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VISSA-PLS-DA-Based Metabolomics
Reveals a Multitargeted Mechanism
of Traditional Chinese Medicine
for Traumatic Brain Injury
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Abstract

Metabolomics is an emerging tool to uncover the complex pathogenesis of disease, as well as the multitargets of traditional

Chinese medicines, with chemometric analysis being a key step. However, conventional algorithms are not suitable for

directly analyzing data at all times. The variable iterative space shrinkage approach-partial least squares-discriminant analysis,

a novel algorithm for data mining, was first explored to screen metabolic varieties to reveal the multitargets of Xuefu Zhuyu

decoction (XFZY) against traumatic brain injury (TBI) by the 7th day. Rat plasma from Sham, Vehicle, and XFZY groups was

used for gas chromatography/mass spectrometry-based metabolomics. This method showed an improved discrimination

ability (area under the curve¼ 93.64%). Threonine, trans-4-hydroxyproline, and creatinine were identified as the direct

metabolic targets of XFZYagainst TBI. Five metabolic pathways affected by XFZY in TBI rats, were enriched using Metabolic

Pathway Analysis web tool (i.e., phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; galactose

metabolism; alanine, aspartate, and glutamate metabolism; and tryptophan metabolism). In conclusion, metabolomics cou-

pled with variable iterative space shrinkage approach-partial least squares-discriminant analysis model may be a valuable tool

for identifying the holistic molecular mechanisms involved in the effects of traditional Chinese medicine, such as XFZY.
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Traumatic brain injury (TBI) is known as a “silent
epidemic” (Simon et al., 2017). Annually, approximately
54 to 60 million people suffer from TBI worldwide
(Bazarian et al., 2018). Survivors of TBI commonly live
with neurocognitive deficits and physical disability and
increased risk of neurodegenerative disease in the long
term (Pattinson and Gill, 2018). Unfortunately, no drug
has been approved in Phase III of clinical trials for treat-
ing TBI (Stocchetti et al., 2015) because of complex path-
ogenesis, such as burst reactive oxygen species, increased
glutamate levels, destroyed blood–brain barrier (BBB),
uncontrolled neuroinflammation, and obliterated syn-
apse (Li et al., 2018; Ma et al., 2018; Ichkova et al.,

1Department of Integrated Traditional Chinese and Western Medicine,

Xiangya Hospital, Central South University
2Yunnan Food Safety Research Institute, Kunming University of Science and

Technology
3College of Electrical and Information Engineering, Hunan University
4Department of Integrated Traditional Chinese & Western Medicine, The

Second Xiangya Hospital, Central South University

Corresponding Authors:

Yang Wang, Department of Integrated Traditional Chinese and Western

Medicine, Xiangya Hospital, Central South University, Changsha 410008,

People’s Republic of China.

Email: wangyang_xy87@csu.edu.cn

Lunzhao Yi, Yunnan Food Safety Research Institute, Kunming University of

Science and Technology, Kunming 650500, People’s Republic of China.

Email: yilunzhao@kmust.edu.cn

ASN Neuro

Volume 12: 1–12

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/1759091420910957

journals.sagepub.com/home/asn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-

NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution

of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-

us/nam/open-access-at-sage).

https://orcid.org/0000-0003-0447-3107
mailto:wangyang_xy87@csu.edu.cn
mailto:yilunzhao@kmust.edu.cn
http://us.sagepub.com/en-us/journals-permissions
http://dx.doi.org/10.1177/1759091420910957
journals.sagepub.com/home/asn


2019). Thus, the consensus of multitarget intervention
was formed as its therapeutic principle. The multitarget
property and advantageous efficacy of traditional
Chinese medicine (TCM) in TBI has attracted much
attention (Xing et al., 2016) and has encouraged explo-
ration of the integrative pathogenesis of TBI and the
multitargeted pharmacomechanism of TCM through
various omics technologies (Tu et al., 2014; Zheng,
Wang, et al., 2017; Lipponen et al., 2018).

Metabolomics is a common tool to uncover the path-
ogenesis of disease by reflecting the global metabolic pro-
filing framework (Li et al., 2018). It is also employed to
elucidate the molecular mechanism of TCM herbs (Xiang
et al., 2011; Abdul Majid et al., 2020). It is a crucial step
in high-resolution analytics, together with chemometric
tools, to derive an integrated picture of endogenous and
xenobiotic metabolism (Don et al., 2012). The appropriate
algorithm can provide deeper insights into the integrative
mechanisms of specific diseases or therapeutic interven-
tions. The current algorithms for metabolomics analysis
primarily involve principal component analysis, partial
least squares-discrimination analysis (PLS-DA), orthogo-
nal PLS-DA, support vector machines (SVM), and
random forests (Gromski et al., 2015). However, these
conventional algorithms are not suitable for directly ana-
lyzing data at all times, and data mining is needed.

We proposed the variable iterative space shrinkage
approach (VISSA) for variable selection in a previous
study (Deng et al., 2014). This approach iteratively and
smoothly shrinks the variable space to obtain the best
variable combination for modeling. First, the variable
space is optimized in each step according to statistical
information. Next, the variable space shrinks smoothly
in VISSA by considering the variable combination effects
and avoiding the eliminating informative variables.
Finally, the results are insensitive to parameters (e.g.,
sampling number or the ratio of selected models) and
show improved prediction ability for calibration of data
in VISSA relative to other variable selection methods
(Deng et al., 2014). VISSA could thus be a potential
method for digging deep into metabolomics data.

Xuefu Zhuyu decoction (XFZY) is a classic TCM
herbal formula in clinical practice. Recent basic and clin-
ical evidence has demonstrated that it exerts neuropro-
tection against TBI (Wang, 2010; Xing et al., 2016).
Its pharmacomechanisms involve synaptic regulation
(Zhu et al., 2018), anti-inflammation (Xing, et al.,
2016), antiapoptosis, and antioxidant effects (Zhong
et al., 2018). Considering the successful application of
metabolomics for uncovering TBI-related pathomechan-
isms (Banoei et al., 2018; Chitturi et al., 2018; Hogan
et al., 2018), we employed gas chromatography/mass
spectrometry (GC-MS) for metabolomics to explore the
mechanism of XFZY against TBI in our previous studies
(Feng et al., 2017; Zheng, Xia, et al., 2017). In these

studies, the PLS-DA model was successfully used to dis-
tinguish the groups (i.e., Sham, Vehicle, or XFZY group)
on the 1st or 3rd day post-TBI (Feng et al., 2017).
However, the direct PLS-DA model was not capable of
discriminating the XFZY treatment from the Vehicle
group on the 7th day post-TBI (shown in Figure 1).

The present study aimed to explore the VISSA-
PLS-DA for GC-MS-based metabolomics to screen
metabolic variables on the 7th day post-TBI and then
to elucidate the multitargeted pharmacomechanism of
XFZY against TBI. Thereby, it may provide a new
method for studying TCM.

Materials and Methods

Animals

Healthy male Sprague-Dawley (SD) rats (weight: 200 to
250 g) were supplied by the Laboratory Animal Research
Center of Central South University, China. A controlled
breeding room was used to house the rats with ad libitum
access to normal standard chow diet and tap water.
The temperature was maintained at 22�C to 25�C with
12 hr light/dark cycles and 50%� 10% humidity. All rats
adapted to these circumstances for at least 1 week. At the
beginning of experiment, rats were fasted for 12 h with
free access to water.

Model of TBI

The rat model of controlled cortical impact (CCI) was
established using an electronic controlled pneumatic

Figure 1. PLS-DA Model for Discrimination Between TBI and TBI
Treated With XFZY.
Note. In total, 44 metabolic variables were directly used to establish
the PLS-DA model for distinguishing the Vehicle and XFZY groups.
Its AUC was 59.24%.
Vehicle¼TBI rats treated with normal saline; XFZY¼TBI rats
treated with 9 g/kg Xuefu Zhuyu decoction; AUC¼ the area under
receiver operating characteristic curve, evaluating the discrimina-
tion ability of classical models; PLS¼ partial least squares.
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impact device (TBI 0310, Precision Systems &
Instrumentation, Fairfax Station, VA) under 3% pento-
barbital anesthesia (50mg/kg). The parameters and pro-
cedures used were according to our previous research
(Xing et al., 2016). The body temperature of rats was
maintained at 37.0� 0.5�C throughout the surgery.

Preparation of XFZY

According to the preparation method described in our
previous study (Xing et al., 2016), all herbal medicines
in XFZY decoction (i.e., Semen Persicae, Flos Carthami,
Radix Angelicae Sinensis, Radix Rehmanniae, Radix
Achyranthis Bidentatae, Radix Paeoniae Rubra, Fructus
Aurantii, Radix Glycyrrhizae, Rhizoma Chuanxiong,
Radix Platycodonis, and Radix Bupleuri) were purchased
from the Pharmacy of Xiangya Hospital of Central
South University (Hunan Province, PR China). The pre-
viously mentioned 11 herbs of XFZY at a ratio of
8:6:6:6:6:4:4:4:3:3:2 were decocted using purified water.
The decoctions were then used to prepare a lyophilized
powder of XFZY according to our previous study (Xing
et al., 2016). Finally, 1 g of the freeze-dried powder con-
tained 5.4 g of crude herbs. All powders were stored at
4�C before dissolving in distilled water for usage at a
concentration of 1 g crude drugs/ml (w/v).

Experimental Design and Sample Collection

SD rats were randomly assigned to three groups: (a)
Sham-operated group (Sham, n¼ 13): Rats underwent
the same surgical procedures as CCI except no cerebral
cortex trauma and gavage with an equal volume of
normal saline (0.9% NaCl); (b) TBIþVehicle (Vehicle,
n¼ 15): Rats with CCI were intragastrically administered
the same amount of normal saline vehicle; and (c)
TBIþ 9 g/kg XFZY group (XFZY, n¼ 22): Rats were
orally given XFZY extract (9 g/kg body weight according
to our previous study; Xing et al., 2016) after CCI. Each
group was administered once per day after TBI. On the
1st, 3rd, and 7th day post-TBI, neurological function test
was performed for each group. On the 7th day, all rats
were sacrificed for plasma collection after the neurologi-
cal function tests. The plasma samples were centrifuged
at 3,000 rpm at 4�C for 10 min. The supernatants were
stored at –80�C until GC-MS-based metabolomics
analysis.

Assessment of Neurological Function

To assess neurological injury, the modified neurologic
severity score (mNSS) was determined as in our previous
study (Xing et al., 2016). The motor (muscle status and
abnormal movement); sensory (visual, tactile, and pro-
prioceptive); and reflex abilities were tested on a scale of
0 to 18 (0 normal score; 18: maximal deficit score). On the

1st, 3rd, and 7th day post-TBI, the severity of neurolog-
ical injury was evaluated by mNSS.

GC-MS Data Acquisition

Sample preparation was performed according to the pro-
cedures described previously (Yi et al., 2014). Briefly,
100 ml plasma was mixed with 350 ml methanol, and
50 ml heptadecanoic acid (dissolved in methanol at a con-

centration of 1mg/ml) was added as an internal standard.
After vigorously vortexing for 1 min, the mixture was
centrifuged at 16,000 rpm for 10 min at 4�C. The super-
natant (400 ml) was transferred to a 5-ml glass centrifu-
gation tube and evaporated to dryness under N2 gas.

Then, 70 ml of methoxyamine hydrochloride solution
(20mg/ml in pyridine) was added to the residue and incu-
bated for 60 min at 70�C. After methoximation, 100 ml of
bistrifluoroacetamide derivatization agent was added to
the residue and incubated for another 50 min at 70�C.
The final solution was used for GC-MS analysis. In addi-
tion, 50 ml of each original sample was pooled to generate
the quality control (QC), and 100 ml aliquots of this
pooled sample were pretreated through the aforemen-
tioned process. One QC sample was injected after every
five sample injections to monitor the stability of the

experiment (Supplementary Figure S1).
All GC-MS analyses were performed using a gas chro-

matography instrument (Shimadzu GC2010A, Kyoto,
Japan) coupled with a mass spectrometer (GC-MS-
QP2010) with a constant flow rate of helium carrier gas
at 1.0 ml/min. For each sample, 1.0 ml was injected into a
DB-5ms capillary column (30m� 0.25mm i.d., film
thickness 0.25 mm). The column temperature was initially

maintained at 70�C for 4 min and was then increased to
300�C at a rate of 8�C/min. Subsequently, it was held for
3 min. The total run time was 35.75 min. Mass conditions
were maintained as followed: ionization voltage, 70 eV;
ion source temperature, 200�C; interface temperature,

250�C; full scan mode in the 35 to 800 amu mass
ranges with 0.2 s scan velocity; detector voltage, 0.9 kV.

Identification of Endogenous Metabolites and Data
Processing

GC-MS data of each plasma sample, including retention
characteristics, peak intensities, and integrated mass
spectra, were used for the analysis. First, the automated

mass-spectral deconvolution and identification system
(AMDIS software, National Institute of Standards and
Technology, Gaithersburg, MD, USA) was employed to
support the peak finding and deconvolution. Using NIST
Mass Spectral Search Program Version 2.0 (the National
Institute of Standards and Technology, Gaithersburg,

MD, USA) and the characteristic ions, tentative identifi-
cation of the structures of peaks-of-interest was
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supported by a similarity search of the NIST/EPA/NIH

Mass Spectra Library (NIST05). Only metabolic features

with a relative standard deviation for the relative

peak areas of <30% in QC samples were retained for

subsequent data analysis (Dunn et al., 2011). In all,

44 metabolites were considered as the main endogenous

metabolites, and 25 metabolites were identified by their

corresponding chemical standards. The biochemical

databases, including the Human Metabolome Database

(http://www.hmdb.ca/; Wishart et al., 2018) and the

Kyoto Encyclopedia of Genes and Genomes database

(Kanehisa Labs, Japan, http://www.genome.jp/kegg/),

were used to search and analyze each metabolite. The

peak areas of metabolites were compared with those of

the internal standards to provide a semiquantitative level

for the metabolites. The peak areas were extracted using

our custom scripts to generate a data matrix, in which the

rows represent the samples and the columns correspond

to peak/area ratios to the internal standard in the same

chromatogram.

Data Analysis

The data metrics of peak areas generated from metabolic

profiles were analyzed by PLS-DA to establish any

“groupings” with respect to the Vehicle, Sham, and

XFZY group. In this study, the VISSA was employed

to select the marked variables (metabolites; Deng et al.,

2014; Zhang et al., 2015): The first step was to create a

binary matrix K�P for sampling; the second step was to

carry out weighted binary matrix sampling based on the

weights of variables obtained in Step 1 and create new

submodels and then to calculate the mean root mean

square error of cross-validation (RMSECV) of the best

new submodels; the third step was to compare the mean

RMSECVi with the mean RMSECVi–1; and the fourth

step was to repeat Steps 1 to 3 using the candidate var-

iable set and obtain a new variable set.
VISSA was calculated 500 times. The selected metab-

olites with high frequency (frequency �80% of total

times) were regarded as potential biomarkers. After

variable selection, PLS-DA models were established to

distinguish between the Vehicle and XFZY groups

(or Vehicle group vs. Sham group) on the 7th day.

Then, 10-fold cross-validation was employed to select

the optimal number of latent variables and to evaluate

the predictive ability of the PLS-DA model. Permutation

tests were employed to evaluate the reliability of the class

model and were calculated 5,000 times. In a previous

study, we proved that the area under receiver operating

characteristic curve (AUC) was more sensitive than the

correct rate to evaluate the discrimination ability of the

classical models (Yi et al., 2014). In this study, AUC was

employed to evaluate the discriminant ability of model.

All data were expressed as “mean�SD.” The Mann–

Whitney U test was employed to analyze each metabolite.

The data frommNSSwere analyzed by one-way analysis of

variance with a least significant difference post hoc test

using the SPSS 17.0 software package. Prism Graph Pad

5.0 software was used for graphing. p< .05 was considered

statistically significant. All programs of PLS-DA and other

methods were coded in MATLAB 2010 for Windows, and

all calculations were performed on an Intel Core i7

processor-based personal computer with 16G RAM.

Metabolic Pathway Analysis

The Metabolic Pathway Analysis web tool (http://www.

metaboanalyst.ca/) was used for pathway analysis as

described previously (Yi et al., 2016). The metabolites

for discriminating between the XFZY group and

Vehicle group were input for analysis. The pathway

library was selected from “Rattus norvegicus.” The

default “hypergeometric test” was chosen for pathway

enrichment analysis, and “relative-betweenness central-

ity” algorithms were selected for pathway topological

analysis. Furthermore, 0.1 was considered as the

impact-value threshold of pathway topology analysis to

identify the relevant pathways (Yi et al., 2016).

Results

Metabolic Profiling of Vehicle, Sham, and XFZY

GC-MS was used to determine 44 plasma metabolites

(in Table 1), which were involved in the metabolic pro-

cesses of carbohydrates, amino acids, lipids, energy,

organic acids, and urea. The Mann–Whitney U test was

employed to calculate the significant difference for each

metabolite (p< .05 with a signed t value of 1). As shown

in Table 1, six metabolites including glycine, trans-4-

hydroxyproline, phenylalanine, palmitic acid, linoleic

acid, and oleic acid were significantly altered between

the Vehicle and Sham group. Except for the significant

decline of phenylalanine, the previously mentioned

metabolites increased markedly in the Vehicle group

compared with the Sham group. However, no significant

difference for each metabolite was observed between the

Vehicle group and XFZY group.

Metabolic Characteristics of XFZY-Treated TBI Rats

Compared With TBI Rats

Owing to no significant difference for each metabolite

in the XFZY group relative to the Vehicle group, the

PLS-DA algorithm was directly used to establish a dis-

criminant model for distinguishing these. As shown in

Figure 1, the AUC of this model was 59.24%, indicating

the failure of modeling with poor discriminant ability.
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To establish an ideal discriminant model, the
VISSA-PLS-DA model was employed (Figure 2). First,
the frequency of metabolites was calculated by VISSA
for 500 times. Then, 10 metabolites were selected by

VISSA as shown in Figure 2A, namely, threonine,
trans-4-hydroxyproline, threonic acid, creatinine, phenyl-
alanine, aspartic acid, 1,5-anhydro-sorbitol, galactose,
tryptophan, and stearic acid. Next, a PLS-DA model

Table 1. Metabolic Profiling of Vehicle, Sham, and Xuefu Zhuyu Decoction Groups.

No. Metabolites

Relative peak area

Sham (S) Vehicle (C) XFZY (T) T vs.C S vs.C

KEGG HMDB(n¼ 13) (n¼ 15) (n¼ 22) (1, p< .05)

1 Pyruvic acid 0.134� 0.026 0.129� 0.020 0.131� 0.028 0 0 C00022 HMDB00243

2 Lactic acida 3.856� 0.993 3.840� 1.032 4.001� 1.067 0 0 C00186 HMDB00190

3 L-alaninea 0.547� 0.091 0.549� 0.119 0.500� 0.143 0 0 C00041 HMDB00161

4 Glycinea 0.270� 0.045 0.325� 0.060 0.301� 0.088 0 1 C00037 HMDB00123

5 Methylmalonic acid 0.061� 0.009 0.059� 0.011 0.060� 0.014 0 0 C02170 HMDB00202

6 N-acetylglycine 0.072� 0.008 0.078� 0.019 0.073� 0.011 0 0 C05596 HMDB00532

7 b-hydroxybutyric acida 0.077� 0.023 0.085� 0.018 0.097� 0.040 0 0 C00989 HMDB00710

8 L-valinea 0.211� 0.032 0.199� 0.051 0.193� 0.053 0 0 C00183 HMDB00883

9 Urea 3.366� 0.599 3.363� 0.725 3.245� 0.696 0 0 C00086 HMDB00294

10 L-isoleucinea 0.274� 0.038 0.264� 0.052 0.259� 0.048 0 0 C00407 HMDB00172

11 L-prolinea 0.316� 0.049 0.294� 0.073 0.264� 0.093 0 0 C00148 HMDB00162

12 Succinic acid 0.025� 0.005 0.025� 0.005 0.026� 0.005 0 0 C00042 HMDB00254

13 Glyceric acid 0.031� 0.012 0.030� 0.015 0.036� 0.012 0 0 C00116 HMDB00131

14 Fumaric acid 0.015� 0.005 0.014� 0.005 0.016� 0.005 0 0 C00122 HMDB00134

15 Serinea 0.313� 0.038 0.303� 0.055 0.309� 0.067 0 0 C00065 HMDB00187

16 Threoninea 0.444� 0.060 0.399� 0.065 0.435� 0.093 0 0 C00188 HMDB00167

17 L-malic acida 0.035� 0.009 0.036� 0.007 0.038� 0.009 0 0 C00497 HMDB00744

18 Pyroglutamic acida 0.574� 0.100 0.585� 0.082 0.595� 0.125 0 0 C01879 HMDB00267

19 trans-4-hydroxyproline 0.098� 0.014 0.114� 0.016 0.101� 0.021 0 1 C01157 HMDB00725

20 Threonic acida 0.033� 0.017 0.033� 0.014 0.038� 0.020 0 0 – HMDB00943

21 Creatininea 0.165� 0.048 0.135� 0.039 0.115� 0.053 0 0 C00791 HMDB00562

22 a-ketoglutaric acid 0.013� 0.006 0.015� 0.003 0.015� 0.004 0 0 C00026 HMDB00208

23 Ornithine 0.069� 0.021 0.070� 0.032 0.064� 0.030 0 0 C00077 HMDB03374

24 Glutamic acida 0.101� 0.031 0.087� 0.026 0.095� 0.025 0 0 C00025 HMDB00148

25 Phenylalaninea 0.085� 0.017 0.072� 0.013 0.075� 0.018 0 1 C00079 HMDB00159

26 Aspartic acid 0.041� 0.014 0.040� 0.013 0.034� 0.011 0 0 C00049 HMDB00191

27 Ribitol 0.064� 0.030 0.053� 0.021 0.059� 0.021 0 0 C00474 HMDB00508

28 Lysine 0.06� 0.0370 0.088� 0.042 0.100� 0.074 0 0 C00047 HMDB00182

29 Glutaminea 0.032� 0.021 0.029� 0.013 0.034� 0.016 0 0 C00064 HMDB00641

30 Citric acida 0.097� 0.039 0.096� 0.028 0.093� 0.033 0 0 C00158 HMDB00094

31 1,5-anhydro-d-ghlcitol 0.143� 0.040 0.137� 0.031 0.127� 0.019 0 0 – HMDB41561

32 D-fructose 0.053� 0.012 0.051� 0.018 0.053� 0.026 0 0 C00095 HMDB00660

33 Galactose 0.097� 0.020 0.104� 0.034 0.134� 0.050 0 0 C01582 HMDB00143

34 D-glucosea 9.520� 1.412 9.351� 1.977 8.867� 1.183 0 0 C00031 HMDB00122

35 L-tyrosinea 0.113� 0.038 0.103� 0.034 0.095� 0.035 0 0 C00082 HMDB00158

36 Palmitic acida 0.419� 0.081 0.533� 0.136 0.598� 0.170 0 1 C00249 HMDB00220

37 Tryptophan 0.009� 0.004 0.012� 0.006 0.013� 0.006 0 0 C00078 HMDB00929

38 Myo-inositol 0.139� 0.038 0.132� 0.030 0.143� 0.035 0 0 C00137 HMDB00211

39 Heptadecanoic acid 0.011� 0.003 0.011� 0.005 0.010� 0.004 0 0 – HMDB02259

40 Linoleic acida 0.268� 0.057 0.322� 0.076 0.332� 0.126 0 1 C01595 HMDB00673

41 Oleic acida 0.280� 0.070 0.394� 0.085 0.428� 0.114 0 1 C00712 HMDB00207

42 Stearic acida 0.324� 0.074 0.327� 0.093 0.313� 0.117 0 0 C01530 HMDB00827

43 Arachidonic acida 0.093� 0.028 0.101� 0.017 0.103� 0.045 0 0 C00219 HMDB01043

44 Cholesterola 0.460� 0.140 0.524� 0.144 0.580� 0.163 0 0 C00187 HMDB00067

Note. Relative peak area of 44 metabolites is presented as the mean� SD. KEGG¼Kyoto Encyclopedia of Genes and Genomes; HMDB¼Human

Metabolome Database.
aIdentified by standard substances.
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for distinguishing Vehicle and XFZY group was estab-

lished according to the previously mentioned 10 metab-

olites (Figure 2B). Its AUC was 93.64%. These results

suggested super discriminant ability for distinguishing

rats treated with XFZY from TBI rats. Threonine,

trans-4-hydroxyproline, threonic acid, creatinine, phenyl-

alanine, aspartic acid, 1,5-anhydro-sorbitol, galactose,

tryptophan, and stearic acid were selected as the poten-

tial metabolites altered by XFZY in TBI.

Metabolic Characteristics of TBI Rats Compared

With Sham-TBI

Analogously, the VISSA-PLS-DA model was used to dis-

criminate the Vehicle group from the Sham group

(Figure 3). The frequency of metabolites was calculated

by VISSA for 500 times, and 5 metabolites with high

frequency were selected (Figure 3A), that is, threonine,

trans-4-hydroxyproline, creatinine, fumaric acid, and

oleic acid. Next, these metabolites were employed to

establish a PLS-DA model (Figure 3B). The value of

AUC was 89.74%, suggesting high discriminant ability.

The changes in threonine, trans-4-hydroxyproline, creat-

inine, fumaric acid, and oleic acid were able to distin-

guish TBI rats and Sham-TBI.

Direct Metabolic Targets of XFZY Against TBI

To elucidate the direct effective mechanism of XFZY on

TBI, an intersection of two previously mentioned meta-

bolic panels was executed. As shown in Figure 4A,

threonine, trans-4-hydroxyproline, and creatinine were

identified as the direct metabolic targets intervened by

Figure 2. VISSA-PLS-DA Model for Discrimination Between TBI
and TBI Treated With XFZY.
Note. The variable iterative space shrinkage approach (VISSA) was
first employed to select the marked variables from 44 metabolic
variables. Then, the metabolic variables with high frequency (�400)
were used to establish the PLS-DA model for distinguishing the
Vehicle and XFZY groups. (a) Frequency of each metabolite in the
VISSA algorithm. The red bars are metabolites with high frequency.
1: threonine; 2: trans-4-hydroxyproline; 3: threonic acid; 4: creati-
nine; 5: phenylalanine; 6: aspartic acid; 7: 1,5-anhydro-d-ghlcitol; 8:
galactose; 9: tryptophan; and 10: stearic acid. (b) PLS-DA model
between the Vehicle and XFZY group. Its AUC was 93.64%.
Vehicle¼TBI rats treated with normal saline; XFZY¼TBI rats
treated with 9 g/kg Xuefu Zhuyu decoction; AUC¼ the area under
receiver operating characteristic curve, evaluating the discrimina-
tion ability of classical models; PLS¼ partial least squares.

Figure 3. VISSA-PLS-DA Model for Discrimination Between TBI
and Sham-TBI.
Note. The variable iterative space shrinkage approach (VISSA) was
first employed to select the marked variables from 44 metabolic
variables. Then, the metabolic variables with high frequency (�400)
were used to establish the PLS-DA model for distinguishing the
Vehicle and Sham groups. (a) Frequency of each metabolite in the
VISSA algorithm. The red bars were metabolites with high fre-
quency. 1: fumaric acid; 2: threonine; 3: trans-4-hydroxyproline; 4:
creatinine; and 5: oleic acid. (b) PLS-DA model between the Vehicle
and Sham group. Its AUC was 89.74%.
Vehicle¼TBI rats treated with normal saline; Sham¼ rats without
TBI treated with normal saline; AUC¼ the area under receiver
operating characteristic curve, evaluating the discrimination ability
of classical models; PLS¼ partial least squares.
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XFZY. Following CCI, the levels of threonine and

creatinine in plasma were decreased (Figure 4B, 4D),

whereas trans-4-hydroxyproline was upregulated on the

7th day (Figure 4C). After treatment with 9 g/kg XFZY,

the decreased threonine was recovered close to the base-

line of the Sham group (Figure 4B), and the increase in

trans-4-hydroxyproline was reversed on the 7th day

(Figure 4C). Interestingly, rats treated with XFZY

showed further reduced plasma levels of creatinine com-

pared with the Vehicle group (Figure 4D).

Metabolic Pathways Intervened by XFZY in TBI

The 10 previously mentioned metabolites for discriminat-

ing between the XFZY group and Vehicle group

were analyzed using Metabolic Pathway Analysis.

The enriched metabolic pathways were considered as

the metabolic pathways targeted by XFZY in TBI rats.

As shown in Figure 5, five metabolic pathways were

selected as the potential metabolic pathways regulated

by XFZY. These pathways included phenylalanine, tyro-

sine, and tryptophan biosynthesis; phenylalanine metab-

olism; galactose metabolism; alanine, aspartate, and

glutamate metabolism; and tryptophan metabolism.

Improvement of Neurological Function Induced by
XFZY in TBI

To determine the efficacy of XFZY against TBI, the
mNSS test was performed to assess the recovery of
impaired neurological function on the 1st, 3rd, and
7th day post-TBI. In Figure 6, neurologic deficits were
observed at predetermined timepoints from the onset of
CCI, which was similar to our previous study (Xing et al.,
2016). Compared with the Vehicle group, treatment with
XFZY (9 g/kg) significantly contributed to the recovery
of neurological deficiency, as shown by decreased
mNSS scores (Figure 6). Furthermore, significant
improvement of neurological functions was observed
from the 3rd to 7th day post-TBI.

Discussion

The primary finding of this study is that the VISSA-
PLS-DA model of GC/MS-based metabolomics is a
valid method to unravel the multitargeted mechanisms
of XFZY against TBI. Following this method, we
found that XFZY exerted protective effects on TBI in
terms of metabolic mechanisms. Threonine, trans-4-
hydroxyproline, and creatinine were identified as the

Figure 4. Effects of XFZY on Directly Modulating the Target Metabolites of TBI.
Note. (a) The intersection of two metabolic panels including threonine, trans-4-hydroxyproline, and creatinine was identified. The left
ellipse represents the metabolic panels for discrimination between the Vehicle and Sham group. The right ellipse represents metabolic
panels for discrimination between the Vehicle and XFZY group. The Scatter diagram, respectively, represents the plasma changes of
threonine (b), trans-4-hydroxyproline (c), and creatinine (d) in the Sham, Vehicle, and XFZY groups on the 7th day post-TBI. (Data are
presented as the mean� SD, *p< .05 vs. the Sham group.)
Vehicle¼TBI rats treated with normal saline; Sham¼ rats without TBI given with normal saline; XFZY¼TBI rats treated with 9 g/kg
Xuefu Zhuyu decoction.
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direct metabolic targets of XFZY against TBI, with a

concomitant rescue of impaired neurological function

induced by XFZY. In addition, neuroprotection of

XFZY against TBI might involve the regulation of

phenylalanine, tyrosine, and tryptophan biosynthesis;

phenylalanine metabolism; galactose metabolism; ala-

nine, aspartate, and glutamate metabolism; and trypto-

phan metabolism.
Our observation that alanine, aspartate, and gluta-

mate metabolism was regulated by XFZY against

TBI on the 7th day is consistent with our previous find-

ings in metabolomics on the 1st and 3rd day post-TBI

(Feng et al., 2017). These similar results support the

validity of VISSA-PLS-DA to screen metabolic variables.

Simultaneously, there were some differences relative to

previous study (Feng et al., 2017), which may be attrib-

uted to the changes in plasma levels of metabolites with

time. Intriguingly, these different metabolites including
threonine, trans-4-hydroxy-L-proline, and creatinine

possess its clinical significance in TBI disease.
Threonine is an essential amino acid. Its phosphory-

lation is one of the most prevalent posttranslational

modifications that mediates diverse cellular functions

(Perluigi et al., 2016). Upon onset of TBI, the activities

of various serine-threonine kinases contribute to the
progression of TBI pathology via phosphorylating

the threonine residue of targeted proteins. For instance,

the protein kinase B (Akt)/protein kinase C is related to

glutamate hyperexcitability (Dorsett et al., 2016), nemo-

like kinase is related to the neuronal apoptosis (Li et al.,

2012), and mammalian target of rapamycin (mTOR) is

involved in the neurocognitive outcome following TBI

(Lu et al., 2014; Rozas et al., 2015). In our results, the

changes in threonine levels in TBI rats may partly reflect

the influence of the biosynthesis process of serine/
threonine kinases following TBI. This effect may be fur-

ther involved in the activity of serine/threonine kinases.

The reverse of threonine level induced by treatment with

XFZY may also refer to these processes. These specula-

tions have been partly supported by our previous findings

that the neuroprotection of XFZY against TBI involved

changes in serine/threonine kinases, that is, Akt-

mTOR (Xing et al., 2016).
Trans-4-hydroxy-L-proline is an important marker to

assess the content of collagen in biological samples

(Watanabe et al., 2015). Of these, collagen IV is one of

the main components of the basal lamina, which main-

tains the function of the BBB (Zobel et al., 2016). Hence,

the increased plasma level of trans-4-hydroxy-L-proline

may be induced by the disruption of BBB. Treatment

with XFZY attenuated this upregulation, suggesting

that the neuroprotective effect of XFZY against TBI

may involve functional improvement of the BBB.
However, bone resorption after skull fracture also results

in the release of collagens (Verissimo et al., 2015), causing

an increase in trans-4-hydroxy-L-proline level. The

decreased trans-4-hydroxy-L-proline induced by XFZY

may also result from healing of the traumatic skull.

Figure 5. Summary of Enriched Metabolic Pathways Analysis
Using MetPA.
Note. MetPA was used to analyze 10 screened metabolites for
discriminating the Vehicle group and XFZY group, and 5 metabolic
pathways of importance were enriched: (a) phenylalanine, tyrosine,
and tryptophan biosynthesis; (b) phenylalanine metabolism; (c)
galactose metabolism; (d) alanine, aspartate, and glutamate
metabolism; and (e) tryptophan metabolism.

Figure 6. mNSS After TBI or Sham Injury or TBI Treated With
XFZY.
Note. The mNSS test was performed to assess neurological func-
tion. Following CCI, significant increases of mNSS scores in the
Vehicle group (n¼ 15) relative to the Sham group (n¼ 13) were
observed from the 1st to 7th day post-TBI. Treatment with 9 g/kg
XFZY (n¼ 22) significantly lowered the mNSS scores on the 3rd
and 7th day compared with those in the Vehicle group. (Data are
analyzed by one-way analysis of variance and presented as the
mean� SD. *p< .05 vs. Vehicle group; #p< .05 vs. XFZY group.)
Vehicle¼TBI rats treated with normal saline; Sham¼ rats without
TBI treated with normal saline; XFZY¼TBI rats treated with
9 g/kg Xuefu Zhuyu decoction; TBI¼ traumatic brain injury;
mNSS¼modified neurologic severity score.
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Further studies are needed for evidence to exclude this
interference.

Creatinine is a by-product of muscle metabolism.
Considering its constant generation in the living body
and excretion in kidneys, its clearance (CLCR) is used
as an indicator for assessing renal function. Mounting
evidence has shown that renal clearance of creatinine is
augmented following TBI (Udy et al., 2010; Dias et al.,
2015; Udy et al., 2017). This physiological link between
the brain and kidney may involve a relationship between
cerebrovascular autoregulation and CLCR. The reasons
are as follows: First, a higher CLCR value in TBI was
correlated with better outcome (Dias et al., 2015); fur-
thermore, one potential mechanism from atrial natriuret-
ic peptide (ANP) supports this relationship. The ANP is
excreted through the cerebrovascular autoregulation
system; it then exerts neuroprotection against edema for-
mation and enhances CLCR by elevating the permeability
of glomerular capillary beds (Udy et al., 2017). The
plasma level of creatinine thus reflects the ANP level to
some extent. In line with these reports, we found
deceased plasma level of creatinine on the 7th day
post-TBI, suggesting an elevated renal clearance. After
treatment with XFZY, lower levels of creatinine accom-
panying improved neurological function may contribute
to the upregulation of ANP, which needs to be demon-
strated in a further experiment.

Apart from directly targeting metabolites, the protec-
tion of XFZY against TBI may be exerted through
regulating metabolic pathways. Three metabolites
(phenylalanine, tryptophan, and tyrosine) were found
to influence the changes in intracranial pressure and cere-
bral oxygen consumption (SjvO2) following TBI (Vuille-
Dit-Bille et al., 2012). The increased plasma phenylala-
nine levels were beneficial for decreasing intracranial
pressure and reducing cerebral oxygen consumption
(Vuille-Dit-Bille et al., 2012). In our study, treatment
with XFZY increased the phenylalanine level post-TBI
and contributed to the recovery of neurological function.
These results indicate that the neuroprotection of XFZY
may involve regulation of the three metabolic pathways
relative to phenylalanine (including phenylalanine,
tyrosine, and tryptophan biosynthesis; the phenylalanine
metabolism; and the tryptophan metabolism). Moreover,
our previous metabolomics study in TBI patients with
cognitive impairment showed a disorder in galactose
metabolism (Yi et al., 2016). XFZY regulated galactose
metabolism in present study, which partly supports its
neuroprotective role in TBI. In addition, a profound,
long-lasting imbalance of alanine, aspartate, and gluta-
mate metabolism was observed in an animal model of
TBI (Amorini et al.,2017). In our study, the intervention
of XFZY in this metabolic disorder may contribute to its
protective mechanism. Therefore, the aforementioned
evidence suggests that XFZY exerts neuroprotection

against TBI through multi-intervention of metabolic

pathways.
The previously mentioned clinical significance of the

metabolomics results indicates that the VISSA-PLS-DA

model is reasonable and scientific. Meanwhile, in terms

of chemometric analysis, the VISSA-PLS-DA analytical

model is more preponderant than the single PLS-DA

model to discriminate two datasets. VISSA is an optimi-
zation algorithm for the selection of variable, based on

weighted binary matrix sampling and model population

analysis strategies (Deng et al., 2014). Its advantages

include overcoming the uncertainty of a single model,

generating synergistic/combination effects, and avoiding
the elimination of important variables by mistake during

the optimization process (Song et al., 2016). Up to now,

it was mainly employed to deal with complex NIR

datasets. Moreover, compared with some mainstream

methods of multivariate data analysis, including

iteratively retaining informative variables, competitive
adaptive reweighted sampling, and Monte Carlo uninfor-

mative variable elimination, VISSA provides the lowest

degree of overfitting (Talebi et al., 2015), as well as better

prediction ability for the calibration of NIR data (Deng

et al., 2014). Besides, novel algorithms developed from
VISSA, such as iVISSA, VISSA-iPLS, and VISSA-

ABC-SVM, also showed better performance for the anal-

ysis of NIR data (Deng et al., 2015; Song et al., 2016;

Li et al., 2019). In our study, the VISSA algorithm

improved the performance of PLS-DA model by remov-

ing the uninformative variables and interfering variables
using shrinkage of variable space. In the beginning,

we directly used 44 metabolites to establish the

PLS-DA model for discriminating the Vehicle and

XFZY groups. Its AUC was 59.24%. However, after

VISSA selected 10 metabolites, the AUC value of the
VISSA-PLS-DA model reached 93.64%. These results

suggest the superiority of the VISSA-PLS-DA discrimi-

native model.
However, compared with our previous research (Feng

et al., 2017), there are several different results in this
metabolomics study: the direct metabolic targets of

XFZY against TBI, and the metabolic pathways inter-

vened by XFZY, except for alanine, aspartate, and glu-

tamate metabolism. These differences could originate

from different points-in-time post-TBI or the number
of analytical metabolites (i.e., adding seven metabolites

and removing one metabolite in this study relative to

our previous study). In addition, further molecular

biology experiments are needed to determine whether

trans-4-hydroxy-L-proline is involved in the recovery of
BBB or in the healing of traumatic skull, as well as

whether XFZY provides a neuroprotective role in

TBI via upregulating the ANP levels in blood

circulation. Analogously, whether the three metabolites

Xia et al. 9



(threonine, trans-4-hydroxyproline, and creatinine) are

specific targets of XFZY needs further investigation.
In summary, metabolomics based on the VISSA-PLS-

DA model successfully uncovered the multitargeted

mechanisms of XFZY against TBI, which are involved

in modulating three direct metabolic targets (threonine,

trans-4-hydroxyproline, and creatinine) and intervening

in five metabolic pathways (phenylalanine, tyrosine, and

tryptophan biosynthesis; phenylalanine metabolism;

galactose metabolism; alanine, aspartate, and glutamate

metabolism; and tryptophan metabolism). These findings

indicate that metabolomics coupled with the VISSA-

PLS-DA model is a valuable tool for identification of

the holistic molecular mechanisms involved in the

effects of TCM.

Ethical Approval

All animal experiments were approved by the Animal Ethics

Committee of Central South University and conformed to the

Guidelines for the Care and Use of Laboratory Animals (1996).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: This work was supported financially by the National

Natural Science Foundation of China (Nos. 81803948,

81973665, 81874409, 81673719, and 21465016) and the

Outstanding Youth Foundation of Hunan Provincial Natural

Science Foundation of China (No. 2019JJ30042).

ORCID iD

Yang Wang https://orcid.org/0000-0003-0447-3107

Supplemental Material

Supplemental material for this article is available online.

References

Abdul Majid, N., Abdul Hamid, A., Salleh, S. Z., Saari, N.,

Abas, F., Pak Dek, M. S., Ramli, N. S., & Jaafar, A. H.

(2020). Metabolomics approach to investigate the ergogenic

effect of Morinda citrifolia L. leaf extract on obese Sprague

Dawley rats. Phytochem Anal, 31, 191–203.
Amorini, A. M., Lazzarino, G., Di Pietro, V., Signoretti, S.,

Lazzarino, G., Belli, A., & Tavazzi, B. (2017). Severity of

experimental traumatic brain injury modulates changes in

concentrations of cerebral free amino acids. J Cell Mol

Med, 21, 530–542.

Banoei, M. M., Casault, C., Metwaly, S. M., & Winston, B. W.

(2018). Metabolomics and biomarker discovery in traumatic

brain injury. J Neurotrauma, 35, 1831–1848.
Bazarian, J. J., et al. (2018). Serum GFAP and UCH-L1 for

prediction of absence of intracranial injuries on head CT

(ALERT-TBI): A multicentre observational study. Lancet

Neurol, 17, 782–789.
Chitturi, J., Li, Y., Santhakumar, V., & Kannurpatti, S. S.

(2018). Early behavioral and metabolomic change after

mild to moderate traumatic brain injury in the developing

brain. Neurochem Int, 120, 75–86.
Deng, B. C., Yun, Y. H., Liang, Y. Z., & Yi, L. Z. (2014).

A novel variable selection approach that iteratively opti-

mizes variable space using weighted binary matrix sampling.

Analyst, 139, 4836–4845.
Deng, B. C., Yun, Y. H., Ma, P., Lin, C. C., Ren, D. B., &

Liang, Y. Z. (2015). A new method for wavelength interval

selection that intelligently optimizes the locations, widths

and combinations of the intervals. Analyst, 140, 1876–1885.
Dias, C., Gaio, A. R., Monteiro, E., Barbosa, S., Cerejo, A.,

Donnelly, J., Felgueiras, O., Smielewski, P., Paiva, J. A., &

Czosnyka, M. (2015). Kidney-brain link in traumatic brain

injury patients? A preliminary report. Neurocrit Care, 22,

192–201.
Don, A. S., Tsang, C. K., Kazdoba, T. M., D’Arcangelo, G.,

Young, W., & Zheng, X. F. (2012). Targeting mTOR as a

novel therapeutic strategy for traumatic CNS injuries. Drug

Discov Today, 17, 861–868.
Dorsett, C. R., McGuire, J. L., Niedzielko, T. L., DePasquale,

E. A., Meller, J., Floyd, C. L., & McCullumsmith, R. E.

(2016). TBI induces alterations in cortical glutamate

uptake without a reduction in GLT-1 protein expression.

J Neurotrauma, 34, 220–234.
Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-

McIntyre, S., Anderson, N., Brown, M., Knowles, J. D.,

Halsall, A., Haselden, J. N., Nicholls, A. W., Wilson,

I. D., Kell, D. B., & Goodacre, R. (2011). Procedures for

large-scale metabolic profiling of serum and plasma using

gas chromatography and liquid chromatography coupled

to mass spectrometry. Nat Protoc, 6, 1060–1083.
Feng, D., Xia, Z., Zhou, J., Lu, H., Zhang, C., Fan, R., Xiong,

X., Cui, H., Gan, P., Huang, W., Peng, W., He, F., Wang,

Z., Wang, Y., & Tang, T. (2017). Metabolomics reveals the

effect of Xuefu Zhuyu decoction on plasma metabolism in

rats with acute traumatic brain injury. Oncotarget, 8,

94692–94710.
Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa,

E., Turner, M. L., & Goodacre, R. (2015). A tutorial review:

Metabolomics and partial least squares-discriminant analy-

sis–a marriage of convenience or a shotgun wedding.

Anal Chim Acta, 879, 10–23.
Hogan, S. R., Phan, J. H., Alvarado-Velez, M., Wang, M. D.,

Bellamkonda, R. V., Fernandez, F. M., & LaPlaca, M. C.

(2018). Discovery of lipidome alterations following traumat-

ic brain injury via high-resolution metabolomics. J Proteome

Res, 17, 2131–2143.
Ichkova, A., Fukuda, A. M., Nishiyama, N., Paris, G.,

Obenaus, A., & Badaut, J. (2019). Small interference RNA

targeting connexin-43 improves motor function and limits

10 ASN Neuro

https://orcid.org/0000-0003-0447-3107
https://orcid.org/0000-0003-0447-3107


astrogliosis after juvenile traumatic brain injury. ASN

Neuro, 11, 1759091419847090.
Li, Q., Wei, S., Wu, D., Wen, C., & Zhou, J. (2018). Urinary

metabolomics study of patients with gout using gas

chromatography-mass spectrometry. Biomed Res Int, 2018,

3461572.
Li, Y., Sun, J., Wu, X., Lu, B., Wu, M., & Dai, C. (2019).

Grade identification of tieguanyin tea using fluorescence

hyperspectra and different statistical algorithms. J Food

Sci, 84, 2234–2241.
Li, Z., Cui, G., Wang, J., Yu, Z., Zhao, L., & Lv, Z. (2012).

Nemo-like kinase (NLK) involves in neuronal apoptosis

after traumatic brain injury. Cell Mol Neurobiol, 32,

381–389.
Li, Z., Zeng, G., Zheng, X., Wang, W., Ling, Y., Tang, H., &

Zhang, J. (2018). Neuroprotective effect of formononetin

against TBI in rats via suppressing inflammatory reaction

in cortical neurons. Biomed Pharmacother, 106, 349–354.
Lipponen, A., El-Osta, A., Kaspi, A., Ziemann, M., Khurana,

I., Kn, H., Navarro-Ferrandis, V., Puhakka, N., Paananen,

J., & Pitkanen, A. (2018). Transcription factors Tp73,

Cebpd, Pax6, and Spi1 rather than DNA methylation regu-

late chronic transcriptomics changes after experimental trau-

matic brain injury. Acta Neuropathol Commun, 6, 17.
Lu, Q., Gao, L., Huang, L., Ruan, L., Yang, J., Huang, W., Li,

Z., Zhang, Y., Jin, K., & Zhuge, Q. (2014). Inhibition of

mammalian target of rapamycin improves neurobehavioral

deficit and modulates immune response after intracerebral

hemorrhage in rat. J Neuroinflamm, 11, 44.
Ma, M. W., Wang, J., Dhandapani, K. M., Wang, R., & Brann,

D. W. (2018). NADPH oxidases in traumatic brain injury –

Promising therapeutic targets? Redox Biol, 16, 285–293.
Pattinson, C. L., & Gill, J. M. (2018). Risk of dementia after

TBI – A cause of growing concern. Nat Rev Neurol, 14,

511–512.
Perluigi, M., Barone, E., Di Domenico, F., & Butterfield, D. A.

(2016). Aberrant protein phosphorylation in Alzheimer dis-

ease brain disturbs pro-survival and cell death pathways.

Biochim Biophys Acta, 1862, 1871–1882.
Rozas, N. S., Redell, J. B., Hill, J. L., McKenna, J., III, Moore,

A. N., Gambello, M. J., & Dash, P. K. (2015). Genetic

activation of mTORC1 signaling worsens neurocognitive

outcome after traumatic brain injury. J Neurotrauma, 32,

149–158.
Simon, D. W., McGeachy, M. J., Bayir, H., Clark, R. S.,

Loane, D. J., & Kochanek, P. M. (2017). The far-reaching

scope of neuroinflammation after traumatic brain injury.

Nat Rev Neurol, 13, 171–191.
Song, X., Huang, Y., Yan, H., Xiong, Y., & Min, S. (2016).

A novel algorithm for spectral interval combination optimi-

zation. Anal Chim Acta, 948, 19–29.
Stocchetti, N., et al. (2015). Neuroprotection in acute brain

injury: An up-to-date review. Crit Care, 19, 186.
Talebi, M., Schuster, G., Shellie, R. A., Szucs, R., & Haddad,

P. R. (2015). Performance comparison of partial least

squares-related variable selection methods for quantitative

structure retention relationships modelling of retention

times in reversed-phase liquid chromatography. J

Chromatogr A, 1424, 69–76.

Tu, T., Zhou, S., Liu, Z., Li, X., & Liu, Q. (2014). Quantitative

proteomics of changes in energy metabolism-related proteins

in atrial tissue from valvular disease patients with permanent

atrial fibrillation. Circ J, 78, 993–1001.
Udy, A., Boots, R., Senthuran, S., Stuart, J., Deans, R., Lassig-

Smith, M., & Lipman, J. (2010). Augmented creatinine clear-

ance in traumatic brain injury. Anesth Analg, 111,

1505–1510.
Udy, A. A., Jarrett, P., Lassig-Smith, M., Stuart, J., Starr, T.,

Dunlop, R., Deans, R., Roberts, J. A., Senthuran, S., Boots,

R., Bisht, K., Bulmer, A. C., & Lipman, J. (2017).

Augmented renal clearance in traumatic brain injury:

A single-center observational study of atrial natriuretic

peptide, cardiac output, and creatinine clearance.

J Neurotrauma, 34, 137–144.
Verissimo, D. M., Leitao, R. F., Figueiro, S. D., Goes, J. C.,

Lima, V., Silveira, C. O., & Brito, G. A. (2015). Guided bone

regeneration produced by new mineralized and reticulated

collagen membranes in critical-sized rat calvarial defects.

Exp Biol Med, 240, 175–184.
Vuille-Dit-Bille, R. N., Ha-Huy, R., & Stover, J. F. (2012).

Changes in plasma phenylalanine, isoleucine, leucine, and

valine are associated with significant changes in intracranial

pressure and jugular venous oxygen saturation in patients

with severe traumatic brain injury. Amino Acids, 43,

1287–1296.
Wang, Z. W. (2010). 108 Cases of clinical observation of Xuefu

Zhuyu on patients with post-craniocerebral traumatic syn-

drome. Shanxi Zhong Yi, 31, 850–850 [in Chinese].
Watanabe, S., Hiraoka, Y., Endo, S., Tanimoto, Y., Tozawa,

Y., & Watanabe, Y. (2015). An enzymatic method to

estimate the content of L-hydroxyproline. J Biotechnol,

199, 9–16.
Wishart, D. S., et al. (2018). HMDB 4.0: The human metabo-

lome database for 2018. Nucleic Acids Res, 46, D608–D617.
Xiang, Z., Wang, X. Q., Cai, X. J., & Zeng, S. (2011).

Metabolomics study on quality control and discrimination

of three curcuma species based on gas chromatograph-mass

spectrometry. Phytochem Anal, 22, 411–418.
Xing, Z., Xia, Z., Peng, W., Li, J., Zhang, C., Fu, C., Tang, T.,

Luo, J., Zou, Y., Fan, R., Liu, W., Xiong, X., Huang, W.,

Sheng, C., Gan, P., & Wang, Y. (2016). Xuefu Zhuyu decoc-

tion, a traditional Chinese medicine, provides neuroprotec-

tion in a rat model of traumatic brain injury via an

anti-inflammatory pathway. Sci Rep, 6, 20040.
Yi, L., Dong, N., Shi, S., Deng, B., Yun, Y., Yi, Z., & Zhang,

Y. (2014). Metabolomic identification of novel biomarkers

of nasopharyngeal carcinoma. RSC Adv, 4, 59094–59101.
Yi, L., Shi, S., Wang, Y., Huang, W., Xia, Z. A., Xing, Z.,

Peng, W., & Wang, Z. (2016). Serum metabolic profiling

reveals altered metabolic pathways in patients with post-

traumatic cognitive impairments. Sci Rep, 6, 21320.
Zhang, X., Yi, L., Deng, B., Chen, L., Shi, S., Zhuang, Y., &

Zhang, Y. (2015). Discrimination of Acori Tatarinowii

Rhizoma and Acori Calami Rhizoma based on quantitative

gas chromatographic fingerprints and chemometric meth-

ods. J Sep Sci, 38, 4078–4085.
Zheng, F., Xia, Z. A., Zeng, Y. F., Luo, J. K., Sun, P., Cui,

H. J., Wang, Y., Tang, T., & Zhou, Y. T. (2017). Plasma

Xia et al. 11



metabolomics profiles in rats with acute traumatic brain
injury. PLoS One, 12, e0182025.

Zheng, P., Wang, Y., Lu, H., Zhou, X., Tang, T., Fan, R.,
Zhang, C., Cui, H., Wang, Y., & Luo, J. (2017).
Plasma metabolomics analysis based on GC-MS in infertile
males with kidney-yang deficiency syndrome. Evid Based

Complementary Altern Med, 2017, Article 6270195.
Zhong, Y., Luo, J., Tang, T., Li, P., Liu, T., Cui, H., Wang, Y.,

& Huang, Z. (2018). Exploring Pharmacological mecha-
nisms of Xuefu Zhuyu decoction in the treatment of trau-
matic brain injury via a network pharmacology approach.

Evid Based Complementary Altern Med, 2018, Article
8916938.

Zhu, L., Tang, T., Fan, R., Luo, J. K., Cui, H. J., Zhang, C. H.,
Peng, W. J., Sun, P., Xiong, X. G., & Wang, Y. (2018).
Xuefu Zhuyu decoction improves neurological dysfunction
by increasing synapsin expression after traumatic brain
injury. Neural Regen Res, 13, 1417–1424.

Zobel, K., Hansen, U., & Galla, H. J. (2016). Blood-brain bar-
rier properties in vitro depend on composition and assembly
of endogenous extracellular matrices. Cell Tissue Res, 365,
233–245.

12 ASN Neuro


	table-fn1-1759091420910957
	table-fn2-1759091420910957

