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Abstract 

Background:  Quantification of non-ischemic myocardial scar remains a challenge due to the patchy diffuse nature 
of fibrosis. Extracellular volume (ECV) to guide late gadolinium enhancement (LGE) analysis may achieve a robust scar 
assessment.

Methods:  Three cohorts of 80 non-ischemic-training, 20 non-ischemic-validation, and 10 ischemic-validation were 
prospectively enrolled and underwent 3.0 Tesla cardiac MRI. An ECV cutoff to differentiate LGE scar from non-scar 
was identified in the training cohort from the receiver-operating characteristic curve analysis, by comparing the ECV 
value against the visually-determined presence/absence of the LGE scar at the highest signal intensity (SI) area of the 
mid-left ventricle (LV) LGE. Based on the ECV cutoff, an LGE semi-automatic threshold of n-times of standard-deviation 
(n-SD) above the remote-myocardium SI was optimized in the individual cases ensuring correspondence between 
LGE and ECV images. The inter-method agreement of scar amount in comparison with manual (for non-ischemic) or 
full-width half-maximum (FWHM, for ischemic) was assessed. Intra- and inter-observer reproducibility were investi‑
gated in a randomly chosen subset of 40 non-ischemic and 10 ischemic cases.

Results:  The non-ischemic groups were all female with the HIV positive rate of 73.8% (training) and 80% (validation). 
The ischemic group was all male with reduced LV function. An ECV cutoff of 31.5% achieved optimum performance 
(sensitivity: 90%, specificity: 86.7% in training; sensitivity: 100%, specificity: 81.8% in validation dataset). The identi‑
fied n-SD threshold varied widely (range 3 SD–18 SD), and was independent of scar amount (β = −0.01, p = 0.92). 
In the non-ischemic cohorts, results suggested that the manual LGE assessment overestimated scar (%) in compari‑
son to ECV-guided analysis [training: 4.5 (3.2–6.4) vs. 0.92 (0.1–2.1); validation: 2.5 (1.2–3.7) vs. 0.2 (0–1.6); P < 0.01 for 
both]. Intra- and inter-observer analyses of global scar (%) showed higher reproducibility in ECV-guided than manual 
analysis with CCC = 0.94 and 0.78 versus CCC = 0.86 and 0.73, respectively (P < 0.01 for all). In ischemic validation, the 
ECV-guided LGE analysis showed a comparable scar amount and reproducibility with the FWHM.

Conclusions:  ECV-guided LGE analysis is a robust scar quantification method for a non-ischemic cohort.
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Background
Replacement fibrosis of left ventricular (LV) scar quan-
tified by the amount of late gadolinium enhancement 
(LGE) has been shown to be a better predictor of the risk 
of incident adverse clinical events than the presence/
absence of LGE alone in different cardiac diseases [1–4]. 
However, quantification of LGE scar is challenging when 
the scar distributions are diffuse and patchy, which is typ-
ical in non-ischemic cardiomyopathy such as myocarditis 
[5–7], cardiomyopathies [8–11], and in human immuno-
deficiency virus (HIV) cohorts [12–16]. As a result, the 
quantification of scar mass or even the identification of 
LGE can present a huge challenge in non-ischemic cases.

The most recent SCMR task force recognized that 
there is not enough evidence to provide a cut-off for non-
ischemic LGE scar quantification [17]. A number of LGE 
scar quantification methods with semi-automated thresh-
olds have been proposed and utilized [5, 9, 17–23]. These 
methods use a fixed calculation formula to define a sig-
nal intensity (SI) threshold value above which the tissue 
is identified as a myocardial scar. Their performance is 
well recognized in ischemic cases while in non-ischemic 
cases, it is not infrequent that substantial manual cor-
rection is needed after semi-automated thresholding. 
Therefore, by default, manual scar delineation remains 
the current standard of reference in non-ischemic cases 
[17]. However, manual analysis is challenging as the non-
ischemic patchy fibrosis presents a rather low contrast on 
LGE when compared to the ischemic dense fibrotic scar 
[24].

T1 mapping may be more accurate in the assessment 
of diffuse and patchy myocardial fibrosis [25–32]. Extra-
cellular volume fraction (ECV) is robust across different 
field strengths and acquisitions [13, 15, 33, 34]. On the 
other hand, current T1 mapping still has notable draw-
backs, including the time required for whole LV coverage 
as compared to 3D LGE techniques and lower spatial res-
olution than LGE. Given the advantages and limitations 
of T1 mapping and LGE, we hypothesized that combin-
ing these two images in a complementary manner may 
achieve a more robust and comprehensive LV scar assess-
ment, particularly applicable to the non-ischemic cases. 
We, therefore, set out to establish ECV criteria to dif-
ferentiate LGE scar from non-scar that is utilized for the 
ECV-guided LGE analysis and compare the performance 
of this approach with the conventional manual LGE 

analysis in a non-ischemic cohort of women with or at 
risk for HIV infection. Additionally, the developed ECV-
guided LGE analysis technique was validated in a differ-
ent subset of 20 non-ischemic and 10 ischemic cases.

Materials and methods
Cohort
The study flowcharts are presented in Fig.  1. This study 
consisted of three cohorts of non-ischemic training 
cohort, non-ischemic validation cohort, and ischemic 
validation cohort. The current MRI study was planned 
as an ancillary study of The Women’s Interagency HIV 
Study (WIHS), which is a multicenter study that enrolled 
women with, or at risk for, HIV infection in 1994–1995 
and 2001–2002 at six U.S. sites. The study participants 
were enrolled in three stages at sites across the United 
States, with HIV-positive and HIV-negative recruited 
from the same clinics to ensure a similar sociodemo-
graphic and behavioral risk factor profile [35–37]. The 
non-ischemic training cohort participants in the pre-
sented study were recruited from two specific sites of 
WIHS study. Of 619 participants in active follow-up at 
both sites, 210 completed contrast-enhanced cardiac 
MRI between October 2016 and August 2018. Among 
these participants, a sub-sample of 101 women was ran-
domly selected for the present study. Twenty-one of them 
were excluded from image analysis because of missing 
LGE and/or T1 mapping image data (n = 8), unaccepta-
ble slice position mismatch between LGE and T1 map 
images (n = 3), poor image quality of either the LGE or 
T1 map image (n = 8), or typical LGE distribution of 
ischemic pattern (n = 2). The non-ischemic validation 
cohort consisted of 20 cases from the same WIHS study, 
but the participants were enrolled and underwent cardiac 
MRI in a different site from the two sites of the train-
ing cohort. Their MRI scans were performed between 
January 2019 and January 2020. The ischemic valida-
tion cohort consisted of ten ischemic heart failure cases 
enrolled in an external cohort study entitled Combina-
tion of Mesenchymal and c-kit + Cardiac Stem Cells As 
Regenerative Therapy for Heart Failure (CONCERT-HF) 
[38], the details of which are summarized in Supplement 
1 within the Additional file 1.

In both clinical trials from which the non-ischemic 
and the ischemic cohorts originated (non-ischemic 
[35–37]; ischemic [38]), all the cardiac MRI studies 

Trial registration ClinicalTrials.gov; NCT00000797, retrospectively-registered 2 November 1999; NCT02501811, regis‑
tered 15 July 2015.
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were approved by the institutional review boards (IRB) 
of each participating field center and all participants 
signed informed consent. Both studies complied with 
the World Medical Association’s Declaration of Helsinki 

and registered with ClinicalTrials.gov (non-ischemic: 
number NCT00000797; ischemic: NCT02501811). The 
current study is planned and conducted under our IRB 
approval with the application number IRB00116189 for 

Fig. 1  Study flowcharts. A Non-ischemic training cohort. B Non-ischemic validation cohort. C Ischemic validation cohort. A Of the 210 participants 
that completed contrast-enhanced cardiac MRI between October 2016 and August 2018, a sub-sample of 101 women was randomly selected for 
the present study. Twenty-one of them were excluded from image analysis due to the reasons listed in the flowchart. Overall 80 participants were 
included in the non-ischemic training cohort. B Of the continuous 27 contrast-enhanced cardiac MRI between January 2019 and January 2020, 
seven of them were excluded from the image analysis due to the image quality issue. Overall 20 cases were included in the non-ischemic validation 
cohort. C Of the continuous 13 contrast-enhanced cardiac MRI between December 2016 and April 2020, three of them were excluded from the 
image analysis due to the image quality issue. Overall 10 cases were included in the ischemic validation cohort. MRI magnetic resonance imaging
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the non-ischemic cohort; IRB00089436 for the ischemic 
cohort.

Cardiac MRI protocol
A standard Cardiac MRI protocol including LGE and 
T1 mapping was performed using two 3.0 Tesla mag-
nets (Achieva and Ingenia, Philips Healthcare, Best, the 
Netherlands) at the Albert Einstein College of Medicine/
Montefiore Medical Center (for the training cohort) and 
University of California Saint Francisco for the valida-
tion cohort. The LGE images were acquired 13–20  min 
after intravenous administration of 0.2  mmol/kg gado-
pentetate meglumine (Dotarem, Guerbet, Roissy, France) 
using a standard two-dimensional segmented phase-sen-
sitive inversion recovery (PSIR) gradient echo sequence 
to cover the entire LV. The short axis T1 mapping images 
were acquired in one slice at the mid-LV level before and 
20 min after contrast administration with 3(3)3(3)5 Mod-
ified Look-Locker Imaging (MOLLI) sequence [39] or the 
recently proposed 5s(3s)3s and 4s(1s)3s(1s)2s schemes 
[40]. All images were motion-corrected before analy-
sis. The image acquisition parameters are documented 
in  Supplement 2 within the Additional file 1. ECV maps 
were calculated from pre- and post-contrast T1 values of 
the blood pool, myocardium, and hematocrit [28]. The 
MRI protocol of the ischemic cohort is summarized in 
Supplement 1 within the Additional file 1.

Image analysis
Two experienced observers blinded to HIV status (Y. 
K. for T1 and LGE analysis, over 8 years of cardiac MRI 
experience; E. C. for T1 and LGE analysis, over 10 years 
of experience) performed image analysis using Medis 
Suite 2.1.12.6 for T1 mapping and QMass MR 7.5 for 
LGE (both Medis Medical Imaging Systems, Leiden, the 
Netherlands). The contours of the LGE and T1 images 
were prepared in advance to the scar quantification. On 
LGE images, epicardial and endocardial contours were 
manually traced for all the slices of the stack of short-axis 
LGE images. Then in the mid-LV slice corresponding to 
the ECV slice, remote myocardium and high SI area were 
automatically detected and assigned region of interests 
(ROIs) by the software, based on the minimum and max-
imum areas of signal intensity [41]. On T1 images, one 
set of epicardial and endocardial contours were manually 
traced sparing the edge of the myocardium to avoid the 
effect of misregistration errors. The ECV value of each 
pixel was automatically calculated from the inversion 
recovery curve on the workstation and the resulting ECV 
map was utilized.

An LGE scar quantification method of ECV-guided 
LGE analysis which applies ECV criteria and optimizes 
the n-SD threshold in the individual case was developed 

and compared with the conventional analysis methods 
of manual analysis (in the non-ischemic cohort) or with 
full-width half-maximum (FWHM) (in the ischemic 
cohort) [17–23]. These LGE scar quantifications were 
performed separately with at least 2 weeks between the 
reads. LGE analysis was performed on the PSIR images 
and was reported in global and segmental levels using the 
AHA 17 segment model [42].

Preparation of the ECV criteria to detect LGE scar
ECV cutoff value to differentiate LGE scar/non-scar was 
investigated on the 80 training cohort subjects. First, the 
highest SI ROI on the mid-LV LGE was automatically 
detected by the software. The user visually inspected the 
area of highest SI ROI to determine if this corresponded 
to a scar or non-scar such as artifact, through-plane 
motion, partial volume effect, etc. The ECV value of the 
corresponding location (i.e., the highest SI ROI area on 
the LGE) was referenced from the ECV map. Then, a sin-
gle ECV cutoff to differentiate LGE scar/non-scar was 
identified from receiver-operating characteristic (ROC) 
curve analysis. Furthermore, the same procedure to 
detect native T1 (nT1) cutoff was performed as a means 
to compare the performance of scar differentiation with 
that from ECV.

ECV‑guided LGE analysis
The scar presence/absence was first judged for the high-
SI ROI by application of the ECV criteria and then the 
corresponding n-SD threshold was identified in reference 
to the ECV value of the corresponding location. These 
procedures were performed on the mid-LV slice which 
was the same slice level as the T1 map image. There were 
two scenarios: (1) If the high-SI ROI was judged as a scar 
(i.e., ECV value was above the ECV cutoff), then the opti-
mal threshold (n-times of SD of remote myocardial SI, 
n-SD) above the remote myocardial mean SI was identi-
fied visually to delineate the scar area on the LGE slice. 
The ECV map was used for visual reference in addition to 
the LGE image to delineate a scar extent. (2) If the high-
SI ROI was judged as a non-scar (i.e., ECV value was 
below the ECV cutoff), the closest threshold (n-SD) that 
does not highlight the high-SI ROI was selected. In both 
scenarios, the selected n-SD threshold was propagated to 
other slices on the LGE image. Acquisition-related arti-
facts, if present, were visually detected and erased. The 
scar mass (g) was recorded, and the final scar amount (%) 
was calculated from the scar mass (g) and LV mass (g). 
Representative cases are presented in Figs. 2 and 3.

Statistical analysis
Data distribution was confirmed with histograms and 
Skewness/Kurtosis tests. Continuous data are expressed 
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as mean ± SD or, and highly skewed as median (first and 
third quartiles). Wilcoxon rank-sum test and Wilcoxon 
signed-rank test were used as appropriate to compare the 
results between the two groups. Chi-square test was used 
to compare the LGE detection rate between two groups. 
Simple linear regression analysis was performed to inves-
tigate the association between the optimized threshold 
(n-SD) and the scar amount (%). The correlation between 
the two MRI indices was investigated with Spearman’s 
test. The ECV or nT1 cutoff value to differentiate LGE 
scar and non-scar was identified from the ROC curve 
analysis. The area under the curve (AUC) and the sen-
sitivity, specificity, PPV, and NPV at the selected cut-off 
values are reported. For the inter-method scar amount 
agreement and the intra- and inter-observer reproduc-
ibility analysis, concordance correlation coefficients 
(CCC) (with CCC < 0.40 = poor; 0.40 ≤ CCC ≤ 0.75 = fair 
to good; 0.75 < CCC = excellent) and 95% limits of 

agreement (LoA) by the Bland–Altman analysis were 
investigated. Statistical significance was defined by a two-
tailed P < 0.05. Power calculation was performed a priori 
to identify the number of cases to develop the ECV crite-
ria to differentiate LGE scar from non-scar. With a type I 
error of 0.05 and Type II error of 0.20 to achieve an AUC 
of 0.7, with a null hypothesis of 0.5 and simulating the 
rate of positive LGE at the high SI ROI from 30 and 70%, 
a sample size range between N = 62 (with LGE positive 
rate of 50%) to N = 77 (with LGE positive rate of 30%) 
was identified. All analyses were conducted by Y.K. in 
STATA (Version 15.1, StataCorp, College Station, Texas, 
USA).

Results
Participant characteristics
The participant characteristics of the 80 non-ischemic 
training cohort, 20 non-ischemic validation cohort, and 
the 10 ischemic validation cohort are summarized in 

Fig. 2  A representative case of ECV-guided LGE analysis. A Original LGE image at the 2-chamber view. B Original LGE image at the mid-LV slice. 
C ECV map. D ECV criteria flowchart. E LGE image at the mid-LV slice with highlighted scar area. A high SI was observed in the anterior wall (A, 
B, arrows). The ECV value at the corresponding location was 69.3%, which was higher than 31.5% (C, arrow). Based on the ECV criteria flowchart, 
the high SI area was judged as scar (D, red dotted line boxes). Then, the optimal n-SD threshold was selected on the LGE image in reference with 
the ECV map. In this case, the optimal threshold was 10SD (E). The selected threshold was propagated to other slices on the LGE image. ECV 
extracellular volume, LGE late gadolinium enhancement, SI signal intensity, ROI region of interest, SD standard deviation, LV left ventricle, RV right 
ventricle
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Table 1. In brief, the non-ischemic groups were all-female 
cohorts with HIV positive rates of 73.8% (training cohort) 
and 80% (validation cohort) while the ischemic group was 
an all-male cohort with significantly reduced LV ejection 
fraction (LVEF)  . The LGE in the non-ischemic groups 
was diffuse and patchy with lower contrast (Fig. 3) when 
compared to the dense and focal ischemic scar (Fig.  2). 
The LGE in the non-ischemic group was mainly observed 
in the anteroseptum and inferoseptum in the basal to mid 
slices and in the basal inferior wall.

ECV‑guided LGE analysis in the non‑ischemic training 
cohort
ECV criteria development
The averaged ECV value corresponding to the high SI 
ROI was 34.0 ± 6.6 (%), which was higher than the global 
ECV value at the mid-LV slice of 27.1 ± 2.8 (%) (P < 0.01). 
In the visual assessment, 50 out of the 80 cases were 
judged as a scar. The ROC curve presented the AUC of 
0.94 (95% CI 0.90–0.99). The single ECV cutoff identi-
fied from the ROC curve to differentiate scar from non-
scar was 31.5%. Forty-nine cases (61.2%) fit into the 
ECV ≥ 31.5% scar category while 31 cases (38.8%) fit into 
the non-scar category of ECV < 31.5%. Overall, the ECV 
cutoff value of 31.5% achieved a sensitivity of 90%, speci-
ficity of 86.7%, PPV of 91.8%, and NPV of 83.9%. In the 
nT1 investigation, the averaged nT1 value correspond-
ing to the high SI ROI was 1339 ± 94 (ms). The ROC 
curve of nT1 against visual scar/non-scar presented the 
AUC of 0.78 (95% CI 0.69–0.88). The nT1cutoff of 1317 
(ms) achieved a sensitivity of 68%, specificity of 70%, 
PPV of 79.1%, and NPV of 56.8%. Based on these results, 
the ECV cutoff was selected to guide the LGE analysis 
(Fig. 4A, B).

The optimization of the n‑SD threshold in the non‑ischemic 
training cohort
The optimal threshold (n-SD) on average was 7.3 ± 2.9 
(SD), which showed a wide range from 3SD minimum 
to 18SD maximum. The threshold value (n-SD) was not 

associated with the global LGE scar amount (%) assessed 
in ECV-guided LGE analysis (β = −0.01, P = 0.92) and 
furthermore, there was no difference between LGE posi-
tive (n = 61) and negative (n = 19) cases. (LGE positive vs. 
negative = 7.1 ± 2.8 SD vs. 7.7 ± 3.4 SD, P = 0.51). Among 
the 31 cases in which high-SI ROI was judged as non-
scar and therefore no scar in the mid-LV slice, 11 of them 
presented scar in other slices after the propagation of 
the selected threshold. These 11 cases showed typically a 
small global scar percentage of 0.46 (0.15–1.1) %.

Inter‑method agreement in the non‑ischemic training cohort
LGE scar was detected in all the cases on manual analy-
sis while in 76.3% in ECV-guided LGE analysis (P < 0.01). 
The quantitative global scar amount (%) was signifi-
cantly larger in manual analysis than that of the ECV-
guided LGE analysis [4.5 (3.2–6.4) vs. 0.92 (0.1–2.1), 
p < 0.01]. The inter-method agreement of the global scar 
(%) between these two methods was fair (CCC = 0.48, 
P < 0.01) with the mean ± 95% LoA by the Bland–Altman 
plot of − 3.2 ± 3.9 (%) (Table 2; Fig. 5).

Reproducibility analysis in the non‑ischemic training cohort
Forty cases were randomly selected for reproducibility 
analysis. Both inter- and intra-observer reproducibility 
presented better results in the ECV-guided LGE analy-
sis than the manual analysis at the global level and at the 
segmental level. The intra-observer reproducibility of 
global scar (%) by ECV-guided LGE analysis was excel-
lent (CCC = 0.94, P < 0.01), and was better than that 
by the manual scar analysis (CCC = 0.78, P < 0.01). The 
inter-observer reproducibility of global scar (%) by ECV-
guided LGE analysis was excellent (CCC = 0.86, P < 0.01), 
and better than that by manual scar analysis (CCC = 0.73, 
P < 0.01). Bland–Altman analysis revealed tighter lim-
its of agreement and smaller bias in ECV-guided LGE 
analysis, for both inter- and intra-observer assessments 
(Table 3 and Supplement 3 within the Additional file 1). 
In per-segmental scar (%) analysis, a similar trend of 
improved inter- and intra-observer reproducibility was 

(See figure on next page.)
Fig. 3  Representative cases presented with or without scar on ECV-guided LGE analysis. A–D Case 1, which presented with scar on ECV-guided 
LGE analysis. A, Original LGE image at the mid-LV slice. B ECV map, C LGE image at the mid-LV slice with highlighted area by the ECV-guided LGE 
analysis. D LGE image at the mid-LV slice with the manually highlighted area. E–H Case 2, which presented without scar on ECV-guided LGE analysis. 
E Original LGE image at the mid-LV slice. F ECV map. G LGE image at the mid-LV slice with no highlighted area by the ECV-guided LGE analysis. H 
LGE image at the mid-LV slice with the manually highlighted area. (Case 1) A high SI was observed in the inferior wall (A, arrow). The ECV value at 
the corresponding location was 58.3%, which was higher than 31.5% (B, arrow). Based on the ECV criteria , the high SI area was judged as a scar. 
The optimal threshold of 11SD was selected and highlighted the myocardium (C). The manual analysis also highlighted the corresponding area (D). 
(Case 2) A high SI was observed in the inferoseptum (E, arrow). The ECV value at the corresponding location was 26.5%, which was lower than 31.5% 
(F, arrow). Based on the ECV criteria , the high SI area was judged as a non- scar. The optimal threshold of 13SD was chosen which did not highlight 
the myocardium (G). Meanwhile, the manual analysis highlighted the myocardium (H). ECV extracellular volume, LGE late gadolinium enhancement, 
LV left ventricle, SI signal intensity, ROI region of interest, SD standard deviation
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Fig. 3  (See legend on previous page.)
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observed for the ECV-guided LGE analysis as compared 
to the manual analysis (Supplement 4 within the  Addi-
tional file 1).

ECV‑guided LGE analysis validation in the non‑ischemic 
validation cohort
The non-ischemic validation cohort presented similar 
trends of results with the non-ischemic training cohort. 
The ECV value corresponding to the high SI ROI and 
the global scar (%) were comparable to those of the non-
ischemic training cohort [ECV value of the high SI ROI: 
32.6 (27.8–35.4) vs. 34.0 ± 6.6 (%), P = 0.36, the global 
scar (%): 0.2 (0–1.6) vs. 0.92 (0.1–2.1) (%), P = 0.14]. The 
ECV cutoff of 31.5% achieved excellent scar/non-scar dif-
ferentiation at the high SI ROI in the validation cohort 
(sensitivity 100%, specificity 81.8%, PPV 81.8%, and 
NPV 100%) while the nT1 cutoff of 1317  ms presented 
a fair differentiation in the validation cohort (sensitiv-
ity 33.3%, specificity 90.9%, PPV 75%, and NPV 62.5%) 
(Fig.  4C, D).The optimal threshold (n-SD) varied from 
3 to 9SD but was lower than that of the non-ischemic 
training cohort [6 (4–7) vs. 7.3 ± 2.9 (SD), P = 0.02]. This 
n-SD threshold was associated with the scar amount 
(β = −0.53, p = 0.02). LGE scar detection rate was higher 
on manual analysis than on ECV-guided LGE analy-
sis (90% vs. 50%, P < 0.01). The global scar amount (%) 
was significantly larger on manual analysis than on the 
ECV-guided LGE analysis [2.5 (1.2–3.7) vs. 0.2 (0–1.6), 
P < 0.01]. The inter-method agreement of the global scar 
(%) was fair (CCC = 0.59, P < 0.01) with the mean ± 95% 
LoA by the Bland–Altman plot of − 1.8 ± 2.5 (%). All of 
these trends were similar to those observed in the train-
ing cohort (Table 2; Fig. 5).

ECV‑guided LGE analysis validation in the ischemic cohort
The ECV value corresponding to the high SI ROI was 
52.2 (49.1–54.3) (%) in the ischemic cohort. The optimal 
threshold (n-SD) was 3.5 (3–5) (SD). The inter-method 
agreement of the global scar (%) by the ECV-guided LGE 
analysis and the FWHM with manual correction was 
excellent [25.0 (17.3–33.9) vs. 24.6 (18.2–27.7), P = 0.23, 
CCC = 0.82, P < 0.01, the mean ± 95% LoA = 1.8 ± 7.8 (%)] 
(Table 2; Fig. 5). All the intra- and inter-observer repro-
ducibility of the global scar (%) (Table 3 and Supplement 
3 within the  Additional file  1) were better or compara-
ble in ECV-guided LGE analysis than the conventional 
analysis. In the per-segmental scar (%) analysis, similar 
trends were observed in the inter-method agreement and 
the reproducibility (Supplement 4 within the Additional 
file 1).

Discussion
In this study, we have presented an ECV-guided LGE 
analysis method that uses the ECV map as a guide to 
determine the optimal LGE n-SD threshold in individual 
cases. This method was developed in a cohort of women 
with or at-risk of HIV which presented an LGE pattern 
of diffuse and patchy non-ischemic cardiomyopathy. The 
ECV cutoff of 31.5% successfully differentiated scar from 
non-scar, achieving high sensitivity, specificity, NPV, and 
PPV. LGE n-SD threshold was optimized using the ECV 
map as a reference, which also contributed to the high 
reproducibility of this method. The selected n-SD thresh-
old ranged from 3 to 18SD. The current study also sug-
gested that the manual LGE assessment on non-ischemic 
diffuse and patchy fibrosis may be overestimating the 
scar amount. Overall, the ECV-guided LGE analysis was 
a more robust LGE quantification than the conventional 

Table 1  Participant characteristics

Data are expressed as mean ± SD, or when highly skewed, as median (first and third quartiles), or in the exact number and the percentage

MRI magnetic resonance imaging, HIV human immunodeficiency virus, LVEF left ventricular ejection fraction, N/A not available

Participant characteristics Non-ischemic training cohort Non-ischemic validation 
cohort

Ischemic validation cohort

N 80 20 10

Age (years old) 51.9 ± 8.7 56.1 ± 6.3 63.5 (59–75)

Female, n (%) 80 (100) 20 (100) 0 (0)

Ethnicity distribution, n (%)

African American 51 (63.8) 11 (55.0) N/A

Hispanic 25 (31.3) 1 (5.0) N/A

Others 4 (5.0) 8 (40.0) N/A

HIV positive participant, n (%) 59 (73.8) 16 (80.0) N/A

LVEF (%) 56.0 ± 5.1 58.7 ± 5.6 37.1 (30.1–38.0)

LVEF < 50% case distribution, n (%) 10 (12.5) 1 (0.5) 10 (100)
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Fig. 4  Comparison between the scar differentiation performance of ECV and nT1 in the non-ischemic training cohort and validation cohort. 
A Scar/non-scar differentiation performance of ECV in the non-ischemic training cohort. B Scar/non-scar differentiation performance of nT1 in 
the non-ischemic training cohort. C Scar/non-scar differentiation performance of ECV in the non-ischemic validation cohort. D Scar/non-scar 
differentiation performance of nT1 in the non-ischemic validation cohort. In both cohorts, ECV presented a better performance of scar/non-scar 
differentiation than nT1. In the training cohort, the derived ECV cutoff of 31.5% achieved sensitivity of 90%, specificity of 86.7%, PPV of 91.8%, and 
NPV of 83.9% (A) while the derived nT1cutoff of 1317 ms achieved sensitivity of 68%, specificity of 70%, PPV of 79.1%, and NPV of 56.8% (B). In the 
validation cohort, the ECV cutoff of 31.5% excellently differentiated scar/ non-scar (sensitivity 100%, specificity 81.8%, PPV 81.8%, and NPV 100%) (C) 
while the nT1 cutoff of 1317 ms presented a fair performance (sensitivity 33.3%, specificity 90.9%, PPV 75%, and NPV 62.5%) (D). ECV extracellular 
volume, nT1 native T1, AUC​ area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value
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quantification method for non-ischemic LGE cases. The 
robustness of ECV-guided LGE analysis was also con-
firmed in two validation cohorts of non-ischemic and 
ischemic cases.

The development of ECV criteria involved three steps 
of considerations. First, we selected ECV, not nT1, to 
guide the LGE analysis. This was based on the better per-
formance of ECV to differentiate scar/non-scar than nT1 
(Fig.  4). In addition, the correlation between ECV and 
SI was stronger than that of between nT1 and SI (ECV 
and SI: rs = 0.35, P < 0.01; nT1 and SI: rs = 0.27, P = 0.02), 
which was in line with the literature that reported a sig-
nificant linear correlation between ECV and histologi-
cal collagen volume fraction (CVF), but no significant 
correlation between nT1 and CVF [32, 43–46]. The 
greater robustness of ECV relative to nT1 values at dif-
ferent imaging parameters and scanner field strengths 
[33, 34] further supported our decision. Second, there 
was a discussion on the ECV cutoff values which cor-
responded to the LGE. Such ECV cutoff values specific 
for the HIV patients have not been investigated so far 
and therefore, the ECV criteria was developed from our 
80 training cases. Indeed, our ECV cutoff of 31.5% was 
consistent with other publications. In a cohort with 
myocardial infarction or hypertrophic cardiomyopathy 
(HCM) patients, the ECV cutoff value for LGE was 32% 

[47]. In a diastolic cardiomyopathy cohort, CVF cutoff of 
12% (which calculates to the ECV value of 30.5%) corre-
sponded to the LGE [30] while in HCM, the CVF cutoff 
was 15% [48]. ECV values of remote myocardium and 
LGE scar area were also referenced from HCM (28 ± 4% 
vs. 30 ± 5%, P < 0.001) [49], non-ischemic cardiomyopa-
thy (26 ± 3% vs 37 ± 6%, P < 0.001) [50], and myocardial 
infarction (27 ± 3% vs 51 ± 8%, P < 0.001) [50]. Thirdly, 
there was a potential trade-off of false-positive or false-
negative with regard to the single cutoff strategy. Such 
misclassification was observed in 9 cases (11.3%), typi-
cally when ECV values were close to the ECV cutoff value 
of 31.5% (averaged ECV was 31.6 ± 1.9%). A lower ECV 
cutoff to achieve a higher sensitivity or a higher ECV 
cutoff to achieve a higher specificity may be considered, 
although in such situations, the counterpart of specificity 
or sensitivity will be compromised. Indeed, a lower ECV 
cutoff of ECV = 30% achieved an excellent NPV with 
sensitivity, specificity, PPV, and NPV of 98.0%, 63.3%, 
81.7%, and 95.0%, respectively, while a higher ECV cut-
off of ECV = 35% achieved an excellent PPV with sensi-
tivity, specificity, PPV, and NPV of 58.0%, 100%, 100%, 
and 58.8%, respectively. In spite of the excellent perfor-
mance of ECV criteria as shown in our manuscript, when 
the observer’s visual decision is clearly against the ECV 

Table 2  Inter-method agreement of global scar amount (%) between the ECV-guided LGE analysis and the conventional methods in 
non-ischemic and ischemic cohorts

Inter-method agreement was investigated in 80 cases of non-ischemic training cohort, 20 cases of non-ischemic validation cohort, and in 10 cases of ischemic 
validation cohort. A moderate correlation of scar amount (%) was observed between the ECV-guided LGE analysis and the manual analysis in the non-ischemic 
training cohort as well as in the validation cohort. In ischemic cases, the correlation was excellent

ECV extracellular volume, LGE late gadolinium enhancement, SD standard deviation, IQR interquartile range, LoA limits of agreement, CCC​ concordance correlation 
coefficient, FWHM full-width half-maximum

Disease and 
cohort name

Analysis method N LGE detection 
rate, n (%) (P 
value)

Scar amount (%), 
mean ± SD

Scar amount (%), 
median (IQR) (P 
value)

B-A plot 
mean ± LoA

CCC (P value)

Non-ischemic train‑
ing cohort

ECV-guided LGE 
analysis versus 
Manual analysis

80 61 (76.3) versus 80 
(100) (p < 0.01)

1.8 ± 2.9 versus 
5.1 ± 3.0

0.92 (0.1–2.1) versus 
4.5 (3.2–6.4) 
(P < 0.01)

− 3.2 ± 4.0 0.48 (P < 0.01)

Non-ischemic vali‑
dation cohort

ECV-guided LGE 
analysis versus 
Manual analysis

20 10 (50.0) versus 18 
(90.0) (p < 0.01)

1.1 ± 1.7 versus 
2.9 ± 2.4

0.2 (0–1.6) versus 
2.5 (1.2–3.7) 
(P < 0.01)

− 1.8 ± 2.5 0.59 (P < 0.01)

Ischemic validation 
cohort

ECV-guided LGE 
analysis versus 
FWHM

10 10 (100) versus 10 
(100)

25.2 ± 8.5 versus 
23.5 ± 5.7

25.0 (17.3–33.9) 
versus 24.6 (18.2–
27.7) (P = 0.23)

1.8 ± 7.8 0.82 (P < 0.01)

(See figure on next page.)
Fig. 5  Scatter plot graphs and Bland–Altman plots of inter-method agreement of global scar amount (%) between the ECV-guided LGE analysis 
and the conventional methods in non-ischemic training cases, non-ischemic validation cases, and ischemic validation cases. A Scatter plot graph 
and B Bland–Altman plot of the inter-method agreement between the ECV-guided LGE analysis and the manual analysis in 80 non-ischemic cases. 
C Scatter plot graph and D Bland–Altman plot of the inter-method agreement between the ECV-guided LGE analysis and the manual analysis in 20 
non-ischemic validation cases. E Scatter plot graph and F Bland–Altman plot of the inter-method agreement between the ECV-guided LGE analysis 
and the FWHM with manual correction in 10 ischemic validation cases. A moderate inter-method agreement was observed in non-ischemic 
cases. In ischemic cases, the agreement was excellent. ECV extracellular volume, LGE late gadolinium enhancement, CCC​ concordance correlation 
coefficient, LoA limits of agreement, FWHM full-width half-maximum
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Fig. 5  (See legend on previous page.)
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value, it may be important to re-evaluate the quality of 
the ECV map and prioritize the observer’s decision.

Our study presented multiple advantages of ECV-
guided LGE analysis for the non-ischemic LGE quanti-
fication. First, the personalized optimization of the LGE 
n-SD cut-off enables its application to different patho-
physiologies and to assess disease progression. Consid-
ering the broad range of n-SD threshold applied, a fixed 
semi-quantitative threshold was not the optimal choice 
for our cohort. This finding is in line with the publica-
tion that the individual optimization of the LGE cut-off 
was more effective than a fixed cut-off of 2-SD or 6-SD 
in a cohort of HCM [51]. Second, given the ECV map 
as a guide, the observers could rationally determine the 
absence of a scar (Fig. 3, Case 2). In our study, this con-
tributed to the difference in scar detection rate or scar 
amount between the proposed method and the manual 
analysis. Utilization of the ECV map as a guide especially 
helps the analysts when quantifying the LGE scar with a 
relatively unknown distribution [6, 7, 12–16]. Third, the 
excellent reproducibility of ECV-guided LGE analysis is 
an advantage in the systematic detection of small changes 
in scar size for the monitoring and management of non-
ischemic patients, as well as to determine the prognostic 

risk of patients more accurately. Many non-ischemic dis-
ease groups present relatively small LGE scar amounts as 
compared to ischemic cardiomyopathy and HCM [1–4]. 
The clinical impact of its per-unit change of LGE may 
likely be different among etiologies. In this regard, ECV-
guided LGE analysis is sensitive to a small change in LGE 
scar size so that the corresponding change in myocardial 
disease may be detected more sensitively. Additionally, 
reproducibility is a key determinant of required sample 
sizes for clinical trials. ECV-guided LGE analysis poten-
tially allows a substantial reduction in the sample size, 
which is a great benefit for a clinical study [20, 52, 53]. 
The higher reproducibility of semi-quantitative LGE scar 
analysis than manual has not been explored in patients 
with HIV except our study, but a similar trend has been 
reported in studies with different non-ischemic etiolo-
gies such as myocarditis [5] and HCM [9, 20]. We may 
reconsider the significance of the semi-quantitative LGE 
assessment in non-ischemic cases. In our study, the 
results suggested an overestimation of scar in manual 
analysis. This may be different across different patholo-
gies and for different readers, but it brings to light the 
difficulty in reproducibly obtaining scar amounts in non-
ischemic cardiomyopathy.

Table 3  Intra- and inter-observer reproducibility of global scar amount (%) between the ECV-guided LGE analysis and the 
conventional methods in non-ischemic and ischemic cases

Intra- and inter-observer reproducibility of global scar amount (%) was investigated in 40 cases of non-ischemic cases and in 10 cases of ischemic cases. In non-
ischemic cases, both inter- and intra-observer reproducibility presented better results in the ECV-guided LGE analysis than the manual analysis. Bland–Altman analysis 
revealed tighter limits of agreement and smaller bias in ECV-guided LGE analysis, for both inter- and intra-observer assessments. In ischemic cases, all the intra- and 
inter-observer reproducibility of the global scar (%) were better in ECV-guided LGE analysis than the FWHM analysis, although the FWHM method was already 
presenting excellent intra-and inter-observer reproducibility. ECV extracellular volume, LGE late gadolinium enhancement, SD standard deviation, IQR interquartile 
range, LoA limits of agreement, CCC​ concordance correlation coefficient, FWHM full-width half-maximum

Disease Reproducibility 
assessment

Analysis method N Scar amount (%), 
mean ± SD

Scar amount (%), 
median (IQR) (P 
value)

B-A plot mean ± LoA CCC (P value)

Non-ischemic Intra-observer ECV-guided LGE 
analysis

40 2.9 ± 3.6 versus 
2.7 ± 3.7

1.6 (0.8–3.5) versus 1.6 
(0.4–3.7) (P = 0.34)

0.1 ± 2.5 0.94 (P < 0.01)

Non-ischemic Intra-observer Manual analysis 40 6.0 ± 3.4 versus 
5.4 ± 3.4

5.2 (3.6–7.7) versus 4.6 
(3.1–6.7) (P = 0.09)

0.6 ± 4.3 0.78 (P < 0.01)

Non-ischemic Inter-observer ECV-guided LGE 
analysis

40 2.9 ± 3.6 versus 
2.3 ± 3.5

1.6 (0.8–3.5) versus 1.3 
(0.2–3.3) (P = 0.05)

0.5 ± 3.6 0.86 (P < 0.01)

Non-ischemic Inter-observer Manual analysis 40 6.0 ± 3.4 versus 
6.6 ± 3.4

5.2 (3.6–7.7) versus 6.3 
(4.5–7.6) (P = 0.09)

− 0.6 ± 4.7 0.73 (P < 0.01)

Ischemic Intra-observer ECV-guided LGE 
analysis

10 25.2 ± 8.5 versus 
26.6 ± 8.8

25.0 (17.3–33.9) versus 
26.9 (17.5–35.2) 
(P = 0.01)

− 1.4 ± 3.6 0.96 (P < 0.01)

Ischemic Intra-observer FWHM 10 25.1 ± 5.9 versus 
24.6 ± 5.6

25.0 (21.5–30.5) versus 
23.9 (20.3–29.8) 
(P = 0.77)

0.6 ± 4.8 0.91 (P < 0.01)

Ischemic Inter-observer ECV-guided LGE 
analysis

10 25.2 ± 8.5 versus 
28.3 ± 9.5

25.0 (17.3–33.9) versus 
29.8 (21.4–37.1) 
(P < 0.01)

− 3.1 ± 4.3 0.91 (P < 0.01)

Ischemic Inter-observer FWHM 10 23.5 ± 5.7 versus 
25.1 ± 5.9

24.6 (18.2–27.7) versus 
25.0 (21.5–30.5) 
(P = 0.11)

− 1.7 ± 5.4 0.85 (P < 0.01)
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The validation studies on the non-ischemic and 
ischemic cohorts proved the robustness of the ECV-
guided LGE analysis. The non-ischemic validation cohort 
presented similar trends as the training cohort in the 
inter-method analysis of the scar (%). This again sug-
gested that the manual LGE assessment on non-ischemic 
cases may be overestimating the scar amount. In the 
ischemic cohort, ECV-guided LGE analysis achieved 
high reproducibility. Although in this cohort, the con-
ventional method of FWHM with manual correction was 
already presenting excellent performance and therefore, 
there was only a small room for the proposed method 
to improve reproducibility. This was derived from the 
high SI and the well-known distribution of the ischemic 
scar. The ECV-guided LGE analysis was feasible in the 
ischemic cases but did not necessarily surpass the con-
ventional method.

Several study limitations deserve discussion. First, 
ECV-guided LGE analysis cannot be performed when 
either the LGE or T1 map image is missing or in cases 
of poor image quality, which occurred in 19 cases (19%) 
and were excluded from this study. In such cases, manual 
scar analysis was performed. Second, the n-SD threshold 
selection was performed with only one slice in the mid-
LV due to the current technical limitation of T1 map-
ping. 3D T1 mapping methods [54, 55] with a matched 
slice position may give a more defined n-SD threshold 
selection at each slice level, which may then be applied 
to higher resolution LGE images. Third, the performance 
of ECV criteria was not compared with pathology, since 
myocardial biopsy was not available in the study protocol 
as well as obtaining the myocardium from the same loca-
tion as suggested in the MRI images was not practical. 
Fourth, the ECV-guided LGE analysis requires gadolin-
ium-based contrast administration, which is not appli-
cable to the patients with contraindication to the agent. 
Native T1 map analysis may be utilized in such cases to 
synthesize corresponding LGE area, admitting the mod-
erate scar differentiation performance of nT1 (Fig.  4). 
Finally, our ECV-guided LGE method was developed in a 
unique cohort of women with or at risk for HIV infection 
and validated in a non-ischemic and an ischemic cohort 
but with a small number of cases. Further validation in 
a larger number of participants with multiple etiologies 
may help validate the method further.

In conclusion, ECV-guided LGE analysis is a robust 
and comprehensive method of scar burden and distribu-
tion assessment in participants with diffuse and patchy 
fibrosis, achieving both higher intra- and inter-observer 
reproducibility as compared to manual analysis.
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