
in water with participation of the imide nitrogen atom (∆G78 = −14.2 kcal mol−1). The complex
formation with the substituent at the C-4 position was predicted to be an energy-unfavorable process
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(∆G78 = 18.0 kcal mol−1). In the NI3-Zn-(H2O)4q
2+ complex, the Zn2+ ion coordinated with the tertiary

amino group of the receptor fragment attached to the imide group, as well as indirectly with the
carbonyl groups via water-mediated interactions. The initial positions of the water molecules around
the metal cation were not preserved. After a reorganization of first-shell water molecules, two of them
were displaced and created water bridges with the carbonyl groups. For NI4 the preferred binding
position of the metal cation was close to the nitrogen atoms of the C-4 receptor fragment.
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Figure 12 shows the fluorescence spectra of NI3 on titration with Fe(III) ions. We observed a
significant increase in fluorescence without changing the position of the fluorescence maximum.
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A complex between NI3 and Fe(III) ions was also modeled (Figure 13). The value of the Gibbs
energy indicated a strong preference towards the triply charged Fe(III) ions (∆G78 = −31.2 kcal mol−1).
As Figures 11 and 13 demonstrate, the first-shell water molecules in NI3-Zn-(H2O)4q

2+ and
NI3-Fe-(H2O)4q

3+ were arranged differently around the metal center. As a result, Fe(III) coordinated
strongly with the tertiary amino group of the receptor fragment (2.18 Å bond length) and with one of
the carbonyl group (a water mediated contact).
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The fluorescent intensity of NI3 depended linearly on the concentration of Fe (III) ions in the
range 0 ÷ 1 × 10−5 mol L−1. Increasing the concentration to 3 × 10−5, the intensity slightly decreased
(Figure 14A). A very good linear dependence (R = 0.9953) was obtained, which made it possible to
calculate, via linear regression [42], the LOD detection limit (5.1 × 10−6 mol L−1) as well as the limit of
quantization (LOQ = 1.70 × 10−5 mol L−1).

The association constant Ka of Fe(III) complex with NI3 was calculated from the Benes-Hildebrand
plot [43]:

1
F− Fo

=
1

Ka (Fmax− Fo) [Fe(III)]
+

1
Fmax− Fo

(3)

where F is the measured fluorescent intensity, Fo is the fluorescent intensity of free ligand NI3,
and Fmax is the saturated fluorescent intensity of the complex NI3-Fe(III). From the obtained linear
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relationship (Figure 14B) (R2 = 0.996), the association constant of NI3 with Fe(III) ions was calculated
as Ka = 1.12 × 105 M−1.
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3.5. Detection Ability of Copolymers in Solid State

Planning to obtain a heterogeneous fluorescent sensor, the influence of metal cations on
the fluorescent intensity of thin film of poly(St-co-NI3) was evaluated in a buffer solution
(CH3COOH/NaCH3COO− at pH = 5) that contained metal cations at a concentration of 10−5 mol L−1.
As can be seen from Figure 10, only in the presence of Fe(III) and Zn(II) did the NI3 fluorescent intensity
increase, which can be considered as ion selectivity compared to the other ions studied. This motivated
us to study the metal ion detection ability of the copolymers. The rigidity of poly(St-co-NI3) polymer
structure of the film hindered the penetration of the metal cations and their contact with the NI3
receptor fragments. The hydrophobic nature of the polystyrene matrix also delayed inward ion
penetration and required a longer contact of the polymer with the metal ions. After 20 min of contact
time between the polymer matrix and the cations, their effect was monitored by the change of the
fluorescent intensity. Figure 15 shows the decrease in the fluorescent intensity of poly(St-co-NI3) and
poly(St-co-NI4) in the presence of Fe(III) and Zn(II) ions. Metal ions Cu(II), Pb(II), Co(II), and Ni(II)
exhibited similar behaviors as Zn(II) ions.
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For Fe(III) cations, the fluorescent intensity of both polymers decreased in the first 10 min and after
that, the change was not significant. The quenching of the fluorescent intensity was 15% for (St-co-NI4)
and 10% for poly(St-co-NI4). For other ions it was 1–2%. The results show a high selectivity of the
copolymers for Fe(III) in the presence of other metal cations under study in the same concentrations.
Due to the smaller ionic radii, the Fe(III) cations had a competitive advantage over the rest of cations in
the polymer matrix penetration, as well as a higher ability to react with the sensor receptor. The decrease
in the fluorescent intensity was likely due to the formation of a complex in which the Fe(III) ions
directly coordinated with the receptor fragment’s nitrogen atom and the NI3 carbonyl groups. This led
to a polarization change of the chromophore system and the emitted fluorescence decreased [20,44].

The possibility of copolymers to form a thin film and the eliminating the migration ability
proves that the presented sensor can have multiple uses for detecting Fe(III) cations in water sources.
The polymer film can be regenerated from the trapped Fe(III) ions using a treatment with an aqueous
EDTA solution at 40 ºC for 20 min. In this case, the iron ions formed a new complex outside the
receptor fragment of 1,8-naphthalimide. Therefore, the fluorescence of the polymer was restored
almost quantitatively to the initial state. This is a reliable indicator of the Fe(III) release from the
polymer matrix and its suitability for reuse. The process was repeated six times and proved that
fluorescence was quenched and restored to almost the same value after each use. This assumes that
the 1,8-naphthalimide sensor fragments do not migrate from the polymer matrix due to their covalent
bonding. We should note that one disadvantage for the obtained polymer sensor is the delay in
the manifestation of the sensor effect in the solid state compared to that in the solution. Therefore,
future work should focus on eliminating this drawback.

4. Conclusions

We synthesized and characterized a novel 1,8-naphthalimide (NI3), structural isomer of the
previously published 1,8-naphthalimide (NI4) [18], with sensing potential for protons and metal
ions. Their spectral characteristics were compared and it was found that the position of the receptor
fragment had a significant effect on the quantum yields of fluorescence. The effect of pH and various
metal ions (Cu(II), Pb(II), Ni(II), Zn(II), Co(II) and Fe(III)) was investigated and it was found that the
position of the receptor fragment (N,N-dimethylaminoethylamine) did not significantly impact proton
detection. For the metal ions, good sensor ability was achieved when this fragment was introduced
at the C-4 position. Computational tools were efficiently employed to delineate the relationship
between the chemical structure and the optical and sensing properties of the novel 1,8-naphthalimide
and its structural isomer (NI4). New copolymers with styrene were obtained (poly(St-co-NI3) and
poly(St-co-NI4)) using 1,8-naphthalimide as a sensor fragment. Their spectral characteristics in a solid
state and in a toluene solution were investigated. It was found that the copolymers emitted a yellow
fluorescence. The copolymers were found to quench its fluorescent intensity after immersion in an
aqueous solution that contained iron ions. The rest of the metal ions examined in this study did not
affect the fluorescent intensity.
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