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Abstract 

Background:  Papillary thyroid carcinoma (PTC) is the most common pathological type of thyroid cancer. The effect 
of traditional anti-tumor therapy is not ideal for the patients with recurrence, metastasis and radioiodine resistance. 
The abnormal expression of immune-related genes (IRGs) has critical roles in the etiology of PTC. However, the effect 
of IRGs on PTC prognosis remains unclear.

Methods:  Based on The Cancer Genome Atlas (TCGA) and ImmPort databases, we integrated IRG expression profiles 
and progression-free intervals (PFIs) of PTC patients. First, we identified the differentially expressed IRGs and transcrip-
tion factors (TFs) in PTC. Subsequently, an IRG model that can predict the PFI was constructed by using univariate Cox 
regression, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analy-
ses of the differentially expressed IRGs in the TCGA. Additionally, a protein–protein interaction (PPI) network showed 
the interactions between the differentially expressed genes (DEGs), and the top 30 genes with the highest degree 
were extracted from the network. Then, the key IRG was identified by the intersection analysis of the PPI network 
and univariate Cox regression, which was verified the differential expression of by western blotting and immunohis-
tochemistry (IHC). ssGSEA was performed to understand the correlation between the key IRG expression level and 
immune activity.

Results:  A total of 355 differentially expressed IRGs and 43 differentially expressed TFs were identified in PTC patients. 
Then, eight IRGs were finally utilized to construct an IRG model. The respective areas under the curve (AUCs) of the 
IRG model reached 0.948, 0.820, and 0.831 at 1, 3 and 5 years in the training set. In addition, lactotransferrin (LTF) was 
determined as the key IRG related to prognosis. The expression level of LTF in tumor tissues was significantly lower 
than that in normal tissues. And the results of ssGSEA showed the expression level of LTF is closely related to immune 
activity.

Conclusions:  These findings show that the prognostic model and key IRG may become promising molecular mark-
ers for the prognosis of PTC patients.
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Background
Thyroid cancer is the most common malignancy origi-
nating from the endocrine system. The incidence rate 
has risen markedly in recent years [1, 2]. Papillary thy-
roid carcinoma (PTC) is the most common type among 
thyroid cancer, accounting for approximately 80–85% 
of reported cases [3, 4]. Most patients with PTC can be 
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treated by surgery or radioactive iodine therapy, and the 
overall therapeutic effect is satisfactory [5]. However, 
such treatments cannot completely alleviate radiation-
resistant PTC [6]. In addition, some PTC patients have 
a high metastasis rate and recurrence rate after conven-
tional treatment. The most common method of metas-
tasis is via the cervical lymph system, and metastasis is 
often a factor of a poor prognosis of PTC [7]. The current 
treatments are inadequate for PTC patients with local or 
distant metastasis and recurrence. Therefore, it is urgent 
to explore early diagnosis and intervention methods for 
PTC and provide personalized treatment.

It has been reported that the number and distribution 
of tumor-infiltrating immune cells (TICs) can affect the 
treatment response of tumor patients. TICs have become 
a promising target for further improving the prognosis 
of patients. Prospective immunotherapies also provide 
an alternative treatment option for PTC patients. Explo-
ration of the pattern of the tumor microenvironment is 
helpful for judging the prognostic value and therapeu-
tic effect of PTC patients. Immunotherapy represented 
by immune checkpoint inhibitors is changing the status 
quo of cancer treatment [8]. Programmed cell death 1 
and its ligand (PD-1/PD-L1) and cytotoxic T lymphocyte 
associated antigen 4 (CTLA-4) are the most commonly 
used targeted immune checkpoints in clinical trials. 
They have achieved considerable efficacy in the treat-
ment of multiple tumor types [9–11]. In addition, Bai Y 
et al. found a positive correlation between BRAF V600E 
and PD-L1/PD-1 expression in PTC patients, suggest-
ing that immunotherapy for PD-L1/PD-1 may be effec-
tive for PTC patients with BRAF V600E mutation, and 
these patients were refractory to radioiodine therapy 
[12]. Treatment with a combination of anti-PD-1/PD-L1 
and BRAF inhibitors significantly reduced the tumor vol-
ume in a mouse model of thyroid cancer [13]. Moreover, 
the association between PD-L1 and disease-free survival 
is strong in PTC, which highlighted the role of PD-L1 
as a potential prognostic biomarker for disease recur-
rence in patients with PTC [14]. Although these findings 
show that immunotherapy plays a vital role in PTC, its 
molecular mechanism is still unclear. Currently, we can 
detect the abnormal expression of immune-related genes 
(IRGs) during tumor progression based on sequencing 
technology, providing effective targets for diagnosis and 
treatment. Therefore, it is essential to comprehensively 
demonstrate the therapeutic and prognostic significance 
of IRGs and carry out individualized immunotherapy to 
improve the prognosis of PTC patients.

The main aim of our study was to explore the poten-
tial prognostic values of IRGs in PTC by integrating 
clinical data and corresponding gene expression down-
loaded from The Cancer Genome Atlas (TCGA) and 

ImmPort databases. First, we identified the differentially 
expressed IRGs and transcription factors (TFs) in PTC. 
Subsequently, an IRG model that can predict the pro-
gression-free interval (PFI) was established by using uni-
variate Cox regression analysis, least absolute shrinkage 
and selection operator (LASSO) regression analysis and 
multivariate Cox regression analysis from the differen-
tially expressed IRGs in the TCGA. Receiver operating 
characteristic (ROC) curves were generated to analyze 
the specificity and sensitivity of the prognostic model. 
Additionally, a protein–protein interaction (PPI) net-
work showed the interaction between the differentially 
expressed genes (DEGs), and the top 30 genes with the 
highest degree were extracted from the network. Then, 
lactotransferrin (LTF) was determined as a key gene 
related to prognosis according to the intersection analysis 
of the PPI network and univariate Cox regression analy-
sis. The differential expression of LTF was verified at the 
cellular and tissue levels by western blotting and immu-
nohistochemistry (IHC). These findings indicate that the 
prognostic model and key IRG may become promising 
molecular markers and provide targets for the diagnosis 
and prognosis of PTC.

Materials and methods
Data collection and preprocessing
The normalized RNA-seq data (FPKM) and correspond-
ing clinical features of PTC patients were downloaded 
from the TCGA (https://​portal.​gdc.​cancer.​gov/) [15]. In 
addition, 2498 IRGs were downloaded from the ImmPort 
database (https://​www.​immpo​rt.​org/​shared/​genel​ists, 
May 29, 2020), and 318 TFs were obtained from the 
Cistrome database (http://​cistr​ome.​org/​Cistr​omeCa​
ncer/​Cance​rTarg​et/). To ensure that only significantly 
expressed genes were evaluated, genes with an aver-
age expression value of less than 0.1 were excluded from 
each sample. The DEGs between tumor samples and nor-
mal samples were determined using the Wilcoxon test 
method. The log2-fold change cutoff was set as 2, and 
the false discovery rate (FDR) cutoff was set as 0.05, and 
genes that met these criteria were selected as statistically 
significant.

Functional enrichment analysis
We identified differentially expressed IRGs and TFs based 
on the differential analysis of tumor and normal samples. 
Then, we used the R package clusterProfiler to perform 
functional enrichment analysis on the IRGs and TFs [16]. 
The Gene Ontology (GO) terms were obtained genes 
with p- and q-values strictly less than 0.05. Subsequently, 
we explored the enriched pathways of the differentially 
expressed IRGs and TFs through Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis. The R “GOplot” 

https://portal.gdc.cancer.gov/
https://www.immport.org/shared/genelists
http://cistrome.org/CistromeCancer/CancerTarget/
http://cistrome.org/CistromeCancer/CancerTarget/
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package was utilized to visualize the most significantly 
enriched GO terms and KEGG pathways [17]. In addi-
tion, we downloaded Gene Set Enrichment Analysis 
(GSEA) software from the Broad Institute (http://​softw​
are.​broad​insti​tute.​org/​gsea/​msigdb). C7 gene set v6.2 col-
lections and hallmarks were obtained from the Molecular 
Signatures Database (MSigDB) as reference gene sets. All 
PTC patients in the TCGA database were divided into 
a high LTF expression group and a low LTF expression 
group based on the median expression value, this was 
analyzed as the phenotype. The permutation number 
was set at 1000. A nominal p-value (NOM p) < 0.05 and 
FDR < 0.25 were used as the cutoff criteria to screen sta-
tistically significant pathways.

Construction and identification of the prognostic model
To confirm the potential prognosis-related IRGs, we first 
analyzed the relationship between the expression of the 
IRGs and the PFI by performing univariate Cox regres-
sion analysis. In addition, genes that were significantly 
related to the PFI (p < 0.05) were selected as progno-
sis-related IRGs in PTC. Then, the LASSO regression 
approach was conducted to obtain the optimal IRGs [18]. 
Finally, we applied multivariate Cox regression analysis, 
identified eight prognosis-related IRGs and then con-
structed an eight-gene signature. In the training set and 
the whole set, we calculated the risk score of each patient 
based on the regression coefficient of the IRGs in the 
signature and the corresponding expression value of the 
IRG. The risk score was calculated using the following 
formula:

where β represents the regression coefficient of the 
IRGs in the signature. PTC patients in the TCGA data-
base were divided into a high-risk group and a low-risk 
group based on the median risk value of the training 
set. Survival analysis was carried out to compare the 
PFIs between the high-risk group and low-risk group. 
The difference in PFIs and the significance of prognosis 
between the high- and low-risk groups were evaluated. A 
p-value < 0.05 was selected as the significant cutoff value. 
Additionally, ROC curves were utilized to evaluate the 
accuracy of the prediction model.

Comprehensive analysis of the prognostic model
Univariate Cox regression analysis was conducted to 
evaluate the prognostic relevance of the risk model in 
the whole set, which included age, gender, T stage, N 
stage, M stage, TNM stage, tumor burden and focus 

Risk score = expression of Gene 1 ∗ β1

+ expression of Gene 2 ∗ β2

+ . . . expression of Gene n ∗ βn,

type. We then evaluated the independent prognos-
tic ability of the risk score by performing a multivari-
ate analysis. Subsequently, we explored the correlation 
between the risk score and clinicopathological features 
to better evaluate the role of the prognostic model in 
the PTC development. In this study, the survival and 
rms packages in R were utilized to build a nomogram 
that included each IRG in the model. Then, calibration 
curves were plotted to assess the accuracy of the pre-
diction model. In addition, according to the expression 
levels of IRGs in the model, two-dimensional principal 
component analysis (PCA) and three-dimensional PCA 
were carried out to explore the differences in the distri-
bution of the low-risk group and high-risk groups.

PPI network construction
A PPI network between DEGs was constructed based 
on the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database (http://​string-​
db.​org) [19]. Nodes with interaction scores > 0.92 
were considered meaningful and extracted. The 
data obtained from the STRING database were then 
imported into Cytoscape (http://​cytos​cape.​org/). The 
network was visualized with the software [20]. Because 
TFs are considered to be vital molecules that can 
directly regulate the expression of IRGs, we also built 
and visualized the regulatory network of differentially 
expressed TFs and prognosis-related IRGs.

Identification and verification of the key IRG related 
to prognosis
LTF was identified as the key prognosis-related IRG 
by combining the PPI network and univariate Cox 
regression analysis. First, the Tumor Immunity Esti-
mation Resource (TIMER, https://​cistr​ome.​shiny​apps.​
io/​timer/) database was used to verify the difference in 
the expression level of LTF between tumor and normal 
tissues in multiple cancer types. Then, Kaplan–Meier 
(KM) curve and ROC curve analyses were carried out 
to evaluate the prognostic and diagnostic values of LTF. 
UALCAN (http://​ualcan.​path.​uab.​edu/), a web tool, 
was used to detect the methylation status [21].

Evaluation of immune infiltration
Single-sample gene set enrichment analysis (ssGSEA) 
was conducted by utilizing the “gsva” package in R soft-
ware, and the infiltration scores of 16 immune cells and 
the activity of 13 immune-related pathways were cal-
culated [22]. Subsequently, we explored the correlation 
between the expression level of LTF and immune cell 
infiltration and immune-related pathways.

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
http://string-db.org
http://string-db.org
http://cytoscape.org/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://ualcan.path.uab.edu/


Page 4 of 15Qin et al. Cancer Cell Int          (2021) 21:378 

Cell culture
The normal thyroid follicular epithelial cell line Nthy-
ori 3–1 was provided by the Institute of Medical Biology 
Chinese Academy of Medical Sciences (Kunming), and 
the PTC cell lines K1, BCPAP and TPC-1 were obtained 
from Sun Yat-sen University Cancer Center (Guang-
zhou). All the cell lines were cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) (Gibco) at 37  °C in a humidi-
fied 5% CO2 atmosphere. All cell lines were proven to be 
mycoplasma negative.

Western blotting
Total proteins were extracted from all cell lines. The pro-
tein concentration was detected with the BCA protein 
assay. Then, 30  μg total protein samples were subjected 
to SDS-PAGE, and the separated bands were transferred 
to 0.22  μm PVDF membranes. Protein was blocked for 
1  h with blocking solution. The membrane was incu-
bated with the primary antibody overnight at 4  °C and 
with the secondary antibody at room temperature for 1 h. 
Finally, the gel was imaged. Anti-LTF and anti-GAPDH 
antibodies were purchased from Proteintech. In addition, 
GAPDH served as the loading control for all samples.

IHC
To verify the expression of LTF in PTC and adjacent nor-
mal tissues, we conducted experimental validation in 30 
samples of PTC patients who underwent total thyroidec-
tomy in the Third Affiliated Hospital of Kunming Medical 
University. The study was reviewed and approved by the 
Third Affiliated Hospital of Kunming Medical University. 
The paraffin-embedded tumor tissues and adjacent tis-
sues of PTC patients were collected. Immunohistochemi-
cal staining was performed with the anti-human LTF 
antibody (1:100, 10933-1-AP, Proteintech). Slides were 
incubated with primary antibody at 4  °C overnight, fol-
lowed incubation with secondary antibody for 30 min at 
37  °C. Slides were then immersed in 3.3’-diaminobenzi-
dine and counter-stained with 10% Mayer’s hematoxylin, 
dehydrated, and mounted. The percentage of positive 
staining (0, 0–5%; 1, 6–25%; 2, 26–50%; 3, 51–75%; and 
4, 76–100%) and the staining intensity (0, negative; 1, 
weak; 2, moderate; and 3, strong) were recorded. IHC 
results were evaluated by two experienced pathologists 
independently.

Statistical analyses
All statistical analyses were managed by R software (Ver-
sion 3.6.3) and SPSS (Version 25). Student’s t-test was 
used for statistical comparisons, and p < 0.05 was selected 
as statistically significant.

Results
Identification of the differentially expressed IRGs and TFs 
in PTC patients
The general analysis process of this study is displayed in 
Fig.  1. We obtained RNA-sequencing data and clinical 
follow-up data of 493 PTC samples and 58 normal thy-
roid tissue samples from the TCGA dataset. IRGs are 
usually regulated by TFs and play a pivotal role in the 
tumor microenvironment. Then, 2498 IRGs were down-
loaded from the ImmPort database, and 318 TFs were 
downloaded from the Cistrome database. By comparing 
PTC samples and normal samples from the TCGA data-
base, we identified 1648 DEGs and then screened 355 dif-
ferentially expressed IRGs and 43 differentially expressed 
TFs from the DEGs, and the data are displayed as a vol-
cano map (Fig. 2a, b).

To further explore the potential mechanisms and bio-
logical functions of the DEGs, GO and KEGG pathway 
enrichment analyses were carried out on the differentially 
expressed IRGs and TFs. Regarding the GO analysis, 
IRGs were mostly enriched in cell chemotaxis, leukocyte 
migration and the chemokine-mediated signaling path-
way (Fig. 2c). In addition, TFs were significantly enriched 
in the cytokine-cytokine receptor interaction, viral pro-
tein interaction with cytokine and cytokine receptor and 
chemokine signaling pathway (Fig.  2d). In the KEGG 
pathway analysis, the differentially expressed IRGs were 
mainly associated with regionalization, pattern specifi-
cation process and striated muscle tissue development 
(Fig. 2e), and the differentially expressed TFs were mainly 
enriched in human T-cell leukemia virus 1 infection, 
Th17 cell differentiation and transcriptional misregula-
tion in cancer (Fig. 2f ).

Construction of the prognostic risk model and analysis
To further clarify the correlation between the IRGs and 
prognosis, we constructed an eight-gene model based 
on the IRGs to predict the progression and survival of 
PTC patients. First, we randomly divided the whole 
dataset containing survival information into a training 
set and a test set at a ratio of 1:1. Twenty-seven IRGs 
were significantly associated with PFIs in the training 
set according to the univariate Cox regression analy-
sis. IRGs related to PFIs were subsequently subjected to 
LASSO regression analysis to improve the prognostic 
ability of the model (Fig. 3a, b). Ultimately, a prognostic 
signature comprising eight IRGs, namely, UL16 bind-
ing protein 2 (ULBP2), S100 calcium binding protein A5 
(S100A5), LTF, plexin A4 (PLXNA4), FAM3 metabolism 
regulating signaling molecule B (FAM3B), gastric inhibi-
tory polypeptide receptor (GIPR), RAR related orphan 
receptor B (RORB) and transforming growth factor beta 
receptor 3 (TGFBR3), was selected to build a prognostic 
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signature by stepwise multivariate Cox regression analy-
sis (Table 1), and the forest plot is shown in Fig. 3c. The 
risk score was calculated based on the following equation:

Nomograms play an integral part in the decision-mak-
ing process of modern medicine because they can help 
predict the likelihood of clinical events by using differ-
ent prognostic factors and determinants [23]. To pro-
vide a quantitative approach to evaluate the PFIs of PTC 
patients, we built a nomogram based on risk scores and 
an eight-gene marker. The nomograms of the 1-, 3-, and 
5-year PFIs of PTC patients are shown in Fig.  3d. The 
calibration curve showed that the 1- and 3-year PFIs 
predicted by the nomogram were very consistent with 
the actual observations, indicating that the nomogram 
was accurate (Fig.  3e, f ). Then, all PTC patients in the 
TCGA database were divided into a high-risk group and 
a low-risk group according to the median cutoff value. 
Subsequently, we conducted PCA to explore the respec-
tive distribution between the high- and low-risk groups. 
The two-dimensional PCA and three-dimensional PCA 

Risk score = (−0.876 ∗ ULBP2)+ (0.301 ∗ S100A5)

+ (−0.582 ∗ LTF)+ (−1.003 ∗ PLXNA4)

+ (−0.975 ∗ FAM3B)+ (1.901 ∗ GIPR)

+ (1.606 ∗ RORB)+ (−0.907 ∗ TGFBR3).

showed that patients in the high- and low-risk groups 
were significantly distributed on both sides (Fig. 3g, h).

Validation of the prognostic risk model
The PTC patients were divided into a low-risk group 
and a high-risk group according to the cutoff value, and 
then we calculated the prognostic risk score of each PTC 
patient. The distribution of the risk score, survival status 
and corresponding heatmap of the expression level of 
IRGs in patients in the training set and the whole set are 
displayed in Fig. 4a, b. To evaluate the impact of a high-
risk score and low risk score on prognosis, we evaluated 
the PFIs in the TCGA data by performing KM curve 
analysis. The results are shown in Fig.  4c, d. The prog-
nosis of PTC patients in the low-risk group was better 
than that of patients in the high-risk group (p < 0.001). 
To further clarify the accuracy of the eight-IRG model to 
predict the PFIs of PTC patients, we analyzed the time-
dependent ROC curves. In the training set, the respective 
areas under the curve (AUCs) of the prognostic signa-
ture reached 0.948, 0.820, and 0.831 at 1, 3 and 5 years, 
respectively. Similarly, in the whole set, the AUCs were 
0.802, 0.729, and 0.703, respectively (Fig.  4e, f ). In gen-
eral, these results indicate that the eight-IRG model has 
good accuracy in predicting the occurrence and develop-
ment of PTC.

Fig. 1  Flow chart of the analysis process in our study
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To evaluate the independent prognostic ability of the 
prognostic model, we carried out univariate and mul-
tivariate Cox regression analyses on TCGA data. In the 
univariate Cox regression analysis, the risk score was 
related to the PFI in PTC patients (Fig. 5a). In the multi-
variate Cox regression analysis, the risk score also had a 
certain predictive value for the PFI (Fig. 5b). These find-
ings illustrate that the risk score based on eight IRGs 
can be considered an independent prognostic factor for 
survival in PTC patients. Subsequently, we explored the 
clinical relevance of our eight-IRG signature and evalu-
ated the correlation between the risk score and clinico-
pathological parameters of PTC patients in the whole 
set. The results showed that our eight-IRG signature was 
significantly related to T stage (p < 0.001) and TNM stage 
(p < 0.001) (Fig.  5c–h). As the risk score increased, the 
probability of progressing to an advanced tumor gradu-
ally increased, suggesting that our IRG signature may 
play a pivotal role in the progression of PTC.

Intersection analysis of the PPI network and univariate Cox 
regression Analysis
To identify the potential interaction network between 
DEGs, we used Cytoscape software to build a PPI net-
work based on the STRING database, integrating 268 
nodes and 405 edges (Fig.  6a). The bar plot shows the 
top 30 genes ordered by the number of nodes (Fig. 6b). 
A total of 27 IRGs were significantly correlated with the 
PFIs by the univariate Cox regression analysis based on 
the DEGs. The forest plot is shown in Fig. 6c. Then, inter-
section analysis of the top 30 nodes of the PPI network 
and the prognosis-related IRGs filtered by univariate 
Cox regression was carried out (P < 0.05). In the above 
analysis, only one factor, LTF, overlapped and was iden-
tified as the key IRG related to prognosis (Fig.  6d). TFs 
are considered to be vital molecules that can directly 
regulate the expression of other genes. Therefore, we 
explored the underlying interaction between the differen-
tially expressed TFs and prognosis-related IRGs screened 
by univariate Cox regression. The interaction network 
between TFs and IRGs is shown in Fig. 6e.

Fig. 2  Differentially expressed IRGs and TFs between PTC and normal thyroid samples and functional enrichment analysis. a, b Volcano plots of the 
differentially expressed IRGs and TFs. c, d GO enrichment analysis and e–f KEGG enrichment analysis of the differentially expressed IRGs and TFs
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Analysis and validation of LTF expression in PTC patients
LTF is a vital component of the nonspecific immune 
system. It plays an important role in tumor progression 
[24, 25]. First, we used the TIMER database to examine 
LTF expression in multiple tumors, including PTC. The 
results showed that the expression of LTF in tumor tis-
sues was significantly lower than that in normal tissues 
(Fig.  7a). Then, we analyzed data from the TCGA and 
obtained the same result (Fig. 7b). The paired differentia-
tion analysis indicated that the LTF expression level was 
also lower in tumor tissues than in normal tissues from 
the same patient (Fig.  7c). To evaluate the prognostic 

Fig. 3  Construction of the prognostic risk model and analysis. a, b LASSO regression analysis of the PFI-associated IRGs. c The hazard ratios and 
p-values from the multivariate Cox regression are shown in the forest plot. d Nomogram showing the PFIs at 1, 3 and 5 years of patients in the TCGA 
database. e, f Calibration curves of the nomogram to predict the PFIs at 1 and 3 years. g, h Two-dimensional PCA plot and three-dimensional PCA 
plot showing distribution in the high-risk group and low-risk group

Table 1  Multivariate Cox regression analysis for PFI of eight IRGs 
in PTC

HR, Hazard ratio

ID Coefficient HR HR.95L HR.95H p-value

ULBP2  − 0.876 0.416 0.228 0.760 0.004

S100A5 0.301 1.351 0.923 1.978 0.121

LTF  − 0.582 0.559 0.287 1.090 0.088

PLXNA4  − 1.003 0.367 0.159 0.844 0.018

FAM3B  − 0.975 0.377 0.153 0.928 0.034

GIPR 1.901 6.692 2.277 19.667 0.001

RORB 1.606 4.985 1.466 16.950 0.010

TGFBR3  − 0.907 0.404 0.173 0.939 0.035
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value of LTF in PTC, KM curve analysis was carried 
out, which indicated that patients with low LTF expres-
sion levels had shorter progression‐free survival times 
than those with high LTF expression levels (Fig.  7d). 
Tumor and normal thyroid tissues were distinguished by 
ROC curve analysis, and we found that the AUC of the 
LTF expression level was 0.899, suggesting that it may 
be a good diagnostic biomarker (Fig.  7e). It has been 
reported that LTF has a high methylation level in tumors 

[26, 27]. To elucidate the potential mechanism of LTF 
downregulation in PTC, UALCAN analysis indicated 
that the methylation level of LTF in tumor tissues was 
significantly higher than that in normal tissues (Fig. 7f ). 
In addition, we verified the expression of LTF at the cel-
lular level and found that the expression level of LTF in 
PTC cell lines was significantly lower than that in the 
normal thyroid follicular epithelial cell line Nthy-ori 3–1 
(Fig.  7g). To further verify the expression of LTF at the 

Fig. 4  Prognostic risk model in PTC patients from the training set and the whole set. a, b Patients ranked by risk score, corresponding survival status 
and heatmap of the training set and the whole set. c, d Kaplan–Meier survival curve of PFIs of PTC patients in the training set and the whole set 
according to the median cutoff value. e, f ROC curves at 1, 3, and 5 years in the training set and the whole set
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tissue level, IHC analyses were carried out to compare 
the expression level of LTF in human PTC and adjacent 
noncancerous tissue. The examples of IHC staining were 
shown in Fig.  7h. The results indicated that the expres-
sion of LTF in tumor tissues was significantly lower than 
that in adjacent tissues (Fig. 7i). In addition, considering 
the negative correlation between LTF expression and PFI 
and TNM stage in patients with PTC, we used GSEA to 
identify the enriched features and functional differences 
between the high LTF and low LTF expression groups. 
The high LTF expression group was mainly enriched in 
“ADIPOGENESIS”, “APICAL_SURFACE”, “BILE_ACID_
METABOLISM”, and “FATTY_ACID_METABOLISM”, 
as displayed in Fig.  8b. Regarding the C7 collection 
defined by the MSigDB, the immunologic gene sets and 

genes in the high LTF expression group showed enrich-
ment in “PLASMA_CELL_VS_NAIVE_BCELL_UP”, 
“RESTING_VS_NO TREATED_CD4_TCELL_UP”, and 
“MONOCYTE_VS_MACROPHAGE_UP” (Fig.  8a). 
Therefore, the GSEA findings imply that immune-related 
signals are correlated with the occurrence and develop-
ment of PTC.

ssGSEA
With in-depth research on immunotherapy, emerg-
ing research supports the crucial role of the tumor 
microenvironment in the response to immunotherapy 
[28]. The tumor microenvironment has completely dis-
tinct functions in different stages of tumor develop-
ment. To further understand the correlation between 

Fig. 5  Analysis of the prognostic risk model. a, b Univariate Cox regression analysis and multivariate Cox regression analysis of clinical parameters 
and the risk score in the whole set. c–h Correlation of the risk score with age, tumor burden, T stage, N stage, M stage and TNM stage of PTC
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the LTF expression level and immune activity, we cal-
culated the enrichment score of different immune cell 
subsets, as well as the immune-related functions and 
pathways based on the ssGSEA algorithm. Interestingly, 
nine kinds of immune cells had a significant correlation 

with LTF expression: macrophages, mast cells, natu-
ral killer (NK) cells, Tfh cells, activated dendritic cells 
(aDCs), B cells, Tregs, CD8 + T cells and DCs (Fig. 8c). 
Six immune-related functions and pathways were sig-
nificantly related to LTF expression: APC coinhibition, 

Fig. 6  PPI network and univariate Cox regression analysis. a PPI network of the DEGs. b Bar plot showing the top 30 genes ordered by the 
number of nodes. c Forest plot showing the prognosis-related IRGs screened by the univariate Cox regression analysis. d Venn diagram displaying 
the common genes shared by the top 30 nodes in the PPI network and prognosis-related IRGs. e Interaction network between TFs and 
prognosis-related IRGs. Triangles: TFs; circles: IRGs; red circles: IRGs that positively correlated with PFIs; green circles: IRGs that negatively correlated 
with PFIs; green line and red line indicate a negative correlation and positive correlation, respectively
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APC costimulation, cytolytic activity, inflamma-
tion promoting, type I IFN response and MHC class I 
(Fig.  8d). The ssGSEA results further verified that the 

LTF expression level may influence the immune status 
of the tumor microenvironment.

Fig. 7  The differential expression of LTF and its association with survival and potential functional mechanism in PTC patients. a LTF expression in 
multiple tumor and normal tissues based on the TIMER database. b Differentiated expression of LTF in tumor and normal tissues from the TCGA 
database. c Paired analysis of LTF expression between tumor and normal tissues from the same patient in the TCGA database. d KM survival curve 
of PFIs in patients in the low LTF and high LTF expression groups in the TCGA database. e Diagnostic efficacy of the ROC curve of LTF. f Methylation 
level of LTF according to UALCAN. g LTF protein expression levels in the normal thyroid follicular epithelial cell line Nthy-ori 3–1 and PTC cell lines. 
h Examples of IHC staining of LTF in PTC tissues and adjacent noncancerous tissues. i Comparison of LTF protein expression in 30 pairs of matched 
paraffin section samples by IHC
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Discussion
PTC is the most common pathological type of thy-
roid cancer. PTC patients have a better prognosis than 
patients with other malignant tumors. However, many 
patients with PTC experience local and distant metas-
tasis, and the recurrence rate is still as high as 30%. 
Although the effect of traditional antitumor therapy is 
relatively ideal. However, there are still a small number of 
PTC patients resistant to traditional treatment, especially 
the patients who can not be operated or who have recur-
rence after operation and who have no response to iodine 
therapy. The traditional antitumor therapy can not solve 
all the problems of PTC patients [29, 30]. Therefore, it is 
necessary to develop new molecular targets to monitor 
the therapeutic effect and predict the progression of PTC 
to help improve patient care.

Immunotherapy is a vital treatment method for a vari-
ety of tumors. IRGs in tumors are closely correlated with 
tumor progression [31, 32]. At present, the patients with 

recurrence, metastasis and radioiodine resistance have 
always been the difficulties in the treatment of PTC. 
It is urgent to find more effective treatment methods, 
and immunotherapy has become the focus of attention. 
Researchers have applied the targeting of immunother-
apy to PTC patients who are not sensitive to conventional 
treatment [33–35]. More importantly, studies have shown 
that the expression of PD-L1 in PTC patients was closely 
related to lymph node metastasis, suggesting that immu-
notherapy to inhibit PD-L1 may be a choice for patients 
with lymph node metastasis [36]. Clinical studies have 
also obtained data. A case report showed that nivolumab 
could benefit thyroid cancer with BRAF V600E gene 
mutation. A patient with BRAF V600E mutation and 
PD-L1 positive who relapsed from PTC to advanced ATC 
was treated with vemurafenib combined with nivolumab, 
and the tumor subsided significantly [37]. Although 
an increasing number of studies have been conducted 
on the correlation between immunotherapy and PTC, 

Fig. 8  GSEA and ssGSEA scores between the different LTF expression groups. a Enriched gene sets in the C7 collection in the high LTF expression 
group. b Enriched gene sets in the HALLMARK collection in the high LTF expression group. c Boxplots showing the scores of 16 immune cells in the 
different LTF expression groups. d Boxplots showing the scores of 13 immune-related functions in the different LTF expression groups. The p-values 
were uniformly replaced with the following symbols: *p < 0.05; **p < 0.01; ***p < 0.001
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more in-depth basic research and clinical trials are still 
needed to determine how to apply IRGs to clinical diag-
nosis and treatment, to clarify the underlying mechanism 
of immunity and the progression of PTC and to provide 
a certain theoretical direction for further using IRGs as 
new targets for PTC treatment and prognosis. IRGs can 
be regulated by a variety of TFs, which makes the regula-
tory network between IRGs and TFs highly complex. By 
analyzing the TCGA database, we identified IRGs and 
regulatory TFs in PTC to fully understand various IRGs 
and provide potential biomarkers for the immunotherapy 
response and immunotherapy targets.

High-throughput sequencing technology can help 
us identify various biomarkers that are closely related 
to patient survival at the genetic level. In this study, 
PTC data from the TCGA were used for bioinformat-
ics analysis to identify prognostic IRGs and establish an 
immune-related prognostic model. This model contains 
eight genes, namely, ULBP2, S100A5, LTF, PLXNA4, 
FAM3B, GIPR, RORB, and TGFBR3. It has been reported 
that certain genes in the signature are related to the for-
mation and regulation of tumor progression. ULBP2 is 
reported to bind to the NKG2D receptor on NK cells, 
trigger the release of various cytokines and chemokines, 
and promote the recruitment and activation of NK cells 
[38]. However, pancreatic cancer cells can secrete ULBP2 
and reduce the cytotoxicity of NK cells, thereby medi-
ating immune escape and promoting tumor progres-
sion, and multivariate regression analysis indicated that 
ULBP2 was an important independent factor related to 
poor overall survival. ULBP2 may influence the survival 
of pancreatic cancer patients [39]. A prospective study 
showed that ULBP2 expression in the peritoneal fluid of 
women with endometriosis was significantly high and 
was related to disease severity [40]. TGFBR3 is a vital 
part of TGF-β signaling and is usually used as a corecep-
tor with other members of the TGF-β receptor super-
family. Orthotopic inoculation experiments have shown 
that the loss of TGFBR3 promotes metastasis via TGF-
β-dependent and -independent pathways in renal cell 
carcinoma cells. Low TGFBR3 expression is correlated 
with a poor prognosis in renal cell carcinoma patients 
[41]. Similar results have been reported in head and neck 
squamous cell carcinoma patients. TGFBR3 can act as a 
tumor suppressor to hinder tumor progression [42, 43]. 
Another study showed that macrophage-derived exoso-
mal miR-501-3p can inhibit the expression of the tumor 
suppressor TGFBR3 and promote the development of 
pancreatic ductal adenocarcinoma, providing a new tar-
get for the molecular therapy of pancreatic ductal adeno-
carcinoma [44]. Because the functions and mechanisms 
of some IRGs in the prognostic model have not been 
reported in PTC, their roles need further research and 

exploration. We illustrated that the eight-gene prognostic 
model can be used as an indicator of the immunotherapy 
response in PTC patients.

The PPI network can be used to identify key node 
genes. Moreover, univariate Cox regression was carried 
out to screen prognosis-related IRGs. LTF was identified 
as a key prognosis-related IRG based on a combination 
of the PPI network and univariate Cox regression analy-
sis; thus, LTF may be involved in PTC progression. LTF 
is an iron-binding protein and plays an irreplaceable 
role in the nonspecific immune system. It is famous for 
its inherent and adaptive immune function. The protein 
has been found to have antimicrobial, antiviral, antifun-
gal and antiparasitic activities [45]. Interestingly, it has 
been found in recent years that LTF also impacts tumor 
progression. In various cancers, LTF is genetically or 
epigenetically inactivated. Chen et  al. indicated that the 
expression level of LTF is significantly reduced in thyroid 
cancer patients and may affect the pathological progres-
sion of thyroid cancer based on large-scale data min-
ing [46]. In prostate cancer cell lines, hypermethylation 
occurs in CpG islands that span the transcription ini-
tiation site of LTF. Moreover, through hypermethylation, 
LTF silencing during the development of prostate cancer 
supports the role of LTF as a tumor suppressor gene [26]. 
Tumor-associated macrophages have strong immuno-
suppressive activity, similar to M2-polarized cells, and 
play a crucial role in the progression of cancer. Therefore, 
converting tumor-associated macrophages into a proin-
flammatory M1-like phenotype is an extremely prom-
ising direction for antitumor immunotherapy. Studies 
have shown that the human LTF immunocomplex can 
convert tumor-associated macrophages from M2 to M1, 
and M1-specific markers, which can exhibit strong kill-
ing ability in  vitro, are significantly increased. In  vivo 
experiments have also proved that the human LTF 
immunocomplex can significantly promote the accumu-
lation of M1-like macrophages and prolong the survival 
time of mice. This finding shows that LTF is a promising 
immunotherapy target [47]. Downregulation of LTF can 
be found in multiple cancers, including triple-negative 
breast cancer, nasopharyngeal carcinoma, and renal clear 
cell carcinoma. The downregulation of LTF is accompa-
nied by tumor growth, invasion and metastasis [25, 48, 
49].

However, this study has some limitations. First, since 
all samples in this study were collected retrospectively, 
the potential bias associated with unbalanced clinico-
pathological features of treatment heterogeneity can-
not be ignored. Second, the lack of another external 
validation set is a limitation to our study. Third, the 
eight-gene model was built and verified using data from 
the TCGA, which is a public database. It is necessary 



Page 14 of 15Qin et al. Cancer Cell Int          (2021) 21:378 

to provide more prospective data to verify the clinical 
value of our eight-gene model. In addition, in vivo and 
in  vitro basic and clinical studies are needed to verify 
and extend these results.

Conclusion
In summary, we identified an eight-IRG prognostic sig-
nature associated with the progression of PTC by per-
forming a series of bioinformatics analyses, and the 
risk model can be considered an independent prog-
nostic molecular marker to predict the survival of 
PTC patients. Additionally, by combining the PPI net-
work and univariate Cox regression analysis, a key IRG 
related to prognosis that may be involved in the pro-
gression of PTC was identified. The results of our study 
will be of great importance in elucidating the potential 
molecular biological mechanism of PTC and develop-
ing new prognostic markers and molecular targets.
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